
 

 

A Web Services based Approach for Resource-Constrained 

Wireless Sensor Networks 

 
Sana Baccar1, Mohsen Rouached2  

 
1 CES Research Unit, National school of Engineers of Sfax 

Sfax, Tunisia 

 
2 College of Computers and Information Technology, Taif University 

 Taif, Saudi Arabia 

 
 

  

Abstract 
The large diffusion of Wireless Sensor Networks (WSNs) in our 

contemporary life with their numerous applications has led to a 

huge heterogeneity. This heterogeneity makes the possibility of 

discovering and collecting data from the wireless sensors more 

and more difficult. Indeed, WSNs are currently developed around 

different communities of sensor and user types, with each 

community typically relying on its own system, metadata 

semantics, data format and software. Therefore, the ability to 

discover and utilize a new sensor asset is typically hindered by 

incompatible services and encodings which can cause 

interoperability between different sensor nodes within the same 

WSN. Service-Oriented-Architecture (SOA) is one of the key 

paradigms that enables the deployment of services at large-scale 

over the Internet domain and its integration with WSNs could 

open new pathways for novel applications and research. Despite 

the need to integrate SOA with WSNs, only handful efforts are 

underway to achieve the goal. In this paper, we tackle integration 

of SOA with WSNs by proposing a Lightweight Representational 

State Transfer (REST)-based Web Services approach to treat 

sensors in an interoperable, platform-independent and uniform 

way. 

Keywords: Wireless Sensor Networks, Service-Oriented 

Architecture, REST. 

1. Introduction 

Sensor technology is continuously improving as the 

devices become smaller, cheaper, more intelligent, and 

more power efficient. In consequence, more and more 

application fields are making use of these technologies [1, 

2]. The increasing complexity of device networks 

consisting of up to thousands of devices is demanding new 

technologies for simple device interaction and 

interoperability. 

Indeed, sensor networks are currently developed around 

different communities of sensor types and user types, with 

each community typically relying on its own stovepipe 

system for discovery, accessing observations, receiving  

 

alerts, and tasking sensor systems and models. Even within 

fairly coherent communities, each type of sensor tends to 

be accompanied by its on metadata semantics, its own data 

formats, and its own software. Thus the ability to discover 

and utilize a new sensor asset is typically hindered by 

incompatible encodings and services. There are a number 

of scenarios which can be presented as test cases for the 

need of interoperability, for example, a smart home with a 

set of services like security, energy management, assisted 

living, etc. A home in this case would have intrusion 

sensors on doors and windows, smoke sensors in rooms, 

temperature and light sensors for temperature control and 

may be fire sensors connected to fire station. Traditionally, 

each sensor shall be running only one application 

restricting the generic extensibility of the infrastructure. If 

we could access all these sensors (and applications) 

through a common interface, not only we can continue to 

run the existing applications, but we can also create and 

run more applications using the same resources. 

The necessity, therefore, arises to espouse an 

interoperability architecture that is open and extensible, 

and allows for dynamic integration of services. The 

enabling of an open and extensible architecture requires 

interoperability at network as well as at application levels. 

The application layer interoperability poses bigger 

challenges. Different types of sensors are available, which 

generate sensor-specific data. The application developer 

must understand and analyze the message types and 

parameters used in the sensor nodes. One solution is to 

adopt a common specification, for all the sensing devices. 

This approach may work for a small set of devices, but is 

highly impractical. An alternative approach is to tailor, 

trim and use existing standard services in a light-weight 

fashion. SOA is a promising candidate middleware 

platform that closes this interoperability gap and mediates 

data exchange between heterogonous sensor platforms and 

Web applications and services in a unified way. SOA 

possesses an architectural style encompassing a set of 

services for building complex systems from existing 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 63

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

components. As an architectural evolution and a paradigm 

shift in systems integration, SOA enables the discovery, 

access and sharing of the services, data, computational and 

communication resources in the network for multiple users. 

It also allows rapid and cost-effective composition of 

interoperable and scalable systems based on reusable 

services exposed by these systems. SOA inherently 

supports two major requirements: heterogeneous 

infrastructures and runtime adaptability, which are 

essential for large-scale cyber-physical systems in which 

multiple applications run over diverse platforms and adopt 

different technologies. 

The SOA, however, brings with it numerous research and 

development challenges for use on low power sensor nodes. 

These challenges range from resource constraints of sensor 

nodes to the application space of such networks. More 

details about these challenges are discussed in our previous 

work presented in [3]. 

Though SOA has become a cornerstone in many recent 

research efforts, many of its elegant potentials have not 

been sufficiently explored in Low power Wireless Personal 

Area Networks (LoWPANs). In this paper, we tackle 

integration of SOA with WSNs. More specifically, we 

propose a Lightweight RESTful Web Services-based 

approach for Resource-Constrained Wireless Sensor 

Networks. 

The key features of our approach are: 

1. Design and implementation of a RESTful API on 

each sensor node within WSNs in order to 

guarantee an easy communication between the 

sensors.  
2. Adaptation of the Sensor Web Enablement (SWE) 

standards [4] to ensure a seamless communication 

between WSNs and Web-Users via SWE services.  

This adaptation addresses the challenges related 

to the data format exchange and the 

implementation architectural style 
The remainder of the paper is structured as follows. 

Section 2 describes the main concepts needed to 

understand our contribution. In section 3, we present our 

approach that aims to design and realize Lightweight 

RESTful Web Services for Resource-Constrained Wireless 

Sensor Networks. Section 4 is dedicated to the 

experimentation and the performance evaluation of the 

proposed approach. The related work is reviewed in 

Section 5. Finally, Section 6 concludes the paper and 

outlines some future directions. 

2. Lightweight RESTful Web Services for 

Resource-Constrained WSNs 

2.1 Model ingredients 

This section introduces the main ingredients and 

components of our approach. More precisely, we introduce 

the SWE standard and the REST technology, which 

represent the key features of our approach. 

2.1.1 Overview of the SWE 

The SWE framework consists of a set of standards that 

define data formats for sensor data and metadata and web 

service interfaces for providing sensor related functionality. 

Figure 1 shows an overview of the components forming the 

SWE architecture.   

 

 
Fig.  1 Overview of the OGC SWE framework 

 

As figure 1 illustrates the SWE framework can be divided 

into two parts: the interface model and the information 

model [5]. 

 

 The interface model defines the interfaces of 

sensor related web service types. The SWE 

information model comprises a set of standards 

which define data models primarily for the 

encoding of sensor observations as well as sensor 

metadata. For this purpose, the first generation of 

SWE contained three specifications: Observations 

& Measurements (O&M), the Sensor Model 

Language (SensorML), and the Transducer 

Markup Language (TML), which define XML 

schemas for encoding sensor observations and 

measurements, describing sensors and processes 

they can participate in, and describing transducers 

respectively.   

TML supports the encoding of sensor data as well 

as metadata by focusing on data streaming. TML 

has only been rarely used in practice and has not 

been further evolved so far. In the new generation 

of SWE specifications, TML is not referenced 

anymore and recent conversations in OGC's SWE 

working group showed that there is no urgent 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 64

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

demand in TML and a retirement of the standard 

is in discussion [5]. Hence, we do not see TML as 

part of the new generation SWE. The 

Observations & Measurements standard defines a 

domain independent, conceptual model for the 

representation of (spatiotemporal) measurement 

data. It comprises an implementation of this 

conceptual model as an XML based GML 

application schema. The Sensor Model Language 

specifies a model and XML encoding for the 

description of all kinds of sensor related 

processes. 

 The information model comprises the standards 

which address the specification of data formats. 

The SWE interface model comprises standards 

that specify the interfaces of the different Sensor 

web services. Four service interfaces were defined 

for the first generation of SWE: The Sensor 

Observation Service (SOS) offers pull-based 

access to sensor measurements as well as 

metadata. The Sensor Alert Service (SAS) allows 

subscribing to alerts in case of a sensor 

measurement event that fulfills certain criteria. 

The Sensor Planning Service (SPS) can be used 

for tasking sensors and setting their parameters. 

The Web Notification Service (WNS) is, unlike 

the other three services, not directly sensor related. 

It is a supportive service which provides 

asynchronous notification mechanisms between 

SWE services and clients or other SWE services 

(e.g., delivery of notifications) including protocol 

transducing capabilities. The service 

specifications of the first generation SWE 

primarily concentrated on the definition of an 

XML schema which reflected the service 

functionality. In the new generation SWE, first a 

conceptual service model is defined (using UML 

notation), before an XML implementation of that 

model is specified. This facilitates the adoption of 

other forms of implementations of the conceptual 

model such as the JavaScript Object Notation 

(JSON) implementation. 
 

In summary, the SWE framework provides a 

comprehensive and stable framework that allows building 

applications that are based on sensors and sensor data. 

2.1.2 REST architectural style 

Representational State Transfer (REST) [6, 7] is not just a 

lightweight instantiation of the web services concept, but it 

is also an architectural model that is particularly well 

suited to the properties of smart objects. Systems built 
around the REST architecture are said to be RESTful.  

This powerful architectural model builds on three concepts 

which are representation, state and transfer: 

 

 Representation: Data or resources are encoded as 

representations of the data or the resource. These 

representations are transferred between clients 

and servers. One example of a representation of a 

resource is a temperature value written as a 

decimal number, where the representation is the 

decimal number and the temperature is the 

resource. It is possible to have different 

representations for the same resource which is a 

powerful concept for the REST architectural style, 

e.g. a server can serve HTML content for human 

consumption and XML or JSON for machines. 

 State: All of the necessary state needed to 

complete a request must be provided with the 

request. The clients and servers are inherently 

stateless. A client cannot rely on any state to be 

stored in the server, and the server cannot rely on 

any state stored in the client. This does not, 

however, pertain to the data stored by servers or 

clients, only to the connection state needed to 

complete transactions. 

 Transfer: The representations and the state can be 

transferred between client and servers. 

 

REST is an architectural model that triggers a good 

extension to the web services by mapping various 

Hypertext Transfer Protocol (HTTP) methods and 

operations to transfer representations of resources between 

clients and servers with minimum consumption. Moreover, 

in a REST model, the Uniform Resource Identifiers (URIs) 

are used to encode transaction states as well as to identify 

the resource that will be handled. Another powerful 

concept of the REST is based mainly on its stateless 

server-design and its semantic content for the exchanged 

messages. This leads to implement simple and lightweight 

encodings formatted differently independent of the used 

standards. In fact, although XML-based formats frequently 

are used, they are only one of the many available options.  

The drawback of the XML based formats are their size. 

The XML format is verbose and therefore is not suitable 

for low power and low data rate sensor networks. The data 

format we use in our work is JSON since it provides a 

good match for smart object systems where compactness of 

representation is important due to the inherent resource 

constraints.  Indeed, this data format is more compact than 

XML as it provides an implicit data structure format 

without any XML parsing requirements on the network 

nodes. JSON serializes data structures, such as numbers 

and arrays, as strings formatted according to the JSON 

specification.  

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 65

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

In the rest of the paper, we outline the adaptation features 

of the REST architectural style that are broken into two 

main groups: External RESTful APIs that belongs to the 

communication between sensor nodes within the same 

WSN and internal API (node API) that belongs to SWE 

services running on the sensor nodes themselves. 

2.2 A RESTful API for sensors communications 

We propose to use a RESTful API on each sensor node 

within the WSNs to provide information about their 

sensors and actuators to the central monitoring server as 

well as to communicate with their neighbors. To achieve 

this integration, two options are possible: either 

implementing a RESTful API in a gateway, which 

connects the sensor nodes with the Internet, or directly 

implementing the API on Web-enabled devices.  

Indeed, the second option looks smarter due to the fact that 

deploying new device types does not require any changes 

to the gateway functionality (minimum time-consumption), 

in addition to guarantying an automatic discovery of sensor 

node as well as an efficient communication with its 

neighbors through  IPv6 Low power Wireless Personal 

Area Networks (6LoWPAN) [8, 9, 10]. 

Therefore, we adopt this solution as depicted in Figure 2. 

 

 

Fig. 2  RESTful sensors communications. 

Since each sensor node may connect with different sensors 

and actuators, manual configuration of a central 

monitoring system is infeasible if a large number of sensor 

nodes are used [11]. Based on the RESTful API, [11] 

introduced a plug-and-play approach, which enables not 

only the automatic discovery of sensor nodes in a wireless 

network, but also of the functionality they provide. We 

propose to extend this plug-and-play approach by ensuring 

an efficient communication between each sensor and its 

neighbors through zero user-configuration. 

This extension is based mainly on the new way of data 

transmission between the sensor nodes within the same 

WSN. In fact, each sensor node resource is described by an 

URI schema that is like: ResourceURI::Protocol://Host/ 

ApplicationPath/ResourceType/ResourceID/ResourceNam

e/ResourceObsValue. In the same cluster, this URI can be 

devised into two segments: parent segment (Host/ 

ApplicationPath/ResourceType/) and child segment 

(ResourceID/ResourceName/ResourceObsValue). Then, 

each node can communicate with its neighbors to create, 

retrieve, update or delete data resource by just identifying 

their child segment. Moreover, this mechanism is useful 

for sensor service discovery: once a sensor node is 

powered, it automatically links to the wireless network and 

starts to communicate with its neighbors and collect 

observations that will be available for searching. 

The powerful concept of this interface is that it is not fixed 

to one particular system but it can be accessed from any 

platform, operating system, and using any network 

technology. With this RESTful API, the interactions 

between sensor nodes within the same WSN can be built 

around standard methods to abstract the inner workings of 

heterogeneous WSNs. This can reduce pervasive data 

generated by the huge number of sensor nodes by 

decreasing transmission load rate of individual sensor 

nodes and the energy consumption of the overall WSN. 

One other advantage is that requests and responses 

between sensor nodes are presented in the JSON format 

which is a lightweight and platform independent data 

exchange format. Parsing and creating the JSON 

representation of data requires less overhead on resource-

constrained sensor nodes compared to the XML format. 

2.3 Adaptation of the SWE framework to the 

REST architectural style 

The adoption of the REST architectural style for the SWE 

is depicted in Figure 3. This adoption is based on two 

features. The first one concerns the interface model. The 

second one is related to the information model and more 

specifically to the data encodings.  

Each service of the SWE standards (SOS, SAS, SPS, and 

WNS) can be implemented as a server application that is 

encapsulated inside a REST interface. This API works as a 

proxy to this service for providing a RESTful interface to 

the data.  

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 66

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

  

 

Fig. 3  REST architectural style for SWE. 

For instance, Figure 4 shows the design principle of the 

most important service which is the SOS service. The 

RESTful-SOS acts as a proxy to the actual SOS and 

transforms the input calls to SOS queries of the 

GetObservation operation. 

 

 

Fig. 4  RESTful-SOS. 

The proxy is also able to transform the observations 

encoded in the Observations and Measurements (O&M) 

format to JSON data encodings, which is a lightweight and 

platform independent data exchange format. 

Parsing and creating the JSON representation of data 

requires less overhead on resource constrained sensor 

nodes compared to the XML format. 

As showed in Figure 4, the conversion of XML structures 

into JSON ones is implemented as an XML2JSON module 

that accepts XML string data as input and converts that 

into JSON-formatted data output.  

The Web Registry Service (WRS) works as a middleware 

for connecting the client to the requested service. It is 

considered as a database server that receives the 

GetRecords request and returns a JSON document 

containing the endpoint URL of all existing services that 

satisfy the query. In a typical scenario, after getting the 

URL of the service, the client transmits a GetFeasbility 

request (includes the desired parameters if it is a Post 

request) to the Sensor Planning Service (SPS). If the task is 

feasible, the Get/Post observation request (with its 

parameters and the UserID) will be submitted through the 

SPS to the mismatched sensors to be executed. 

By submitting the request, the SOS starts collecting the 

sensed observations and stored them. Upon the task is 

completed, the SPS notifies/alerts the client that the 

requested data (events) is available (is executed). The 

client then can get observations/events from the SOS that 

is used to collect the desired data. 

The registration of a new service in the WRS is done as 

follows. The client sends a request to the WRS containing 

the service URL to be registered. After registration, the 

WRS connects to the specified service, fetches its 

capabilities and starts processing it. When this operation is 

completed, the WRS notifies the client by sending a 

notification message to announce that the added service 

becomes searchable through the WRS interface. 

The architecture and the behavior of the XML2JSON 

module is depicted in figure 6.  

 

 
 

Fig. 6  XML2JSON architecture and behavior 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 67

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

This architecture contains three main components 

which are: 

 XML Library (GNU XML2 library): contains 

primitives that loads an XML buffer and convert 

it to a memory structure (Tree of nodes).  

 JSON Library (Jansson library): a set of APIs 

used to create JSON structures. 

 XML-to-JSON Engine: combines calls to XML2 

library primitives and Jansson library APIs in a 

specified algorithm to create a structured JSON 

string buffer from an XML buffer. 

 

Then in order to reduce the size of the JSON output string 

buffer, we have made an optimization that consists in 

ignoring all extraneous formatting spaces and tabulations 

during the creation of a JSON structure. 

In summary, unlike some existing parsers that just 

transform the input file directly to the desired output 

format, our parsing module contains a filter that tries to 

eliminate all non useful tags, empty tags, spaces from the 

input file. Then, the manual generation of JSON objects 

would be a huge overhead and prone to error, an additional 

library has been developed to support the reformatting of a 

response as a JSON object. The JSON library helps to 

create JSON objects by offering services which 

automatically generate the JSON envelope. As will be 

proved in next section, this has an important impact of the 

parsing time and the size of the output file. 

Finally, the performance of this convertor and of the whole 

model in terms of buffer size and transmission time will be 

studied in next section. 

3. Implementation and Performance study  

As a middleware system for building Sensor Web 

infrastructures based on SWE, we have chosen the 

52°North Sensor Web framework [12]. The 52°North 

Sensor Web framework provides implementations for the 

different SWE services. An implementation of the Sensor 

Observation Service enables querying as well as inserting 

measured sensor data and metadata. Discovery of sensors 

is supported by implementations of Sensor Instance 

Registry (SIR) and Sensor Observable Registry (SOR). To 

integrate sensor resources with the SWE service 

implementations, the 52°North framework comprises an 

intermediary layer, called the Sensor Bus [13], to which 

sensor resources and SWE services can be adapted to 

establish communication. 

Looking from the perspective of the Sensor Web 

Enablement initiative, different sensors and other support 

data are required to extract reliable information. This case 

was the driving force for the SWE Working Group within 

the 52°North Open Source initiative to come up with an 

integrated framework named the OGC Web Service 

Access Framework (OX-Framework) [14, 15]. The aim of 

the OX-Framework is to provide an integrative view to 

access all kinds of OGC Web Services. 

 

Based on the RESTful-SOS application presented in 

https://svn.52north.org/svn/swe/incubation/OXRestWS/tru

nk/OX-RestWS/, the idea of our experimentation scenario 

is that: after accessing to the RESTful-SOS application and 

send GetCapabilities request, the returned GetCapabilities 

response file will be parsed and used to then construct our 

proper GetObservation or DescribeSensor URLs. Loading 

these URLs should display the SOS GetObservation 

response that is returned with in a different format such as 

in JSON format. 

Accessing to one of the SOS instances such as 

AirBase_SOS enables the client to discover the available 

resources and services. Such a sensor environment 

example is described in http://v-swe.uni-

muenster.de:8080/52nRESTfulSOS/RESTful/sos/AirBase_

SOS/ that we have extended with new RESTful 

implementation of the other services. 

 

For the benchmarking we have considered two parameters, 

which are the Data size and the Transmission time. The 

results of measurements and performance studies show 

gains up to 60% and 15% in terms of transmission time 

and buffer size respectively.  

To have an idea about the gain in term of data size, Table1 

gives an example of seven different XML buffers that was 

used in our tests. 

 
Table 1: Data buffer size gain (Bytes) 

XML 861 1379 2133 2212 3417 12780 25474 

JSON 454 889 1063 1146 1452 10300 20552 

Gain 407 490 1070 1066 1965 2480 4922 

The gain in terms of transmission time is shown in figures 

7 and 8. Figure 7 gives a comparison between data 

transmission duration by considering SOAP and XML, 

REST and XML, REST and JSON. 

 

 
 

Fig. 7  Data transmission duration -HTTP/REST VS SOAP/XML VS 

XML/REST. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 68

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

 

We can observe a gain up to 60% in term of data 

transmission duration. It is clear that the reduction of the 

transmission time is more important by using REST 

instead of SOAP. Even for REST, with JSON format the 

results are better than with XML since XML is verbose. 

 

 
 

Fig. 8  SOAP/XML Transmission time VS REST/JSON 

Processing+Transmission time 

 

In figure 8, we consider the transmission time and the 

processing time together. In this figure, the gain is also 

important. The processing time is the time for parsing 

XML files to JSON ones. This time is negligible compared 

to the transmission time.  

4. Related Work 

The integration of sensor networks with existing IT 

systems by providing a structured and  interoperable 

mechanism for data acquisition, data storage, and data 

replication both within and outside of the sensor network, 

was discussed in several research papers and projects. 

Projects such as eSOA[16], SIRENA [17], SOCRADES 

[18], RUNES [19], and OASiS [20] have been developed 

in order to provide an SOA approach for embedded 

networks. The majority of these projects aim at making 

embedded devices directly accessible with Web Service 

technologies by installing an adopted Web Service stack, 

i.e. the Devices Profile for Web Services (DPWS) stack 2 

[21]. However, while this approach is suitable for a certain 

range of devices, there will always be a class of very small 

and lightweight devices, which cannot deal with the 

additional overhead introduced by the Web Service 

technologies, and consequently, require more efficient 

SOA implementations. 

 

Some works, such as [23, 24], have discussed the adequacy 

of DPWS for WSNs. These works recommended 

eliminating the use of SOAP and HTTP protocols due to 

their high overheads. Instead, they provide some solutions 

based on application-specific formats that are used in the 

proposed Tiny DPWS protocol stack. Although the 

proposed application-specific-format reduces the size of 

the transmitted messages in the network, it hinders the 

extensibility of the solutions. For any new service to be 

offered by sensor nodes, a new application-specific-format 

should be defined in order to make it work in the proposed 

infrastructure. [25] describes a SOA based middleware 

which mediates data exchange between heterogonous 

sensor platform and Web applications and services in a 

unified way. 

In [26], Moritz et al. presented different XML specific and 

XML non-specific compressors and their influence on 

message size of the Devices Profile for Web Services 

(DPWS). They focused on the SOAP compression to 

makes DPWS applicable for deeply embedded devices in 

6LoWPAN networks, which are characterized by very 

constrained resources such as small computing power, 

limited power supply, and a few tens of storage capacity. 

The results showed that most existing compressors suffer 

from the simplicity of XML structures, which are the 

results of non complex services deployed on the deeply 

embedded device.  

To increase parsing performance, a new encoding Devices 

Profile for Web Services (encDPWS) approach was 

introduced in [27]. This paper investigated the 

applicability of DPWS in 6LoWPAN networks. Their main 

objective is to optimize the message encoding process in 

order to reduce the overhead of this SOAP-based protocol. 

The Open Geospatial Consortiums (OGC) [15] is an 

international standardization consortium, which provides a 

framework that specifies standard interfaces to access 

geographical data in addition to encoding and exchanging 

these data over the Internet. 

OGC Web Services follow the W3C’s service-oriented 

web services framework and support publishing, 

automatically discovering and accessing geographical 

information over the web; leading to Spatial Data 

Infrastructures (SDI). In addition to these standardization 

efforts, there have been several proprietary solutions that 

illustrated the Sensor Web concept. 

For instance, SensorMap [28], a Microsoft project, 

provides a set of tools that data owners can use to easily 

publish their environmental data, and a GUI enabling users 

to make queries over live data. SensorMap   transparently 

provides mechanisms to archive, index and aggregate 

sensory data, and process queries [29]. The SensorMap 

GUI is a mash-up application that permits users to submit 

queries on available sensors and overlays the aggregated 

results on a map. The framework introduced in [30] 

facilitates access to both real-time and historical sensed 

data, through variety of access methods. It addresses the 

scalability issue by introducing a distributed sensor register. 

Although these solutions provide either an SOA based 

APIs or common interfaces that make sensing data 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 69

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

accessible for the users, their operational behavior is very 

much influenced by the role of the heavy application-level 

gateway and single-point-of-failure problem. The 

application-level-gateway plays a crucial role due to the 

absence of direct interaction among sensor nodes, the 

Internet applications, and users.  

Some middleware systems for building Sensor Web 

infrastructures based on SWE are proposed. GeoSwift, 

another SOA-based framework that was proposed by Liang 

et al. in [31], is a distributed geospatial information 

infrastructure for the Sensor Web.  

The PULSENet framework [32], which reuses and amends 

the open source components of the 52°North Sensor Web 

framework, allows the implementation of a SWE-based 

Sensor Web. NASA's Sensor Web 2.0 [33] system 

incorporates SWE services and combines them with Web 

2.0 technology. The mash-up functionality is realized by 

incorporating the representational state transfer (REST) 

approach to access data. However, it remains unclear how 

the system provides REST access to sensor resources by 

leveraging SWE services. 

IrisNet (Internet-scale Resource-Intensive Sensor Network 

Services) [34] and Tenet [35] are two other approaches 

that have adopted SOA in developing middleware 

solutions for WSNs. Tenet  provides a SOA-based solution 

that is although its flexible accommodations for some 

applications, still heavily relying on the application-level 

gateway that plays an important role in the Tenet solution. 

On the other hand, IrisNet is a distributed software 

architecture, which provides high-level sensor services to 

users. An important characteristic of this architecture is 

that Sensor Agents are dynamically programmable.  

Although these solutions expose WSN to be more 

accessible through the Internet by means of application-

level gateways, they mainly suffer from the single-point-of-

failure problem and scalability issues common to 

centralized gateway approaches.  

 

Several other efforts aimed at using SOA in WSNs. In 

what follows, we present an overview of most relevant 

works.  

In [36, 37], the authors addressed the feasibility of using 

RESTful Web services to integrate SOA with IP-based 

WSNs. In [37], the authors presented an approach to 

integrate tiny wireless sensor or actuator nodes into an IP-

based network. Sensors and actuators are represented as 

resources of the corresponding node and are made 

accessible using a RESTful web service. Sensor nodes run 

a small web server on top of a TCP/IP stack to provide 

access to sensor data and actuators using HTTP requests. 

Data is represented in the JSON format, which is a more 

lightweight alternative as compared to XML. A prototype 

application based on TinyOS 2.1 on a custom sensor node 

platform with 8 Kbytes of RAM and an IEEE 802.15.4 

compliant radio transceiver was implemented. A key 

feature in this approach is that compared to many existing 

approaches that provide Web services at a smart gateway, 

it proves the feasibility to provide Web services at each 

node, even when using a very resource-constrained 

hardware platform. The system explained in [38] uses two 

mechanisms to provide a good performance and low-power 

operation: a session-aware power-saving radio protocol 

and the use of the HTTP Conditional GET mechanism. 

In [39], Rezgui and Eltoweissy explored the potential of 

SOA in building open, efficient, interoperable, scalable, 

and application-aware Wireless Sensor and Actuator 

Networks (WSANs). A prototype of service-oriented 

WSAN was developed using TinyOS. In [40], King et al. 

developed a service-oriented WSAN platform, called Atlas, 

which enables self-integrative, programmable pervasive 

spaces. Kushwaha et al. developed in [41] a programming 

framework, called OASiS, which provides abstractions for 

object-centric, ambient-aware, service oriented sensor 

network applications. OASiS decomposes specified 

application behaviors and generates the appropriate node-

level code for deployment onto sensor networks. It enables 

the development of WSN applications without having to 

deal with the complexity and unpredictability of low-level 

system and network issues. In [42], Golatowski et al. 

proposed a service oriented software architecture for 

mobile sensor networks. An adaptive middleware is 

employed in the architecture that encompasses mechanisms 

for cooperative data mining, self-organization, networking, 

and energy optimization to build higher-level service 

structures. 

In [43], the authors presented an approach to seamlessly 

integrate WSNs into business process (i.e. SOA) 

environments using the Business Process Execution 

Language (BPEL) and Web Services while using only very 

few resources on the sensor nodes. It introduces how 

application developers can use standard compliant 

techniques to describe business processes that are using 

services offered by WSNs, without the need for hand-

crafted code for data conversion, etc. By adopting this 

approach, services offered by the WSN can be used 

seamlessly in enterprise-level business processes.  

These services can also quickly be composed to higher-

level applications by simply modifying the business 

process. Priyantha et al. described in [44] a Web Service-

based approach based on standard technologies such as 

IPv6, 6LoWPAN, and HTTP. Considering the message 

serialization and transport, Web Service messages are 

exchanged using HTTP. In their approach, they tried to 

avoid using complex SOAP messages as much as possible. 

Instead, if Web Service messages do not contain complex 

data structures, simple URL encoded messages are 

exchanged to reduce the message size. In [44], Amundson 

et al. presented a SOA based approach for WSNs not 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 70

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

relying on Web services. Thus, to enable sensor nodes 

calling Web Services of Enterprise-IT systems, their 

solution imposes the use of a gateway, which converts 

between the proprietary middleware message format and 

standard Web Service message format.   

5. Conclusion and future direction 

In this paper, we have presented a RESTful 

implementation for the SWE. This implementation consists 

of developing REST interfaces for each SWE service and 

using the JSON data format for messages exchanges 

between services and sensors environments. Then, the 

results and measurements have showed the effectiveness of 

this adaptation in terms of file size reduction, and 

communication and response times. 

The approach presented here can be considered as a first 

step towards the work on SWE. Several open challenges 

and future work in this context can be outlined. 

Among these challenges, we are more interested in the 

improvement of interoperability, the facilitation of sensor 

and service integration, and the enablement of the 

Semantic Sensor Web. 

Acknowledgments 

The authors would like to thank Dr. Anis Koubaa for the 

useful feedback during the early stages of this work and for 

the several valuable discussions in terms of the Wireless 

Sensors Networks field. 

 

References 
 

[1] A. Sleman, and R. Moeller, “Integration of Wireless Sensor 

Network Services into other Home and Industrial networks; 

using Device Profile for Web Services (DPWS)”, 

Information and Communication Technologies: From Theory 

to Applications, 2008. ICTTA 2008. 3rd International 

Conference, 2008, pages 1-5. 

[2] I. K. Samaras, J. V. Gialelis, and G. D. Hassapis, “ 

Integrating Wireless Sensor Networks into Enterprise 

Information Systems by Using Web Services”, In 

SENSORCOMM '09: Proceedings of the 2009 Third 

International Conference on Sensor Technologies and 

Applications, pages 580{587, Washington, DC, USA, 2009. 

IEEE Computer Society. 

[3]  M. Rouached, S. Chaudhry, and A. Koubaa. “Lowpans meet 

service-oriented architecture”. JUSPN, 1(1):39{48, 2010. 

[4]  Open geospatial consortium. http://www.opengeospatial.org/ 

[5] A. Brring, A. Broering, J. Echterhoff, S. Jirka, I. Simonis, Th.            

Everding, Ch. Stasch, S. Liang, and R. Lemmens. “New 

generation Sensor Web Enablement”. Sensors, 11(3):2652–

2699, 2011. 

[6] C. Pautasso and E. Wilde, “Restful web services: principles, 

patterns, emerging technologies”, In WWW, pages 

1359{1360, 2010. 

[7] C. Pautasso, O. Zimmermann, and F. Leymann, “RESTFUL 

Web Services vs. "BIG" Web Services: Making the Right 

Architectural Decision”. In WWW, pages 805{814, 2008. 

[8] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, 

Transmission of IPv6 Packets over IEEE 802.15.4 Networks   

RFC 4944”, IETF, 2007. 

[9] G. Mulligan, “ The 6lowpan architecture”, In EmNets’07, 

pages 78–82, 2007. 

[10] Z. Shelby and C. Bormann, “6LoWPAN: the wireless   

embedded internet. Wiley Series on Communications 

Networking & Distributed Systems”. J. Wiley, 2010. 

[11] L. Schor, P. Sommer, and R. Wattenhofer, “Towards a zero-

configuration wireless sensor network architecture for smart 

buildings”, In Proceedings of the First ACM Workshop on 

Embedded Sensing Systems for Energy-Efficiency in 

Buildings, BuildSys '09, pages 31{36, New York, NY, USA, 

2009. ACM. 

[12] 52north initiative for geospatial open source software gmbh. 

http://52north.org/. 
[13] T. Foerster, S. Jirka, and C. Priess, “An intermediary layer    

for linking sensor networks and the sensor web”.  

[14] A. Broering and T. Foerster, “An integrated software 

framework for OGC web services.” In Foss4g2006, 

Lausanne, Switzerland, Sept. 2006. 

[15] Development of Sensor Web Applications with Open 

Source Software, 2009. 

[16] A. Scholz, I. Gaponova, S. Sommer, A. Kemper, A. Knoll, 

C. Buckl, J. Heuer, and A. Schmitt, “eSOA - Service-

Oriented Architectures Adapted for Embedded Networks. In 

Proceedings of 7th IEEE International Conference on 

Industrial Informatics”, pages 599 {605, June 2009. 

[17] F. Jammes and H. Smit, “Service-Oriented Paradigms in 

Industrial Automation”, Industrial Informatics, IEEE 

Transactions on, 1(1):62{70, April 2005. 

 

[18] L. M. S. de Souza, P. Spiess, D. Guinard, M. Khler, S. 

Karnouskos, and D. Savio, “SOCRADES: A Web Service 

Based Shop Floor Integration Infrastructure”, In IOT, volume 

4952 of Lecture Notes in Computer Science, pages 50{67. 

Springer, 2008. 

[19] P. Costa, G. Coulson, and C. Mascolo, “The runes 

Middleware: A Recon_gurable Component-Based Approach 

to Networked Embedded Systems”. In Proc. of 16 th 

International Symposium on Personal Indoor and Mobile 

Radio Communications (PIMRC05, pages 11{14. IEEE 

Press, 2005.  

[20] M. Kushwaha, I. E. Amundson, X. Koutsoukos, S. Neema, 

and J. Sztipanovits. “OASiS: A Programming Framework for 

Service-Oriented Sensor Networks”. In IEEE/Create-Net 

COMSWARE 2007, January 2007. 

[21] Ioakeim K Samaras, John V Gialelis, and George D   

Hassapis,    “Integrating wireless sensor networks into 

enterprise information systems by using web services”, 2009 

Third International Conference on Sensor Technologies and 

Applications, (Xml):580–587, 2009. 

[23] F. Jammes, A. Mensch, and H. Smit, “Service-oriented 

device communications using the devices profile for web 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 71

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.opengeospatial.org/
http://52north.org/


 

 

services”, In Proceedings of the 3rd international workshop 

on Middleware for pervasive and ad-hoc computing, MPAC 

’05, pages 1–8, New York, NY, USA, 2005. ACM. 

[24] G. Moritz, E. Zeeb, S. Pr• uter, F. Golatowski, D. 

Timmermann, and R. Stoll. “Devices Profile for Web 

services in Wireless Sensor Networks: Adaptations and 

Enhancements”. In ETFA'09: Proceedings of the 14th IEEE 

international conference on Emerging technologies & factory 

automation, pages 43{50, Piscataway, NJ, USA, 2009. IEEE 

Press. 

 [25] H. Abangar, P. Barnaghi, K. Moessner, A. Nnaemego,  K. 

Balaskandan, and R. Tafazolli, “A Service Oriented 

Middleware Architecture for Wireless Sensor Networks”, In 

Proceedings of the Future Network & MobileSummit 2010 

Conference, 2010. 

[26] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski, 

“Encoding and Compression for the Devices Pro_le for Web 

Services”,  In AINA Workshops, pages 514{519, 2010. 

[27] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski. 

“encDPWS - Message Encoding of SOAP Web Services”, In 

PerCom Workshops, pages 784{787, 2010. 

[28] S. Nath, J. Liu, and F. Zhao, “SensorMap for WideArea 

Sensor Webs”, Computer, 40(7):90{93, 2007. 

[29] A. Santanche, S. Nath, J. Liu, B. Priyantha, and F. Zhao, 

“SenseWeb: Browsing the Physical World in Real time”, In 

Demo Abstract, April 2006.  

[30] S. H. L. Liang, A. Croitoru, and C. V. Tao, “A Distributed 

Geospatial Infrastructure for Sensor Web”, Comput. 

Geosci.31(2):221{231, 2005. 

[31] H. M. I. Rhead, M. Merabti and P. Fergus, “Worldwide 

Sensor Web Framework Overview”, In Proceedings of the 

9th Annual Postgraduate Symposium, The Convergence of 

Telecommunications, Networking and Broadcasting, 2008. 

[32] S. M. Fairgrieve, J. A. Makuch, and S. R. Falke, “Pulsenet: 

An implementation of sensor web standards”, In Proceedings 

of the 2009 International Symposium on Collaborative 

Technologies and Systems, pages 64{75, Washington, DC, 

USA, 2009. IEEE Computer Society. 

[33] Y. Liu, L. Marini, R. Kooper, A. Rodriguez, D. Hill, J. 

Myers, and B. Minsker, “Virtual sensors in a web 2.0 virtual 

watershed”. In Proceedings of the 2008 Fourth IEEE 

International Conference on eScience, pages 386{387, 

Washington, DC, USA, 2008. IEEE Computer Society. 

[34] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, 

“IrisNet: An Architecture for a Worldwide Sensor Web”, 

IEEE Pervasive Computing, 2:22{33, 2003. 

[35] J. Paek, B. Greenstein, O. Gnawali, K.-Y. Jang, A. Joki, M. 

Vieira, J. Hicks, D. Estrin, R. Govindan, and E. Kohler, “The 

Tenet Achitecture for Tiered Sensor Networks”, ACM Trans. 

Sen. Netw.6(4):1{44, 2010. 

[36] L. Schor, P. Sommer, and R. Wattenhofer, “Towards a 

Zero-Configuration Wireless Sensor Network Architecture 

for Smart Buildings”, In BuildSys '09: Proceedings of the 

First ACM Workshop on Embedded Sensing Systems for 

Energy- Efficiency in Buildings, pages 31{36, New York, 

NY, USA, 2009. ACM. 

[37] D. Yazar and A. Dunkels, “Efficient Application Integration 

in IP-based Sensor Networks”, In BuildSys '09: Proceedings 

of the First ACM Workshop on Embedded Sensing Systems 

for Energy- Efficiency in Buildings, pages 43{48, New York, 

NY, USA, 2009. ACM 

[38] A. Rezgui and M. Eltoweissy, “Service-Oriented Sensor-

Actuator Networks: Promises, Challenges, and the Road 

Ahead”, Computer Communications, 30(13):2627{2648, 

2007. 

 [39] J. King, R. Bose, null Hen-I Yang, S. Pickles, and A. Helal, 

“Atlas: A service-oriented sensor platform: Hardware and 

middleware to enable programmable pervasive spaces”, 

Local Computer Networks, Annual IEEE Conference on, 

0:630{638, 2006. 

[40] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and 

J. Sztipanovits. “OASiS: A Programming Framework for 

Service-Oriented Sensor Networks”, In IEEE/Create-Net 

COMSWARE 2007, 2007. 

[41] F. Golatowski, J. Blumenthal, M. H, M. Haase, H. 

Burchardt, and D. Timmermann, “Service Oriented Software 

Architecture for Sensor Networks”, In Proc. Int. Workshop 

on Mobile Computing (IMC03, pages 93-98, 2003). 

 [42] N. Glombitza, D. P_sterer, and S. Fischer, “Integrating 

Wireless Sensor Networks into Web Service-Based Business 

Processes”, In MidSens '09: Proceedings of the 4th 

International Workshop on Middleware Tools, Services and 

Run-Time Sup- port for Sensor Networks, pages 25{30, New 

York, NY, USA, 2009, ACM. 

 [43] N. B. Priyantha, A. Kansal, M. Goraczko, and  F. Zhao, 

“Tiny Weeb Services: Design and Implementation of 

Interoperable and Evolvable Sensor Networks”, In SenSys 

'08: Proceedings of the 6th ACM conference on Embedded 

network sensor systems, pages 253{266, New York, NY, 

USA, 2008, ACM. 

[44] I. Amundson, M. Kushwaha, X. Koutsoukos, S. Neema, and 

J. Sztipanovits, “Efficient Integration of Web Services in 

Ambient-Aware Sensor Network Applications”, In 3rd 

IEEE/CreateNet International Workshop on Broadband 

Advanced Sensor Networks (BaseNets 2006), October 2006. 

 
Sana Baccar is a PhD student in the Computer and Embedded 
Systems (CES) research lab at the National School of Engineering 
of  Sfax, Tunisia. Her research interests include Service Oriented 
Computing, Wireless Sensors Networks, and Semantic Web. 
 

Mohsen Rouached is currently acting as an assistant professor in 
the College of Computers and Information Technology at Taif 
University. He received his M.S and Ph.D in computer science 
from Nancy University in 2005 and 2008 respectively. His 
research interests span over several areas related to Service 
Oriented Computing, Business Processes, Security, Privacy, and 
Forensics Management, Services Semantics, and Wireless 
Sensors Networks. He has published over 40 research papers in 
these domains. He serves as program committee member and 
reviewer at many international journals and conferences and has 
been participating in several research projects. 

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 72

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




