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Abstract 

In recent years, as System on Chip design research is actively 
conducted, a large number of IPs is included in a system based 
on a Network on Chip (NoC). Different interfaces’ specification 
of IP cores and different flow controls are used by router. They 
raise a considerable difficulty for adopting NoC techniques. To 
facilitate the use of the NoC techniques an efficient design of the 
network interface (NI) unit that connects the switched network to 
the IP cores is required. In this paper, we present a new NI 
architecture for NoC with low latency and jitter constraints. We 
introduce a new distributed buffer structure that increases area 
and reduces latency and jitter. We present how we can apply the 
decoupling between computing and communication by proposing 
a modular architecture. The low latency and minimal jitter 
between packets are obtained through the separation between 
header and payload memories. This separation enables the NI to 
receive a new packet before the end of the transmission of a 
previous packet. The modular design is obtained through the 
separations between injection and extraction path and between IP 
and network sides. The latter separation allows IPs and NoC to 
be designed independently from each other. For evaluating the 
efficiency of this approach, we use AHB standard at the IP side 
and we use the most three used flow controls in NoC. A 
performance study was conducted and NI designs were 
synthesized with ST 0.13μm CMOS technology using four 
different libraries. Experimental results show that the proposed 
NIs allow better results in terms of latency, jitter and dissipated 
power relatively to the current published state-of-the art NI 
architectures. 
 
Keywords: Network Interface, Network on Chip, ASIC, Low 
latency, Low power. 

1. Introduction 

Multi-Processor System-on-Chip (MPSoC) platforms are 
emerging as an important trend for future SoC design. 
Such SoCs imply the integration of numerous IP cores 
performing different functions like processors, DSP, 
microcontroller, SRAM, DRAM. The number of IP cores 
embedded in such systems was increased and 
consequently it has critically increased the amount of on 
chip communication. The key issue of SoC designs is the 
communication architecture between heterogeneous 

components. Most of the communication architectures in 
current System on Chips are based on buses. However, the 
bus architecture has its inherent limitations [1], [2], [3]. 
In order to integrate several heterogeneous components in 
single SoC, a scalable communication infrastructure must 
trend to on-chip packet-switched micro-network [4-5], 
generally known as Network-on- Chip (NoC) architecture. 
NoC has been proposed to the interconnect problem for 
highly complex chip. In NoC paradigm a router is used for 
packet switched communication among on chip cores. 
Networks are composed of Network Interfaces (NI), 
which implement the interface to the IP modules, routers, 
which transport the data from one node to another; and 
links between routers. IP integration is one of the most 
challenging works in SoC based NoC design. To cope 
with the protocol of the interconnect structure, a wrapper 
or NI must be provided for different IP cores [6]. Since 
different reusable IP cores may not be developed based on 
the NoC, a NI is required as the interface between IPs and 
routers.  
NIs provides services to the transport layer in the OSI 
model [7]. This is the first layer where offered services are 
independent from the NoC implementation. It allows IPs 
and interconnects to be designed independently from each 
other [8, 9]. There exist a number of socket specifications 
to this end, such as OCP (Open Core Protocol) [11], VCI 
(Virtual component Interface) [10], AMBA AHB [12], 
and AMBA AXI (Advanced extensible Interface) [13]. 
Network on Chips are message passing by nature and a 
Network Interface is then needed. The standardized 
protocols define the rules for all signaling between IP 
cores and NoC fabric, while permitting the configuration 
of specific instances. Our Network on Chip provides a 
shared-memory abstraction to the IP cores. The 
Communication is performed using a transaction-based 
protocol, where the master IP modules issue request 
messages that are executed by the addressed slave 
modules, which may respond with a response message. 
The purpose of NI is the synchronization between IP 
protocol and router timings, the packaging of IP 
transactions into flits and vice versa, the computation of 
routing information, and the buffering of flits to improve 
performance. Previous studies [14] focused to a large 
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extent on the routing of messages inside the network and 
proposed many NoC architectures, while little effort has 
been devoted to optimizing the way the IPs are connected 
to the network. The fundamental issue in any NI design 
for NoC is the modularity of the architecture to maximize 
the reuse and the productivity of SoCs based on NoC. The 
main reason is related to interoperability support of 
different protocols. Different IP cores must be connected 
to the network and the NI logic has to be reused across 
different core protocols. The specific modules which 
implement the NoC services must be independent from the 
type of connected core protocols. Other important issue in 
NI design is to achieve the modularity with low latency. 
To decrease the end to end latency between IP cores in 
SoC based NoC, we must reduce the latency of NoC 
components (router, Network interface, and Link). The 
latency of master and slave NIs in request and response 
data flows and jitter between packets must be kept as low 
as possible. A low-power design is also essential and 
important issue for portable or mobile systems. Network 
on chip will become the main communication platform for 
this kind of Systems. To address the problem of energy 
efficient design of NoC, we must decrease the power 
consumption of NoC components. To reduce NoC 
consumption, we must reduce the power of NoC 
components such as NI components. In this paper, we 
present two novel modular NI architectures with pipelined 
fashion between IPs and the router of NoC. These NIs 
allow system designers to send data from IPs to NOC, and 
vice versa with low latency and power. We present how 
we can apply the decoupling between computation and 
communications to achieve the IP modules and 
interconnections to be designed independently from each 
other. The proposed NI allows reducing the design time of 
new systems and hide implementation details of the 
network. The modularity of design is obtained through a 
separation between data flows and between IP side and 
NoC side. The low latency and minimal jitter between 
packets are obtained through the separation between 
header and payload memories. Depending on the 
application constraints, the NoC designer must choose the 
appropriate technology library to satisfy these constraints. 
For this reason, we present the synthesis results for area, 
power, and speed of proposed NIs with different 
frequency and with different libraries with 130 nm CMOS 
technology. The paper is organized as follows. In Section 
2, the related works are presented. In Section 3, an 
overview of NoC is given. In Section 4 we describe and 
detail the architecture of the proposed NIs. Section 5 
presents experimental results. Section 6 presents a 
comparison with other works. Finally in section 7 we 
conclude the paper. 

2. Related Works 

There are many works published on the design of novel 
network architectures as presented by [14], but few 
publications have addressed particular issues to the design 
of Network Interface modules. 
In [15], the authors compared three schemes of 
paketization strategy such as software library, on-core and 
off-core implementation, and related costs in terms of 
latency and area are projected, showing tradeoffs in these 
schemes. They insisted that a hardware wrapper 
implementation has the lowest area overhead and latency. 
Another approach is presented in [16], where the authors 
propose a generic architecture model which is used as a 
template throughout the design process for accelerating 
the design cycle. The key characteristics of this model are 
its great modularity and scalability which make it reusable 
for a large class of applications. Its drawback is that is 
useful for SoCs based bus only. The authors, in [17], 
define a set of parameters for automatic generation of 
interface for multiprocessor SoC integration based bus. 
However, they limited the embedded IP cores to CPUs 
(ARM7 and MC68000). The designs of wrapper for the 
application of specific cores still lack generic aspects and 
only tackle restricted IP cores. An efficient on chip NI 
ASIC design proposed in [18], which offers guaranteed 
services, shared memory abstraction, and flexible network 
configuration that implement three standard sockets 
compatible with aethereal NoC. In [19], authors present a 
generic architecture of network interface and associated 
wrappers for a networked processor to be used with mesh 
based NoC architecture. In [20], a micro-network that is a 
generic, scalable interconnects architecture for system on 
chip called SPIN is presented. It gives to the system 
designer a simple view of a single shared address space 
and provides a variable number of VCI compliant network 
interfaces for both initiators (masters) and targets (slaves). 
The authors, in [21], present the design of low latency 
network interface for mesh based NoC compatible with 
AHB standard and its associated implementation in Xilinx 
Virtex5 FPGA board. In [22], an OCP compliant NI for 
the Xpipes NoC was touched upon. The NI has a low area 
but it supports only a single outstanding read or writes 
transaction. An OCP compliant NIs for the mesh 2 D NoC 
was designed in [23]. These NIs have a low area and a low 
latency and they support only a burst precise mode 
outstanding read and write transaction. The authors, in 
[24], propose a generic and modular architecture of NIs 
that support many modes of OCP standard and can use 
Handshake 4phase or Credit-Based flow control for the 
mesh 2 D NoC and it can be used for other topologies. A 
NI design for Asynchrony NoC is presented in [25]. In 
[26], authors present a Network Interface Sharing 
Techniques that can be used to optimize the area of NoC 
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Architectures. In [27], authors present an FPGA 
implementation of a shared Network 
Interface architecture is proposed to reduce area and 
power by sharing the buffering resources and using the 
stoppable clock technique. In [29], authors describe a 
Network Interface design which supports serial-link 
packet based transmission model for network-on-chip 
application. The weak point of this design is the highest 
latency in injection and extraction path. Among the 
presented works, few approaches as the ones presented in 
[16-17] have proposed a generic architecture model which 
is used as a template throughout the design process for 
accelerating design cycle for SoC based bus. Only the 
works of [18-19-24] present a modular design of NI for 
NoC. This paper proposes a new generic architecture 
model of network interface which can be used as a 
template through the design process for accelerating the 
design cycle for System on Chip that uses a Network on 
Chip as a communication platform. It addresses the 
problem of the integration of IP cores in such networks 
and proposes how we can obtain a modular NI with low 
latency and power constraint. The proposed modular NI 
architecture provides a very low Latency in the injection 
and extraction path for MNIs and SNIs, which is much 
lower than a software stack implementation and other 
preview works. It reduces the jitter between two 
successive packets and allows NI to work without 
blocking fashion. The NI can receive a new request by 
Master IP before the end of the transmission of the 
previous packet. It also allows the reception of a new 
packet before the end of transaction with the slave IP. We 
present three different implementations each one uses a 
specific flow control. Different processors or IP cores 
must be connected to the network and the NI logic can be 
reused across different core protocols. When we change 
the flow control used by the network on chip or the NoC, 
where the kernel parts are changed and the other 
components are still unchanged. This paper also presents 
the impact of the control flow mechanisms and synthesis 
library on cost and performance of NIs. To prove our 
concept, we evaluate the cost and performance of the 
proposed NI architectures by implementing our designs on 
ASIC. We use the industrial standard for IP cores AMBA 
AHB as processing elements and a wormhole [30] 
Network on Chip. It is based on the mesh 2D topology and 
the use of a determinist routing algorithm called XY. We 
evaluate the area, power, speed, latency, and Throughput 
of implementing NI tasks that use the most three used flow 
controls in NoC. 

3. Services and Functionalities Provides by 
the Proposed NoC 

The current SoCs predominantly use buses as the one chip 
interconnects; these standard interfaces have bus based 
semantics where all nodes connected to the 
communication medium are defined as masters or slaves, 
and communicate via transactions. Masters start a 
transaction by issuing requests; slaves then receive and 
subsequently process the request. The transaction is 
completed when the slave responds to the original request. 
The request-response transaction model matches those 
used in buses, making it easier to design network interface 
wrapper around IP blocks that were originally designed to 
interface with buses. For instance, a processor core will be 
a master that initiates a new transaction through issuing a 
write request to a memory module, while the memory 
module will be the slave that executes the write request 
and responds with an acknowledgment response. Every 
transaction in AMBA AHB protocol sends addresses and 
controls information on the address bus, while data are 
sent on the data channel on bursts. The write data bus is 
driven by the bus master during write transfers. The read 
data bus is driven by the appropriate slave during read 
transfers. In order to interface the NoC with the tile we 
utilize a NI, which will have the responsibility of 
packetizing and depacketizing the cores requests and 
responses. In the request data flow, the NI has the 
responsibility of receiving the request from the core 
interface, preparing the packets and dispatching them to 
the network logic of the tile. In the response data flow, the 
NI has the responsibility of receiving the packets from the 
networking logic and presenting the contents to the core 
interface. NoC topologies are defined by the connection 
structure of the switches. We have designed a NoC which 
is based on the mesh 2D topology [28]. The proposed NoC 
assumes that each switch has a set of bi-directional ports 
linked to other switches and to an IP core. In the mesh 
topology used in this work, each switch has a different 
number of ports, depending on its position with regard to 
the limits of the network. The use of mesh topologies is 
justified to facilitate the placement and the routing tasks. 
We have adopted a synchronous router with five 
input/output ports (North, East, Local, South and West), 
having each a bidirectional exchange bus suitable for 2D 
mesh NoC architecture. The NoC includes 16 nodes and 
the switching technique used is packet switching. Each 
switch must have a unique address in the network. To 
simplify the routing on the network, this address is 
expressed in XY coordinates, where X represents the 
horizontal position and Y the vertical position. The data 
flow through the network is a wormhole routing. This has 
been chosen due to the small number of buffer required 
per node and the simplicity of the communication 
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mechanism (no re-ordering at the destination resources). 
The NoC uses Credit-Based flow control strategies 
because it has advantages over Handshake. We have 
adopted a determinist routing algorithm called XY routing. 
XY routing algorithm is executed to connect the input port 
data to the correct output port. A network packet is 
composed of successive flits. A multi-flit packet is 
inserted through a header flit, which may be followed by 
one or more data flits (payload). The first flit of packet 
includes header information for our case. Each flit is 
composed of 32 bits data and two control bits, where the 
34th bit encodes the beginning of-packet (BOP) and the 
33rd bit encodes the end-of-packet (EOP). The header is 
composed of special fields for the network and special 
fields for NI and IP. The special fields for adapters and IP 
will be discussed later. 

4. Proposed Network Interfaces 

There are two fundamental separations in the NI 
architecture that enable this modularity: a horizontal one 
which distinguishes the injection path (request data flow) 
from the extraction path (response data flow), and a 
vertical one which distinguishes between the network-
dependent and the network-independent (connected 
component) part. These two parts are referred to as shell 
and kernel, as proposed in the design of Phillips AEthereal 
NI [18]. Separation between injection and extraction 
functions allows easy reuse of dual components in both 
master and slave NIs, since injection corresponds to 
packet composition and transmission, while ejection 
corresponds to packet reception and decoding. Shell and 
kernel separation through relatively well-defined 
interfaces is really important for minimizing the effort of 
supporting different sockets, while keeping a fixed kernel 
structure and changing only the shell part. Moreover, this 
separation enables greater flexibility in the packet format 
that can be configured at instantiation time. Since kernel 
deals with packet, while shell manages end-to-end 
protocol transactions, control and data signals are usually 
driven in parallel. Shell supports flow control to external 
bus protocols, while kernel handles NoC flow control at 
hop-by-hop and end to- end level. We have designed two 
types of NI for AHB based cores for our network-on-chip, 
named Master Network interface (MNI) attached to master 
IP and Slave Network Interface (SNI) attached to slaves 
IP. A master-slave device will need two NIs, an initiator 
and a target, for operation. Each type of NI is additionally 
split in two sub modules, one for the request and one for 
the response data flow or channel (injection and extraction 
path). These sub modules are loosely coupled: whenever a 
transaction requiring a response is processed by the 
request channel, the response channel is notified; 
whenever the response is received, the request channel is 

unblocked. The advantage gained by using burst transfers 
is that the bandwidth is used more effectively, since it is 
only necessary to send the starting address together with 
some information about the burst. The longer the burst is 
the better ratio between data and overhead gets. Another 
advantage is that the jitter between data flits decreases 
when adding a burst header to the package, since many 
flits of data can be sent in sequence. To take advantage of 
burst transactions the NI needs to package a burst in a 
package to transmit over the network. However, if a very 
long burst is packaged into one package, the burst can 
block a slave core from receiving request from other cores. 

4.1 Package format Specification 

It has been specified that a package is constructed by flits 
which are 32-bit wide and the flits sent on the network 
must apply an extra bit to indicate the beginning and the 
end of a package. The header flit is a 32-bit word located 
at the beginning of a request or response packet. It 
contains information used by the routers of the network 
and the other information used by network interfaces. The 
information used by routers of the network is useful for 
the routing of the packet through the network. They are 
encoded in the 12 least significant bits (address 
destination, address source). The information used by 
network interfaces is useful for Decoding Package. They 
are encoded between 12 and 31-bit number. It depends on 
the type of the header (request or response). Seen that the 
MNI and SNI have different behaviors, the information 
they need is also different. There are two kind of packet 
used by our NOC: Request packet and Response packet. 
The request package header is shown in Figure 3 and 
spans over one flit. The fields address destination and 
address source present the address XY of the target and 
source routers. The field Address_cm presents the address 
of first case memory of the first target memory cell. The 
address of first target memory cell will be incremented 
later by the network interface depending on the size of the 
word and the AHB burst mode used. Hwrite indicates the 
type of transfer (read or writes) and the priority of the 
packet in the network is indicated by Priority field. 

 

Fig. 1 Header of request packet. 

The size of the transfer and the number of word to be 
transmitted are indicated by Hsize and Hburst signal. The 
most important field in Response packet Header is the 
return address which indicates the source address of the 
router to route the response packet. The other bits are 
reserved for future extensions. 
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4.1 Master Network Interface architecture 

The master network interface (MNI) transforms an AHB 
request to a request packet AHB/NoC and a response 
packet NoC/AHB to an AHB response. The tasks of the 
MNI are to receive requests from the master core, 
encapsulate the request into a package, transmit packages 
to the network, receive responses from the network, 
decapsulate responses and transmit responses to the master 
cores. Figure 2 illustrates the internal architecture diagram 
of the MNI. The physical division of the interface is 
distributed in two parts: Shell (IP master side) and Kernel 
(NoC router side). The Shell part communicates with 
master IP respecting the AHB protocol and it is divided 
into two parts: (Shell Input and Shell Output). The Shell 
Input Part is composed of three modules called 
respectively: Routing table, Header builder and Controller 
fifo. This part handles the receipt and encapsulation of the 
request in one package. The Shell output Part manages the 
issue of response to the master IP. The shell presents 
dependent parts of the resource that is, the dependent parts 
of the IP master. The kernel part is divided into two parts 
called Kernel Input and Kernel Output. The kernel output 
part manages the issuance of requests and communication 
with the local port on the router by using specific flow 
control. The kernel input part manages the receipt and 
decapsulation of responses packets. The kernels present 
the independent part of the resource that is, the dependent 
part of the network. Clearly, the proposed architecture of 
the master network interface is built on two data-flows. 
One data-flow is the request data flow, where the core is 
the source and the network is the destination. The second 
dataflow is the response data-flow where the network is 
the source and the core is the destination. The request data 
flow called also injection path performs the transformation 
of the AHB request into a request packet for our NoC. The 
response data flow called also extraction path performs the 
transformation of the response packet provided by our 
NoC into a response for the AHB IP master. 

4.1.1 Injection path 

We split the design of injection path into the following 
parts: the shell input, the kernel output, header memory 
and payload memory. In this part we will present all 
modules that perform the services provided by the 
injection path to allow the transmission of the request 
packet flits to the network. In the case of writing request, 
the MNI will first receive the necessary information from 
the master IP for the building of the header via these input 
signals. A field of the address bus Haddr will be extracted 
by the routing table module to provide the XY address of 
the target router. The header builder module will collect 
the necessary information that is described in figure 1 to 
build the header. After the building of the header flit and if 

the FIFO header is not full, then the header builder will 
activate the write signal for temporary storage of the 
header flit. In fact, the MNI is available when the data 
memory and the header memory are not full. The writing 
of data flits in the data memory is performed by the 
controller FIFO in the case of writing request and set the 
Hready and Hresp signals to the appropriate value. If the 
master IP is in the busy state, the MNI receives data and 
waits until the master becomes available. 

 

Fig. 2 Master Network interface architecture. 

The transactions with the network and the issuance of flits 
are managed by the kernel output module. First, the 
transfer begins with the issuance of header flit. If FIFO 
header is not empty, the kernel output reads a header flit 
from header memory and transmits it to the local port of 
the router and set BOP to high state. The kernel output 
module performs many readings from data memory if it is 
not empty. The number of readings depends on Hburst and 
Hsize fields. Two separate pairs of header and payload 
memories in the MNI injection path are used for 
temporarily stored flits ready to be injected to the NoC. NI 
buffers are organized and managed with flit granularity, 
but the user can decide to continuously inject packets to 
the network, avoiding wasted cycles. Using separate pairs 
of header and payload FIFOs decouples the shell from the 
kernel and provides significant advantages. First, it 
simplifies size and frequency management that is 
efficiently implemented through FIFO-based structures. 
Second, Actual header size can differ from payload or flit 
size, so buffering can be optimized and reduced. Third, for 
components that generate read- or write-only traffic, there 
is no need to have a payload FIFO in the master NI 
injection, thus reducing the area complexity depending on 
the traffic type of the initiator component. Finally, when 
using a simple flag, the shell is able to simultaneously 
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store packets while the kernel reads them without mixing 
flits of different packets in the master NI injection path. In 
the case of a reading request, the same processing is 
executed except that the controller FIFO is inactive. We 
have designed for each flow control, a specific 
implementation of kernel output module but we use the 
same implementation for all other modules. 

4.1.2 Extraction path 

The extraction path is active only when a read command is 
presented by the IP AHB master. Its task is to receive the 
response packet that corresponds to the reading request of 
the master. We split the design of extraction path or 
response data flow into the following parts: the shell 
output, the kernel input and the response memory. In this 
part we will present all modules that perform the services 
provided by the extraction path to allow the reception of 
the response packet flits from the network and provide 
them to the master IP. It is divided into three stages. The 
first stage presents the kernel input. It is where the data are 
received from the network. The second stage is the 
response memory where the data response will be 
temporary stored. The third stage presents the shell output. 
It is where the data are transmitted to the master core. 
After the issuance of response by the network interface 
slaves, the network routers forward the reply packet to the 
MNI. The kernel input module presents the dependent part 
of this network. It manages the reception of flits and the 
transactions with network according to flow control used 
by the network. Indeed, the kernel input module writes 
each received flit until the response memory is not full and 
returns Ack or credit signal to the local port of the router. 
The shell output presents the network-independent part. It 
manages end-toend protocol interactions with the master 
IP cores directly connected to the NI. When the response 
memory is not empty, the Shell collects data from 
response memory and provides it to the master IP and sets 
hready and hresp signals to the appropriate value. Its role 
is to manage the emission of data responses to the IP 
master while taking into account the availability of the 
response memory and the availability of the IP master. It is 
responsible for blocking the IP master at the beginning of 
a read request. After issuing the read request, the master IP 
is still waiting until the arrival of the response data. 

4.2 Slave Network Interface architecture. 

The tasks of the SNI are to receive request packages from 
the network, decapsulate the request packages, transmit 
the request to the slave core, receive response from the 
slave core, encapsulate response and transmit response to 
the network. Clearly, the proposed architecture of the 

slave network interface is built on two data-flows. One 
data flow is the request data flow, where the network is 
the source and the core is the destination. The second data 
flow is the response data flow where the core is the source 
and the network is the destination. The request data flow 
called also extraction path performs the transformation of 
the request packet of our NoC to an AHB request. The 
response data flow called also injection path performs the 
transformation of the AHB response to a response packet 
to our NoC. Figure 3 illustrates the internal architecture 
diagram of the proposed SNI. The physical division of the 
interface is distributed in two parts: Shell and Kernel. The 
Shell part communicates with slave IP respecting the AHB 
protocol. This latter plays the role of a master IP since it 
takes the same decisions as the master. NI shell connects 
the slave socket of the component to the NI kernel. It 
manages responses in the injection path and requests in the 
extraction path. The kernel part is also divided into two 
parts called Kernel Input and Kernel Output. The kernel 
output manages the issuance of responses and 
communication with the local port on the router by using a 
specific flow control. The kernel input manages the receipt 
and decapsulation of request packets. Four memories 
implemented as FIFO are used for the temporary storage 
of control information and data. Control information is 
stored in the header memory and payload is stored in the 
payload memory. The SNI is divided into seven stages. 
The first stage is where the data are received and 
decapsulated by the kernel input from network. The 
second stage is where header flits are buffered by the 
header memory. The third stage is where the data are 
buffered by the payload memory. The fourth stage is 
where the data are transmitted to the slave core by the 
shell. The fifth stage is where the address source for 
reading request is buffered by the address source memory. 
In the case of a reading request, it provides the way to the 
source router for the address source memory. The sixth 
stage is where the response data provided by the slave IP 
via the response memory. The last stage is where the 
response packet is transmitted to the local port of the 
router. With the internal architecture diagram of the 
proposed SNI, several communications between modules 
proceed; the modules constituting this entity are described 
as follows: 
Kernel input: In the extraction path, incoming packet flits 
are received by the kernel input and stored in either the 
dedicated header or the payload buffers. The hop-by hop 
flow control is managed depending on the availability of 
free locations in the NI FIFOs. This module is kept in a 
waiting state until it receives the beginning of a reading or 
writing request packet from the local port of destination 
router. It receives the header flit only if the header 
memory is available and it extracts the various fields 
necessary from the header for the reformulation of the 
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request and it stores them in the header memory. For a 
burst write, this block will make it possible to let a certain 
number of words of data to be written in the payload 
memory; this number of words is defined in the hburst and 
hsize fields. The kernel input will write necessary fields in 
the header memory if it is not full and a new request is 
presented at the local port of router. The NI will write the 
payload flits in the payload memory when a write request 
is presented. For a burst read, there is only one flit of the 
header, and then there are not data to receive in the 
payload memory. The address source will be stored in the 
address source memory to be used later by the kernel 
output for response header building. The kernel input 
works in no blocking mode. The SNI can receive new 
packets from the local port of the router before that the 
slave has finished the previous transaction. It only takes 
into account the availability of two memories in which it 
stores the received information. A new reading request can 
be received only if the two memories are not full. 
 

 

Fig. 3 Slave Network interface architecture. 

Shell: it connects the slave socket of the IP component to 
the NI kernel. It manages responses in the injection path 
and requests in the extraction path. The shell has to deal 
with the socket component flow control, address, data and 
control signals for IP interface. The shell deals with the 
component data bus size and frequency, while potential 
adaptation in terms of size and clock speed is handled by 
the kernel part. In the extraction path the packets coming 
from the network are organized by the kernel buffering 
into header and payload, so the shell has to compose the 
end to end protocol transaction, decode the header field 
and eventually collect the data. This module plays the role 
of an IP master interface compared to the IP slave. It 
rebuilds AHB requests emitted by the initiator IP taking 
into account the availability of the fields of control in the 
header memory, as well as the availability of flits in the 
payload memory in the case of a writing request and the 

capability of the salve IP to receive a new request. It 
extracts the necessary fields from the header memory for 
the reformulation of the request such as (burst type, data 
size, address, type of command, etc). It provides the slave 
IP with the necessary phases of address and data to be 
compatible with AHB standard. The generation of address 
sequences is obtained by incrementing the first address of 
memory cell that is provided in the header, incrementing 
by 1.2, 4 or more depending on the word size. The address 
and data phases will be extended in the case where slave 
IPs are not ready to receive a new request. In the case of 
the presence of control information in header memory, the 
shell module reads this information and tests on the field 
Hwrite to determine the type of command. With the burst 
type, the shell module can specify the number of words to 
be transmitted on the Hwdata bus or to receive on the 
Hrdata bus. In the case of a writing request, this module 
generates a cyclic signal that performs a read from the 
payload memory to provide writing data bus Hwdata with 
a new data in case the payload memory is not empty and 
the IP salve is ready to receive a new data phase. The 
number of data words to read from this memory is 
precalculated from the two fields Hburst and Hsize. In the 
case of a reading request, this module manages the 
reception of data transmitted by the slave IP. Before 
beginning a read operation, it must test if the response 
memory is full or not. If it is not full, it begins the read 
transfer by storing data temporarily provided by the read 
data bus Hrdata in response FIFO. 
Kernel output: This module has the role of preparing and 
transmitting the response header, the reading and sending 
of the response data. The encapsulation of the header is 
done by the activation of the read signal from the address 
source memory to get the source address field which will 
be transmitted with other fields. Then, this module will 
send the response data already stored in the response 
memory by the activation of the correspondent read signal. 
This kernel output will send all the response data which 
were produced by the IP-AHB and which were stored in 
the response memory after each beginning of a read 
request. Moreover, the reading from the response memory 
is done when it is not empty. The shell implementation is 
the same for the three implementations in IP side. But, the 
NI kernel is specific of the flow control to be used. 
 
5. Experimental Results. 
In this section the synthesis results will be presented, and a 
cost analysis of area and power consumption will be made 
based on the synthesis results. The MNI’s performance 
and 
SNI’s performance will be evaluated in terms of speed, 
latency, and throughput. We will present a comparative 
study of three different implementations for NI. On the IP 
side the three implementations use AMBA AHB protocol. 
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The first implementation of NI uses a Handshake 4 phases 
flow control. The second uses Handshake 2 phases and the 
third uses the Credit- Based. Master and slave network 
interfaces with 32 bit AHB data fields and 32 bit network 
ports have been modeled with VHDL language on RTL 
level. They were simulated and synthesized respectively 
by using the ModelSim tool and Synopsys Design Vision 
tool. 
We synthesized these NIs using cell based design with ST 
0.13nm CMOS technology using four different libraries 
(High Speed (HS), High Density High Speed (HDHS), 
Low Leakage (LL), and High Density Low Leakage 
(HDLL)). Furthermore, due to the high pin count, the 
experimental results are based on the circuit simulation of 
the design instead of the manufactured chip. The synthesis 
result of the MNI was done with FIFO data and FIFO 
response having a depth of 4 words of 32 bits and the 
FIFO header has a depth of 2 words. Each used FIFO has 
an adjustable depth and width. The synthesis result of the 
SNI was done with FIFO data and FIFO response having a 
depth of 4 words of 32 bits and the FIFO header has a 
depth of 2 words of 19 bits. The FIFO address has a depth 
of 2 words of 12 bits. For master or slave network 
interfaces, the Finite States Machine of kernel output and 
kernel input sub module for each type of control flows is 
different. The other used sub modules are the same for the 
three NI versions. Figure 4 and figure 5 show the area of 
MNIs and SNI for the three implementations with 
different frequency value. The power consumption results 
are shown in figure 6 and figure 7. The maximum 
operating frequency obtained for these NIs 
implementations is about 1111 MHZ. The result of latency 
measurement by the simulation of MNIs and SNIs is 
presented in Table 2. Table 7 shows the measurement of 
throughput obtained by the simulation of the two versions 
of the NIs. 

5.1 Area of Network Interfaces 

The size of the NIs is an important metric because it 
facilitates calculating the interconnection overhead 
introduced by the NoC. As a Slave NI or a Master NI 
should be instantiated for each IP core connected to the 
network, it is desired that the area is smaller than the IP 
cores. An exploration of the area/frequency trade off was 
performed for three NI implementations with 32 bit AHB 
data fields and 32 bit network ports using respectively 
Credit-Based, Handshake 2 and 4 phases. By varying the 
target synthesis clock, different area results were reported 
(Figure 4 and 5) using four different libraries. The 
maximum operating frequency achieved with Credit-
Based mode module was 1GHz for the MNI and 833MHz 
for the SNI with High Speed library. The maximum 
operating frequency achieved with Handshake 2 or 4 

phases mode module was 1,111GHz for the MNI and 
714MHz for the SNI with High Speed and High Density 
High Speed Library. The minimal operating frequency 
achieved with Credit-Based mode module was 588MHz 
for the MNI and 500MHz for the SNI with High Density 
Low Leakage library. The minimal operating frequency 
achieved with Handshake 2 or 4 phases mode module was 
600MHz for the MNI and 416MHz for the SNI with High 
Density High Speed Library. 

 

Fig. 4 Area of Master Network interfaces. 

The results presented in figure 4 show that the area 
occupied by the MNI that uses Credit-Based control flow 
is the most reduced compared to the other modes with the 
four libraries.  

 

Fig. 5 Area of Slave Network interfaces. 

The MNI that uses the 2 phases control flow is the greatest 
compared to other modes. This is due mainly to the fact 
that the number of states of the two sub-modules Kernel 
input and Kernel output in Handshake modes is higher 
than the number of states of the Credit-Based mode. The 
area increase is about 32% between Handshake and 
Credit-Based implementations for LL (Low Leakage) 
library. The HDHS and HDLL libraries allow obtaining 
the minimal area compared to other libraries. The HDHS 
library permits to obtain a small MNI area with high 
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maximum operating frequency witch achieve 1GHz. The 
area of MNI that uses Credit-Based mode has as an area 
0.025mm2 and the area of MNI that uses 2 and 4 phases 
Handshake modes has as areas respectively 0.031mm2 and 
0.030mm2 at 500MHz. The HDLL library permits to 
obtain a small MNI area but with low maximum operating 
frequency witch achieves 600MHz. The area of MNI that 
uses Credit-Based mode has as an area 0.024mm2 and the 
area of MNI that uses 2 and 4 phases Handshake modes 
has as areas respectively 0.032mm2 and 0.031mm2 at 
500MHz. By using HS or LL libraries, the area of MNI 
that uses Credit-Based mode has as an area about 
0.027mm2 and the area of MNI that uses Handshake 
modes have as area 0.037mm2 at 500MHz. 
For SNI, The results presented in figure 5 show that the 
area occupied by the SNIs for the three control flow has 
approximately the same area by using these 4 libraries. 
The 2 phases control flow has a little difference in terms 
of area with other modes. It should be noted that a large 
area of the slave network interface is occupied by the four 
FIFOs. The HDHS and HDLL libraries allow to obtain the 
minimal area compared to others libraries. The HDHS 
library permits to obtain a small SNI area with high 
maximum operating frequency which achieves 714MHz. 
The area of SNI has as an area 0.040mm2 at 500MHz. The 
HDLL library permits to get a small SNI area but with low 
maximum operating frequency which achieves 500MHz. 
The area of SNI that uses Credit-Based mode has as an 
area 0.045mm2 and the area of SNI that uses 2 and 4 
phases Handshake modes has as areas respectively 
0.041mm2 at 416MHz and 0.044mm2 at 500MHz. By 
using HS library, the area of SNI that uses Credit-Based 
mode has as an area about 0.0483 mm2 and the area of 
SNI that uses 2 Phases and 4 phases Handshake modes has 
as areas respectively 0.0474mm2 and 0.0486mm2 at 
500MHz. We conclude that the Credit-Based flow control 
is the best choice for NoC designer to have a NI with a 
low area constraint without decreasing the maximum 
operating frequency. These results show that HDHS 
library allows obtaining a low area with high speed. 

5.2 Power estimation of Network Interfaces 

The power consumption results are from the Synopsys 
Design Vision (Power Compiler). An exploration of the 
power/frequency trade off was performed for three NI 
implementations with 32 bits AHB data fields and 32 bits 
network ports using respectively Credit-Based, Handshake 
2 and 4 phases. By varying the target synthesis clock, 
different power estimation results were reported (Figure 6 
and 7). When we increase the operation frequencies the 
dynamic power is automatically increased. The results 
presented in figure 6 show that the power consumption of 
the MNI that uses Credit-Based control flow is the most 

reduced compared to the other modes. The MNI that uses 
Handshake 2 phases consumes more than other modes. 
The synthesis with HDLL library permits to obtain the 
lowest power consumption compared to other libraries. 
The synthesis with HS library permits to get the highest 
power consumption compared to other libraries and with 
important leakage power. The power estimation obtained 
by synthesis with HDLL library of MNI that uses Credit-
Based mode has as power 3.43mW and the estimated 
power of MNI that uses 2 and 4 phases Handshake modes 
has respectively 7.67mW and 7mW at 500MHz. By using 
the HDHS library, we obtain 3, 65mW for credit based 
mode and 8.35mW and 7.59mW for respectively 2 and 4 
phase’s modes. 

 

Fig. 6 Power of Master Network interfaces. 

For HDHS library, the power increase is about 128% 
between 2 phase Handshake and Credit-Based 
implementations.  

 

Fig. 7 Power of Slave Network interfaces. 

The power increase is about 107% between 4 phase 
Handshake and Credit-Based implementations. This is due 
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mainly to the fact that the number of states of the two sub-
modules Kernel input and Kernel output in Handshake 
modes is higher than the number of states of the Credit-
Based mode and it has less switching in control signal than 
Handshake. The power increase is about 10% between 
Handshake 2 phases and Handshake 4 phases’ 
implementations. For SNI, The three modes have 
approximately the same power. The synthesis with LL 
library permits to have the lowest power consumption 
compared to other libraries. The synthesis with HS library 
permits to obtain the highest power consumption 
compared to other libraries and with important leakage 
power. It should be noted that the power of the slave 
network interface is dominated by the power consumed by 
the four FIFOs. We conclude that the Credit-Based flow 
control is the best choice for NoC designer to have a NI 
with low power constraint without decreasing the 
maximum operating frequency. 

5.3 Latency of Network Interfaces 

For Master Network Interface, the latency for a write or a 
read request transaction is defined as the number of cycles 
needed by injection path when the request is presented at 
the AHB interface to the time when the first flit of the 
packet leaves the NI. The latency for a read response 
transaction is defined as the number of cycles needed by 
the extraction path when the response packet is presented 
at the local port of the router to the time when the first 
response appears at the AHB interface.  

Table 1: Latency Results 
Latency (cycles) 4Ph 2Ph CB 
MNI Write request 

read request 
read response 

3 
3 
7 

3 
3 
5 

3 
3 
4 

SNI Write request 
read request 

read response 

6 
2 
1 

4 
3 
3 

3 
3 
3 

 
For Slave NI, the latency for a write or a read request 
transaction is defined as the number of cycles needed by 
the Request data flow when the request packet is presented 
at the local port of the router to the time when the first 
request appears at the AHB interface. The latency for a 
read response transaction is defined as the number of 
cycles needed by the Response Data flow when the 
response is presented at the AHB interface to the time 
when the first flit of the response packet quits the SNI. 
The MNI and SNI designs are tested and verified in two 
phases. In the first phase, the communication from IP to 
router was tested. In the second phase, the communication 
from router to IP was tested. The number of clocks to 
transfer a flit from IP AHB to the router is calculated at 
different stages and the results are presented in table 2. 

Therefore, the time to transfer a complete packet from IP 
to the router and vice versa is: 
Packet Delay = FD + M (N-1) clocks / packet                 
(2) 
Where FD present flit delay indicated in table 1, M present 
the time in cycle to forward a new flit and N present 
packet length. 
Figure 8 presents the Master and Slave Packet delay in 
clock cycles for different packets lengths respectively for 
the three different flow control without congestion. These 
results show that Credit-Based implementations have 
always the lowest packet delay and the 4 phase have the 
highest packet delay. This is evident because the time in 
cycles to forward a new flit (M) for 4ph Handshake flow 
control is equal to 4, 2 for 2ph Handshake flow control 
and equal to 1 for Credit-Based. 

 

Fig. 8 Packet delay of MNI and SNI for write request and read response. 

5.4 Throughput of Network Interfaces 

The NI is a bridge between the IP and the NoC. Therefore, 
the throughput for the NI can be in two directions: the 
forward direction, from the core to the NoC, and the 
reverse direction, from the NoC to the core. Table 2 shows 
the throughput in forward and reverse direction with clock 
frequency F = 500MHz for MNI and SNI.  

Table 2: Minimal throughput Results 
Throughput (Gbits/s) 4Ph 2Ph CB 
MNI Forward direction 

Reverse direction 
5,333 
2,285 

5,333 
3,2 

5,333 
4 

SNI Forward direction 
Reverse direction 

2,666 
16 

4 
5,333 

5,333 
5,333 

 
The throughput for NI in forward direction or reverse 
direction is defined as the total number of flits processed 
by NI per second. 
Throughput = 1 / latency (Flits / Clock)                          (3) 
Example: 
The flit throughput for MNI in forward direction can be 
calculated as follows: 
Throughput = 1 / (3*(1/(500*106))) 
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= 100MFlits / Second=5333Mbits / Second 

5.5 Physical design of 4ph MNI using High Speed 
(HS) standard-cells library 

We designed the master network interface IP using the 
VHDL language. For logic synthesis and physical ASIC 
design we used the Synopsys Design Vision and the 
Cadence Encounter environments respectively. The 
resulting netlist is used as an input to Cadence in order to 
perform mapping and routing with a 130nm CMOS 
technology. The layout of the MNI using 4 phase flow 
control with HS library is shown in figure 9. The results 
obtained from these operations are reported in table 3. The 
latter is a synchronous circuit that operates with 1GHz as 
the clock rate, which makes it more suitable for real time 
communications. The MNI occupies a 0,040mm2 silicon 
area and integrates 6686 equivalent gates. The correctness 
of the network interface functionality is verified by using 
the Synopsys simulator tool. 

 

Fig. 9 Layout result of the 4PH MNI routed (a)and Virtuso layout. 

The total Input/output is equal to 166. The core dimension 
of the MNI is about 0.190mm x 0.352mm, and the core is 
about 0.0575mm2. In Fig. 10 (a) we show a detailed view 
of the area consumption of different parts of the master 
NI. 

Table 3: Chip characteristic 
Technology 130nm 
Buffer size 4 flits 
Total Input/output 166 
Flow control Handshake 4 phase 
Clock frequency 1GHz 
Operation Voltage 1.2V 
Power Consumption Dynamic:16.92mW       

 Cell Leakage: 1mW 
Chip Dimension 0.190mm x 0.352mm 
Total area of Core 0.0575mm2 
Total area of Chip 0.0682mm2 

 

The figures show a NI with 2 FIFOs having four words 
depth and one FIFO having a two words depth. Each FIFO 
payload and FIFO response has an area of 0.0076mm2, 
corresponding to 18.7% of the MNI. The FIFO header has 
an area of 0.0042mm2 which presents 10.5% of the MNI. 
One can note that for this NI instance, a large part of the 
total MNI area is consumed by the FIFOs (47.9%) as 
presented in the floor-plan of figure 10(b).The Shell part 
presents 23.1% of NI area, The Shell input and the Shell 
output have respectively the area of 0.0018mm2 and 
0.0074mm2, corresponding to 4.6% and 18.5% of the MNI 
area. The Kernel part presents 28.15%. The Kernel input 
and Kernel output have respectively the area of 0.0034 
and 0.0079mm2, corresponding to 8.4% and 19.75% of the 
MNI area. 

 

Fig. 10 MNI area detail (a) and FIFO floorplan (b). 

We will describe a SoC based on 4x4 mesh 2D NoC. This 
SoC is composed of 32 IPs (Masters and Slaves), 16 
MNIs, 16 SNIs, and 16 routers with five input/output 
ports. The number of gates count of a single router is 
about 15191. The number of gates counts of a single MNI 
and SNI are respectively 6686 and 8034. The gates count 
of the NoC composed of 16 routers, 16 MNI, and 16 SNI 
are equal 478576 as shown in equation 4.  
16. Router Gate count+ 16. (MNI Gate count + MNI Gate 
count)=                                                                             
(4)  
16. 15191+16. (6686 + 8034)= 243056+235520=478576 
The 32 NIs occupied about 50% of NoC gate count and 
other gates count are from these 16 routers. Authors in 
[31] have estimated PEs with complexity of about 
50−100Kgates. We will estimate the SoC gate count with 
different IP gate count and we estimate the percentage of 
gate count that will be occupied by the NoC. For IP gates 
count equal to 50Kgates, the NoC will occupy about 23% 
of SoC gate count. For IP gate count equal to 75Kgates, 
the NoC will occupy about 17% of SoC gate count. For IP 
gate count equal to 100Kgates, the NoC will occupy about 
13% of SoC gate count. 

6. Comparative study 
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In this section we compare some of our proposed NIs with 
other architectures. This comparison is presented in Table 
4. An exact comparison is complicated due to the fact that 
these architectures have been implemented with different 
technologies and exhibit variations in their specifications, 
protocols and capabilities. Nevertheless, it will be noted 
that the design presented exhibits the highest level of 
modularity and flexibility for supporting other standards. 
The proposed MNI and SNI implementations that use 
HDHS synthesis library have the best performance 
compared to the implementations using the other libraries. 
For this reason we will use this implementation to 
compare our NIs with other works reported in table 4. For 
NI in Handshake mode, the maximum operating frequency 
is about 1GHz for MNI and about 714MHz for SNI in 
130nm technology. The maximum frequency of proposed 
MNI is equal to the work of [22] and outperforms all other 
works. The maximum frequency of proposed SNI is less 
than [22-25] and outperforms the works of [18-19]. The 
area of proposed MNI in Handshake modes is smaller than 
other works. The area of the proposed SNI is 
approximately equal to the work of [22], smaller than [18-
19-29], and finally bigger than [25].  

Table 1: Comparative study 
 [29] [25] [22] [18] [19] This work (HDHS) 

Protocol NA OCP OCP OCP,     
AXI,  
DTL 

NA 
 

 AHB      
2PH 

 AHB     
4PH 

 AHB      
Credit 
based 

Λ(µm) 0,13 0,13 0,13 0,13 0,09 0,13 0,13 0,13 
Frequency 

(Mhz) 
NA 

 
MNI:    
725     
SNI:     
1086 

MNI:    
1000     
SNI:     
1000 

NI:      
500 

NI:      
719 

MNI:      
1000       
SNI:       
714 

MNI:     
1000     
SNI:      
714 

MNI:     
746  
SNI:      
625 

Area 
(mm2) 

NI:     
0.43 

 

MNI:    
0.058    
SNI:     
0.020 

MNI:    
0.036    
SNI:     
0.045 

NI:      
0.169 

 

NI:      
0.053 

 

MNI:      
0.034      
SNI:       
0.045 

MNI:    
0.033     
SNI:      
0.044 

MNI:     
0.025     
SNI:      
0.043 

Power  
(mw) 

NA NA MNI:    
33.5     
SNI:     
36.9 

NA NI:      
15 

MNI:      
16.8        
SNI:       
10.34 

MNI:     
15.31     
SNI:      
10.33 

MNI:     
5.55      
SNI:      
9.14 

Latency 
(cycles) 

[8,1
0] 

[4,6] MNI:    
6        

SNI :    
10 

[4,10
] 

[4,5] MNI :     
[3,5]      
SNI :      
[3,3] 

MNI :    
[3,7]    
SNI :     
[6,1] 

MNI :    
[3,4]     
SNI :     
[3,3] 

 
For NI in Credit-Based mode, the maximum operating 
frequency is about 746MHz for MNI and about 625MHz 
for SNI. The maximum frequency of proposed MNI is 
smaller than in the work of [22] and outperforms all other 
works. The maximum frequency of proposed SNI 
outperforms the works of [18] and smaller than other 
works. The area of MNI in Credit-Based mode is smaller 
than other works. The area of proposed SNI is 
approximately smaller than [18-19-29], and finally bigger 
than [22-25]. As we also can show then the power 
consumption of Handshake mode is approximately the one 
fourth of the Xpipes NI power [22]. We can conclude that 
our work outperforms the presented other works in terms 
of power consumption.  

The result of latency of the NI of [29] is between 8 and 10 
cycles. The latency of [25] NI in injection and extraction 
path is respectively 4 and 6. In [22], the latency of MNI 
and SNI are respectively 6 and 10. The latency of 
AETHEREAL NI [18] is between 4 and 10 cycles. 
Finally, the Latency of [19] for SINGLE and BLOCK 
transmission in NI in the injection path are 4 and 5 cycles, 
respectively. Its latency in extraction path is 5 cycles. For 
MNI in three modes, the latency in injection path for write 
or read request is equal to 3 cycles. The latency of 
extraction path is between 4 and 7. The latency results of 
the proposed MNI and SNI presented in table 4 shows that 
the proposed NIs outperforms all other architectures in 
terms of latency in injection and extraction path for MNI 
and SNI. 

6. Conclusion 

This paper presents new network interface architectures 
that allow IP cores and NoC to be designed independently 
from each other. The proposed NIs includes three 
fundamental separations. The first separation is horizontal, 
one which distinguishes the injection path from the 
extraction path. The second separation is vertical, one 
which distinguishes between the IP core side and the NoC 
side. The last separation is between header and payload 
memories. The proposed NIs allows the reduction of the 
end to end latency and packets jitter between IP cores. 
Three MNI and three SNI implementations were proposed 
to study the impact of flow control in terms of cost and 
performance and to prove that if we change the network 
part we need only to change the kernel part without 
changing the shell part. It uses respectively Handshake 2 
phase, Handshake 4 phase, and Credit-Based flow control. 
The cost and performance of the proposed NIs are 
evaluated in terms of area, power, speed, latency, jitter, 
and throughput. We synthesized these NIs using standard 
cells based design with ST 130nm CMOS technology 
using four different libraries. The results demonstrate that 
HDHS library permits to obtain better results than other 
libraries in terms of area, power, and speed. The Credit-
Based flow control permits to obtain the best performance 
in terms of area, power, latency, jitter, and throughput. 
The 2 and 4 phase’s implementation allow obtaining the 
best speed compared to the credit based implementation. 
We present an instance of ASIC design of NI that uses 
4phase flow control and synthesized by the High Speed 
library, which shows that the cost of implementing our NI 
in hardware is small (0.057mm2 after layout in a 130nm 
technology, running at 1 GHz and consume about 18mW). 
A comparative study has been conducted with other 
works .The obtained results show that the proposed NIs 
outperforms other works in terms of latency and power. 
The long-term objective is to develop a tool that 
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automatically generates a specific application of NI which 
accepts as inputs the IP core interface 
specifications(OCP,AHB,AXI,DTL) and NoC parameters 
like (flow control, routing algorithm, flit width, queuing 
technique,..). 
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