

A Modular Network Interface Design and Synthesis Outlook

Brahim Attia1, Abdelkirm Zitouni1, Wissem Chouchenne1, Kholdoun Torki2, and Rached Tourki1

1Electronics and Microelectronics Laboratory, University of Monastir, Monastir, Tunisia

2Circuits Multi-Projets (CMP), 64 Avenue Felix VIALLET, 38031 GRENOBLE cedex, France

Abstract

In recent years, as System on Chip design research is actively
conducted, a large number of IPs is included in a system based
on a Network on Chip (NoC). Different interfaces’ specification
of IP cores and different flow controls are used by router. They
raise a considerable difficulty for adopting NoC techniques. To
facilitate the use of the NoC techniques an efficient design of the
network interface (NI) unit that connects the switched network to
the IP cores is required. In this paper, we present a new NI
architecture for NoC with low latency and jitter constraints. We
introduce a new distributed buffer structure that increases area
and reduces latency and jitter. We present how we can apply the
decoupling between computing and communication by proposing
a modular architecture. The low latency and minimal jitter
between packets are obtained through the separation between
header and payload memories. This separation enables the NI to
receive a new packet before the end of the transmission of a
previous packet. The modular design is obtained through the
separations between injection and extraction path and between IP
and network sides. The latter separation allows IPs and NoC to
be designed independently from each other. For evaluating the
efficiency of this approach, we use AHB standard at the IP side
and we use the most three used flow controls in NoC. A
performance study was conducted and NI designs were
synthesized with ST 0.13μm CMOS technology using four
different libraries. Experimental results show that the proposed
NIs allow better results in terms of latency, jitter and dissipated
power relatively to the current published state-of-the art NI
architectures.

Keywords: Network Interface, Network on Chip, ASIC, Low
latency, Low power.

1. Introduction

Multi-Processor System-on-Chip (MPSoC) platforms are
emerging as an important trend for future SoC design.
Such SoCs imply the integration of numerous IP cores
performing different functions like processors, DSP,
microcontroller, SRAM, DRAM. The number of IP cores
embedded in such systems was increased and
consequently it has critically increased the amount of on
chip communication. The key issue of SoC designs is the
communication architecture between heterogeneous

components. Most of the communication architectures in
current System on Chips are based on buses. However, the
bus architecture has its inherent limitations [1], [2], [3].
In order to integrate several heterogeneous components in
single SoC, a scalable communication infrastructure must
trend to on-chip packet-switched micro-network [4-5],
generally known as Network-on- Chip (NoC) architecture.
NoC has been proposed to the interconnect problem for
highly complex chip. In NoC paradigm a router is used for
packet switched communication among on chip cores.
Networks are composed of Network Interfaces (NI),
which implement the interface to the IP modules, routers,
which transport the data from one node to another; and
links between routers. IP integration is one of the most
challenging works in SoC based NoC design. To cope
with the protocol of the interconnect structure, a wrapper
or NI must be provided for different IP cores [6]. Since
different reusable IP cores may not be developed based on
the NoC, a NI is required as the interface between IPs and
routers.
NIs provides services to the transport layer in the OSI
model [7]. This is the first layer where offered services are
independent from the NoC implementation. It allows IPs
and interconnects to be designed independently from each
other [8, 9]. There exist a number of socket specifications
to this end, such as OCP (Open Core Protocol) [11], VCI
(Virtual component Interface) [10], AMBA AHB [12],
and AMBA AXI (Advanced extensible Interface) [13].
Network on Chips are message passing by nature and a
Network Interface is then needed. The standardized
protocols define the rules for all signaling between IP
cores and NoC fabric, while permitting the configuration
of specific instances. Our Network on Chip provides a
shared-memory abstraction to the IP cores. The
Communication is performed using a transaction-based
protocol, where the master IP modules issue request
messages that are executed by the addressed slave
modules, which may respond with a response message.
The purpose of NI is the synchronization between IP
protocol and router timings, the packaging of IP
transactions into flits and vice versa, the computation of
routing information, and the buffering of flits to improve
performance. Previous studies [14] focused to a large

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 470

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

extent on the routing of messages inside the network and
proposed many NoC architectures, while little effort has
been devoted to optimizing the way the IPs are connected
to the network. The fundamental issue in any NI design
for NoC is the modularity of the architecture to maximize
the reuse and the productivity of SoCs based on NoC. The
main reason is related to interoperability support of
different protocols. Different IP cores must be connected
to the network and the NI logic has to be reused across
different core protocols. The specific modules which
implement the NoC services must be independent from the
type of connected core protocols. Other important issue in
NI design is to achieve the modularity with low latency.
To decrease the end to end latency between IP cores in
SoC based NoC, we must reduce the latency of NoC
components (router, Network interface, and Link). The
latency of master and slave NIs in request and response
data flows and jitter between packets must be kept as low
as possible. A low-power design is also essential and
important issue for portable or mobile systems. Network
on chip will become the main communication platform for
this kind of Systems. To address the problem of energy
efficient design of NoC, we must decrease the power
consumption of NoC components. To reduce NoC
consumption, we must reduce the power of NoC
components such as NI components. In this paper, we
present two novel modular NI architectures with pipelined
fashion between IPs and the router of NoC. These NIs
allow system designers to send data from IPs to NOC, and
vice versa with low latency and power. We present how
we can apply the decoupling between computation and
communications to achieve the IP modules and
interconnections to be designed independently from each
other. The proposed NI allows reducing the design time of
new systems and hide implementation details of the
network. The modularity of design is obtained through a
separation between data flows and between IP side and
NoC side. The low latency and minimal jitter between
packets are obtained through the separation between
header and payload memories. Depending on the
application constraints, the NoC designer must choose the
appropriate technology library to satisfy these constraints.
For this reason, we present the synthesis results for area,
power, and speed of proposed NIs with different
frequency and with different libraries with 130 nm CMOS
technology. The paper is organized as follows. In Section
2, the related works are presented. In Section 3, an
overview of NoC is given. In Section 4 we describe and
detail the architecture of the proposed NIs. Section 5
presents experimental results. Section 6 presents a
comparison with other works. Finally in section 7 we
conclude the paper.

2. Related Works

There are many works published on the design of novel
network architectures as presented by [14], but few
publications have addressed particular issues to the design
of Network Interface modules.
In [15], the authors compared three schemes of
paketization strategy such as software library, on-core and
off-core implementation, and related costs in terms of
latency and area are projected, showing tradeoffs in these
schemes. They insisted that a hardware wrapper
implementation has the lowest area overhead and latency.
Another approach is presented in [16], where the authors
propose a generic architecture model which is used as a
template throughout the design process for accelerating
the design cycle. The key characteristics of this model are
its great modularity and scalability which make it reusable
for a large class of applications. Its drawback is that is
useful for SoCs based bus only. The authors, in [17],
define a set of parameters for automatic generation of
interface for multiprocessor SoC integration based bus.
However, they limited the embedded IP cores to CPUs
(ARM7 and MC68000). The designs of wrapper for the
application of specific cores still lack generic aspects and
only tackle restricted IP cores. An efficient on chip NI
ASIC design proposed in [18], which offers guaranteed
services, shared memory abstraction, and flexible network
configuration that implement three standard sockets
compatible with aethereal NoC. In [19], authors present a
generic architecture of network interface and associated
wrappers for a networked processor to be used with mesh
based NoC architecture. In [20], a micro-network that is a
generic, scalable interconnects architecture for system on
chip called SPIN is presented. It gives to the system
designer a simple view of a single shared address space
and provides a variable number of VCI compliant network
interfaces for both initiators (masters) and targets (slaves).
The authors, in [21], present the design of low latency
network interface for mesh based NoC compatible with
AHB standard and its associated implementation in Xilinx
Virtex5 FPGA board. In [22], an OCP compliant NI for
the Xpipes NoC was touched upon. The NI has a low area
but it supports only a single outstanding read or writes
transaction. An OCP compliant NIs for the mesh 2 D NoC
was designed in [23]. These NIs have a low area and a low
latency and they support only a burst precise mode
outstanding read and write transaction. The authors, in
[24], propose a generic and modular architecture of NIs
that support many modes of OCP standard and can use
Handshake 4phase or Credit-Based flow control for the
mesh 2 D NoC and it can be used for other topologies. A
NI design for Asynchrony NoC is presented in [25]. In
[26], authors present a Network Interface Sharing
Techniques that can be used to optimize the area of NoC

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 471

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Architectures. In [27], authors present an FPGA
implementation of a shared Network
Interface architecture is proposed to reduce area and
power by sharing the buffering resources and using the
stoppable clock technique. In [29], authors describe a
Network Interface design which supports serial-link
packet based transmission model for network-on-chip
application. The weak point of this design is the highest
latency in injection and extraction path. Among the
presented works, few approaches as the ones presented in
[16-17] have proposed a generic architecture model which
is used as a template throughout the design process for
accelerating design cycle for SoC based bus. Only the
works of [18-19-24] present a modular design of NI for
NoC. This paper proposes a new generic architecture
model of network interface which can be used as a
template through the design process for accelerating the
design cycle for System on Chip that uses a Network on
Chip as a communication platform. It addresses the
problem of the integration of IP cores in such networks
and proposes how we can obtain a modular NI with low
latency and power constraint. The proposed modular NI
architecture provides a very low Latency in the injection
and extraction path for MNIs and SNIs, which is much
lower than a software stack implementation and other
preview works. It reduces the jitter between two
successive packets and allows NI to work without
blocking fashion. The NI can receive a new request by
Master IP before the end of the transmission of the
previous packet. It also allows the reception of a new
packet before the end of transaction with the slave IP. We
present three different implementations each one uses a
specific flow control. Different processors or IP cores
must be connected to the network and the NI logic can be
reused across different core protocols. When we change
the flow control used by the network on chip or the NoC,
where the kernel parts are changed and the other
components are still unchanged. This paper also presents
the impact of the control flow mechanisms and synthesis
library on cost and performance of NIs. To prove our
concept, we evaluate the cost and performance of the
proposed NI architectures by implementing our designs on
ASIC. We use the industrial standard for IP cores AMBA
AHB as processing elements and a wormhole [30]
Network on Chip. It is based on the mesh 2D topology and
the use of a determinist routing algorithm called XY. We
evaluate the area, power, speed, latency, and Throughput
of implementing NI tasks that use the most three used flow
controls in NoC.

3. Services and Functionalities Provides by
the Proposed NoC

The current SoCs predominantly use buses as the one chip
interconnects; these standard interfaces have bus based
semantics where all nodes connected to the
communication medium are defined as masters or slaves,
and communicate via transactions. Masters start a
transaction by issuing requests; slaves then receive and
subsequently process the request. The transaction is
completed when the slave responds to the original request.
The request-response transaction model matches those
used in buses, making it easier to design network interface
wrapper around IP blocks that were originally designed to
interface with buses. For instance, a processor core will be
a master that initiates a new transaction through issuing a
write request to a memory module, while the memory
module will be the slave that executes the write request
and responds with an acknowledgment response. Every
transaction in AMBA AHB protocol sends addresses and
controls information on the address bus, while data are
sent on the data channel on bursts. The write data bus is
driven by the bus master during write transfers. The read
data bus is driven by the appropriate slave during read
transfers. In order to interface the NoC with the tile we
utilize a NI, which will have the responsibility of
packetizing and depacketizing the cores requests and
responses. In the request data flow, the NI has the
responsibility of receiving the request from the core
interface, preparing the packets and dispatching them to
the network logic of the tile. In the response data flow, the
NI has the responsibility of receiving the packets from the
networking logic and presenting the contents to the core
interface. NoC topologies are defined by the connection
structure of the switches. We have designed a NoC which
is based on the mesh 2D topology [28]. The proposed NoC
assumes that each switch has a set of bi-directional ports
linked to other switches and to an IP core. In the mesh
topology used in this work, each switch has a different
number of ports, depending on its position with regard to
the limits of the network. The use of mesh topologies is
justified to facilitate the placement and the routing tasks.
We have adopted a synchronous router with five
input/output ports (North, East, Local, South and West),
having each a bidirectional exchange bus suitable for 2D
mesh NoC architecture. The NoC includes 16 nodes and
the switching technique used is packet switching. Each
switch must have a unique address in the network. To
simplify the routing on the network, this address is
expressed in XY coordinates, where X represents the
horizontal position and Y the vertical position. The data
flow through the network is a wormhole routing. This has
been chosen due to the small number of buffer required
per node and the simplicity of the communication

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 472

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

mechanism (no re-ordering at the destination resources).
The NoC uses Credit-Based flow control strategies
because it has advantages over Handshake. We have
adopted a determinist routing algorithm called XY routing.
XY routing algorithm is executed to connect the input port
data to the correct output port. A network packet is
composed of successive flits. A multi-flit packet is
inserted through a header flit, which may be followed by
one or more data flits (payload). The first flit of packet
includes header information for our case. Each flit is
composed of 32 bits data and two control bits, where the
34th bit encodes the beginning of-packet (BOP) and the
33rd bit encodes the end-of-packet (EOP). The header is
composed of special fields for the network and special
fields for NI and IP. The special fields for adapters and IP
will be discussed later.

4. Proposed Network Interfaces

There are two fundamental separations in the NI
architecture that enable this modularity: a horizontal one
which distinguishes the injection path (request data flow)
from the extraction path (response data flow), and a
vertical one which distinguishes between the network-
dependent and the network-independent (connected
component) part. These two parts are referred to as shell
and kernel, as proposed in the design of Phillips AEthereal
NI [18]. Separation between injection and extraction
functions allows easy reuse of dual components in both
master and slave NIs, since injection corresponds to
packet composition and transmission, while ejection
corresponds to packet reception and decoding. Shell and
kernel separation through relatively well-defined
interfaces is really important for minimizing the effort of
supporting different sockets, while keeping a fixed kernel
structure and changing only the shell part. Moreover, this
separation enables greater flexibility in the packet format
that can be configured at instantiation time. Since kernel
deals with packet, while shell manages end-to-end
protocol transactions, control and data signals are usually
driven in parallel. Shell supports flow control to external
bus protocols, while kernel handles NoC flow control at
hop-by-hop and end to- end level. We have designed two
types of NI for AHB based cores for our network-on-chip,
named Master Network interface (MNI) attached to master
IP and Slave Network Interface (SNI) attached to slaves
IP. A master-slave device will need two NIs, an initiator
and a target, for operation. Each type of NI is additionally
split in two sub modules, one for the request and one for
the response data flow or channel (injection and extraction
path). These sub modules are loosely coupled: whenever a
transaction requiring a response is processed by the
request channel, the response channel is notified;
whenever the response is received, the request channel is

unblocked. The advantage gained by using burst transfers
is that the bandwidth is used more effectively, since it is
only necessary to send the starting address together with
some information about the burst. The longer the burst is
the better ratio between data and overhead gets. Another
advantage is that the jitter between data flits decreases
when adding a burst header to the package, since many
flits of data can be sent in sequence. To take advantage of
burst transactions the NI needs to package a burst in a
package to transmit over the network. However, if a very
long burst is packaged into one package, the burst can
block a slave core from receiving request from other cores.

4.1 Package format Specification

It has been specified that a package is constructed by flits
which are 32-bit wide and the flits sent on the network
must apply an extra bit to indicate the beginning and the
end of a package. The header flit is a 32-bit word located
at the beginning of a request or response packet. It
contains information used by the routers of the network
and the other information used by network interfaces. The
information used by routers of the network is useful for
the routing of the packet through the network. They are
encoded in the 12 least significant bits (address
destination, address source). The information used by
network interfaces is useful for Decoding Package. They
are encoded between 12 and 31-bit number. It depends on
the type of the header (request or response). Seen that the
MNI and SNI have different behaviors, the information
they need is also different. There are two kind of packet
used by our NOC: Request packet and Response packet.
The request package header is shown in Figure 3 and
spans over one flit. The fields address destination and
address source present the address XY of the target and
source routers. The field Address_cm presents the address
of first case memory of the first target memory cell. The
address of first target memory cell will be incremented
later by the network interface depending on the size of the
word and the AHB burst mode used. Hwrite indicates the
type of transfer (read or writes) and the priority of the
packet in the network is indicated by Priority field.

Fig. 1 Header of request packet.

The size of the transfer and the number of word to be
transmitted are indicated by Hsize and Hburst signal. The
most important field in Response packet Header is the
return address which indicates the source address of the
router to route the response packet. The other bits are
reserved for future extensions.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 473

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.1 Master Network Interface architecture

The master network interface (MNI) transforms an AHB
request to a request packet AHB/NoC and a response
packet NoC/AHB to an AHB response. The tasks of the
MNI are to receive requests from the master core,
encapsulate the request into a package, transmit packages
to the network, receive responses from the network,
decapsulate responses and transmit responses to the master
cores. Figure 2 illustrates the internal architecture diagram
of the MNI. The physical division of the interface is
distributed in two parts: Shell (IP master side) and Kernel
(NoC router side). The Shell part communicates with
master IP respecting the AHB protocol and it is divided
into two parts: (Shell Input and Shell Output). The Shell
Input Part is composed of three modules called
respectively: Routing table, Header builder and Controller
fifo. This part handles the receipt and encapsulation of the
request in one package. The Shell output Part manages the
issue of response to the master IP. The shell presents
dependent parts of the resource that is, the dependent parts
of the IP master. The kernel part is divided into two parts
called Kernel Input and Kernel Output. The kernel output
part manages the issuance of requests and communication
with the local port on the router by using specific flow
control. The kernel input part manages the receipt and
decapsulation of responses packets. The kernels present
the independent part of the resource that is, the dependent
part of the network. Clearly, the proposed architecture of
the master network interface is built on two data-flows.
One data-flow is the request data flow, where the core is
the source and the network is the destination. The second
dataflow is the response data-flow where the network is
the source and the core is the destination. The request data
flow called also injection path performs the transformation
of the AHB request into a request packet for our NoC. The
response data flow called also extraction path performs the
transformation of the response packet provided by our
NoC into a response for the AHB IP master.

4.1.1 Injection path

We split the design of injection path into the following
parts: the shell input, the kernel output, header memory
and payload memory. In this part we will present all
modules that perform the services provided by the
injection path to allow the transmission of the request
packet flits to the network. In the case of writing request,
the MNI will first receive the necessary information from
the master IP for the building of the header via these input
signals. A field of the address bus Haddr will be extracted
by the routing table module to provide the XY address of
the target router. The header builder module will collect
the necessary information that is described in figure 1 to
build the header. After the building of the header flit and if

the FIFO header is not full, then the header builder will
activate the write signal for temporary storage of the
header flit. In fact, the MNI is available when the data
memory and the header memory are not full. The writing
of data flits in the data memory is performed by the
controller FIFO in the case of writing request and set the
Hready and Hresp signals to the appropriate value. If the
master IP is in the busy state, the MNI receives data and
waits until the master becomes available.

Fig. 2 Master Network interface architecture.

The transactions with the network and the issuance of flits
are managed by the kernel output module. First, the
transfer begins with the issuance of header flit. If FIFO
header is not empty, the kernel output reads a header flit
from header memory and transmits it to the local port of
the router and set BOP to high state. The kernel output
module performs many readings from data memory if it is
not empty. The number of readings depends on Hburst and
Hsize fields. Two separate pairs of header and payload
memories in the MNI injection path are used for
temporarily stored flits ready to be injected to the NoC. NI
buffers are organized and managed with flit granularity,
but the user can decide to continuously inject packets to
the network, avoiding wasted cycles. Using separate pairs
of header and payload FIFOs decouples the shell from the
kernel and provides significant advantages. First, it
simplifies size and frequency management that is
efficiently implemented through FIFO-based structures.
Second, Actual header size can differ from payload or flit
size, so buffering can be optimized and reduced. Third, for
components that generate read- or write-only traffic, there
is no need to have a payload FIFO in the master NI
injection, thus reducing the area complexity depending on
the traffic type of the initiator component. Finally, when
using a simple flag, the shell is able to simultaneously

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 474

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

store packets while the kernel reads them without mixing
flits of different packets in the master NI injection path. In
the case of a reading request, the same processing is
executed except that the controller FIFO is inactive. We
have designed for each flow control, a specific
implementation of kernel output module but we use the
same implementation for all other modules.

4.1.2 Extraction path

The extraction path is active only when a read command is
presented by the IP AHB master. Its task is to receive the
response packet that corresponds to the reading request of
the master. We split the design of extraction path or
response data flow into the following parts: the shell
output, the kernel input and the response memory. In this
part we will present all modules that perform the services
provided by the extraction path to allow the reception of
the response packet flits from the network and provide
them to the master IP. It is divided into three stages. The
first stage presents the kernel input. It is where the data are
received from the network. The second stage is the
response memory where the data response will be
temporary stored. The third stage presents the shell output.
It is where the data are transmitted to the master core.
After the issuance of response by the network interface
slaves, the network routers forward the reply packet to the
MNI. The kernel input module presents the dependent part
of this network. It manages the reception of flits and the
transactions with network according to flow control used
by the network. Indeed, the kernel input module writes
each received flit until the response memory is not full and
returns Ack or credit signal to the local port of the router.
The shell output presents the network-independent part. It
manages end-toend protocol interactions with the master
IP cores directly connected to the NI. When the response
memory is not empty, the Shell collects data from
response memory and provides it to the master IP and sets
hready and hresp signals to the appropriate value. Its role
is to manage the emission of data responses to the IP
master while taking into account the availability of the
response memory and the availability of the IP master. It is
responsible for blocking the IP master at the beginning of
a read request. After issuing the read request, the master IP
is still waiting until the arrival of the response data.

4.2 Slave Network Interface architecture.

The tasks of the SNI are to receive request packages from
the network, decapsulate the request packages, transmit
the request to the slave core, receive response from the
slave core, encapsulate response and transmit response to
the network. Clearly, the proposed architecture of the

slave network interface is built on two data-flows. One
data flow is the request data flow, where the network is
the source and the core is the destination. The second data
flow is the response data flow where the core is the source
and the network is the destination. The request data flow
called also extraction path performs the transformation of
the request packet of our NoC to an AHB request. The
response data flow called also injection path performs the
transformation of the AHB response to a response packet
to our NoC. Figure 3 illustrates the internal architecture
diagram of the proposed SNI. The physical division of the
interface is distributed in two parts: Shell and Kernel. The
Shell part communicates with slave IP respecting the AHB
protocol. This latter plays the role of a master IP since it
takes the same decisions as the master. NI shell connects
the slave socket of the component to the NI kernel. It
manages responses in the injection path and requests in the
extraction path. The kernel part is also divided into two
parts called Kernel Input and Kernel Output. The kernel
output manages the issuance of responses and
communication with the local port on the router by using a
specific flow control. The kernel input manages the receipt
and decapsulation of request packets. Four memories
implemented as FIFO are used for the temporary storage
of control information and data. Control information is
stored in the header memory and payload is stored in the
payload memory. The SNI is divided into seven stages.
The first stage is where the data are received and
decapsulated by the kernel input from network. The
second stage is where header flits are buffered by the
header memory. The third stage is where the data are
buffered by the payload memory. The fourth stage is
where the data are transmitted to the slave core by the
shell. The fifth stage is where the address source for
reading request is buffered by the address source memory.
In the case of a reading request, it provides the way to the
source router for the address source memory. The sixth
stage is where the response data provided by the slave IP
via the response memory. The last stage is where the
response packet is transmitted to the local port of the
router. With the internal architecture diagram of the
proposed SNI, several communications between modules
proceed; the modules constituting this entity are described
as follows:
Kernel input: In the extraction path, incoming packet flits
are received by the kernel input and stored in either the
dedicated header or the payload buffers. The hop-by hop
flow control is managed depending on the availability of
free locations in the NI FIFOs. This module is kept in a
waiting state until it receives the beginning of a reading or
writing request packet from the local port of destination
router. It receives the header flit only if the header
memory is available and it extracts the various fields
necessary from the header for the reformulation of the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 475

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

request and it stores them in the header memory. For a
burst write, this block will make it possible to let a certain
number of words of data to be written in the payload
memory; this number of words is defined in the hburst and
hsize fields. The kernel input will write necessary fields in
the header memory if it is not full and a new request is
presented at the local port of router. The NI will write the
payload flits in the payload memory when a write request
is presented. For a burst read, there is only one flit of the
header, and then there are not data to receive in the
payload memory. The address source will be stored in the
address source memory to be used later by the kernel
output for response header building. The kernel input
works in no blocking mode. The SNI can receive new
packets from the local port of the router before that the
slave has finished the previous transaction. It only takes
into account the availability of two memories in which it
stores the received information. A new reading request can
be received only if the two memories are not full.

Fig. 3 Slave Network interface architecture.

Shell: it connects the slave socket of the IP component to
the NI kernel. It manages responses in the injection path
and requests in the extraction path. The shell has to deal
with the socket component flow control, address, data and
control signals for IP interface. The shell deals with the
component data bus size and frequency, while potential
adaptation in terms of size and clock speed is handled by
the kernel part. In the extraction path the packets coming
from the network are organized by the kernel buffering
into header and payload, so the shell has to compose the
end to end protocol transaction, decode the header field
and eventually collect the data. This module plays the role
of an IP master interface compared to the IP slave. It
rebuilds AHB requests emitted by the initiator IP taking
into account the availability of the fields of control in the
header memory, as well as the availability of flits in the
payload memory in the case of a writing request and the

capability of the salve IP to receive a new request. It
extracts the necessary fields from the header memory for
the reformulation of the request such as (burst type, data
size, address, type of command, etc). It provides the slave
IP with the necessary phases of address and data to be
compatible with AHB standard. The generation of address
sequences is obtained by incrementing the first address of
memory cell that is provided in the header, incrementing
by 1.2, 4 or more depending on the word size. The address
and data phases will be extended in the case where slave
IPs are not ready to receive a new request. In the case of
the presence of control information in header memory, the
shell module reads this information and tests on the field
Hwrite to determine the type of command. With the burst
type, the shell module can specify the number of words to
be transmitted on the Hwdata bus or to receive on the
Hrdata bus. In the case of a writing request, this module
generates a cyclic signal that performs a read from the
payload memory to provide writing data bus Hwdata with
a new data in case the payload memory is not empty and
the IP salve is ready to receive a new data phase. The
number of data words to read from this memory is
precalculated from the two fields Hburst and Hsize. In the
case of a reading request, this module manages the
reception of data transmitted by the slave IP. Before
beginning a read operation, it must test if the response
memory is full or not. If it is not full, it begins the read
transfer by storing data temporarily provided by the read
data bus Hrdata in response FIFO.
Kernel output: This module has the role of preparing and
transmitting the response header, the reading and sending
of the response data. The encapsulation of the header is
done by the activation of the read signal from the address
source memory to get the source address field which will
be transmitted with other fields. Then, this module will
send the response data already stored in the response
memory by the activation of the correspondent read signal.
This kernel output will send all the response data which
were produced by the IP-AHB and which were stored in
the response memory after each beginning of a read
request. Moreover, the reading from the response memory
is done when it is not empty. The shell implementation is
the same for the three implementations in IP side. But, the
NI kernel is specific of the flow control to be used.

5. Experimental Results.
In this section the synthesis results will be presented, and a
cost analysis of area and power consumption will be made
based on the synthesis results. The MNI’s performance
and
SNI’s performance will be evaluated in terms of speed,
latency, and throughput. We will present a comparative
study of three different implementations for NI. On the IP
side the three implementations use AMBA AHB protocol.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 476

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The first implementation of NI uses a Handshake 4 phases
flow control. The second uses Handshake 2 phases and the
third uses the Credit- Based. Master and slave network
interfaces with 32 bit AHB data fields and 32 bit network
ports have been modeled with VHDL language on RTL
level. They were simulated and synthesized respectively
by using the ModelSim tool and Synopsys Design Vision
tool.
We synthesized these NIs using cell based design with ST
0.13nm CMOS technology using four different libraries
(High Speed (HS), High Density High Speed (HDHS),
Low Leakage (LL), and High Density Low Leakage
(HDLL)). Furthermore, due to the high pin count, the
experimental results are based on the circuit simulation of
the design instead of the manufactured chip. The synthesis
result of the MNI was done with FIFO data and FIFO
response having a depth of 4 words of 32 bits and the
FIFO header has a depth of 2 words. Each used FIFO has
an adjustable depth and width. The synthesis result of the
SNI was done with FIFO data and FIFO response having a
depth of 4 words of 32 bits and the FIFO header has a
depth of 2 words of 19 bits. The FIFO address has a depth
of 2 words of 12 bits. For master or slave network
interfaces, the Finite States Machine of kernel output and
kernel input sub module for each type of control flows is
different. The other used sub modules are the same for the
three NI versions. Figure 4 and figure 5 show the area of
MNIs and SNI for the three implementations with
different frequency value. The power consumption results
are shown in figure 6 and figure 7. The maximum
operating frequency obtained for these NIs
implementations is about 1111 MHZ. The result of latency
measurement by the simulation of MNIs and SNIs is
presented in Table 2. Table 7 shows the measurement of
throughput obtained by the simulation of the two versions
of the NIs.

5.1 Area of Network Interfaces

The size of the NIs is an important metric because it
facilitates calculating the interconnection overhead
introduced by the NoC. As a Slave NI or a Master NI
should be instantiated for each IP core connected to the
network, it is desired that the area is smaller than the IP
cores. An exploration of the area/frequency trade off was
performed for three NI implementations with 32 bit AHB
data fields and 32 bit network ports using respectively
Credit-Based, Handshake 2 and 4 phases. By varying the
target synthesis clock, different area results were reported
(Figure 4 and 5) using four different libraries. The
maximum operating frequency achieved with Credit-
Based mode module was 1GHz for the MNI and 833MHz
for the SNI with High Speed library. The maximum
operating frequency achieved with Handshake 2 or 4

phases mode module was 1,111GHz for the MNI and
714MHz for the SNI with High Speed and High Density
High Speed Library. The minimal operating frequency
achieved with Credit-Based mode module was 588MHz
for the MNI and 500MHz for the SNI with High Density
Low Leakage library. The minimal operating frequency
achieved with Handshake 2 or 4 phases mode module was
600MHz for the MNI and 416MHz for the SNI with High
Density High Speed Library.

Fig. 4 Area of Master Network interfaces.

The results presented in figure 4 show that the area
occupied by the MNI that uses Credit-Based control flow
is the most reduced compared to the other modes with the
four libraries.

Fig. 5 Area of Slave Network interfaces.

The MNI that uses the 2 phases control flow is the greatest
compared to other modes. This is due mainly to the fact
that the number of states of the two sub-modules Kernel
input and Kernel output in Handshake modes is higher
than the number of states of the Credit-Based mode. The
area increase is about 32% between Handshake and
Credit-Based implementations for LL (Low Leakage)
library. The HDHS and HDLL libraries allow obtaining
the minimal area compared to other libraries. The HDHS
library permits to obtain a small MNI area with high

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 477

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

maximum operating frequency witch achieve 1GHz. The
area of MNI that uses Credit-Based mode has as an area
0.025mm2 and the area of MNI that uses 2 and 4 phases
Handshake modes has as areas respectively 0.031mm2 and
0.030mm2 at 500MHz. The HDLL library permits to
obtain a small MNI area but with low maximum operating
frequency witch achieves 600MHz. The area of MNI that
uses Credit-Based mode has as an area 0.024mm2 and the
area of MNI that uses 2 and 4 phases Handshake modes
has as areas respectively 0.032mm2 and 0.031mm2 at
500MHz. By using HS or LL libraries, the area of MNI
that uses Credit-Based mode has as an area about
0.027mm2 and the area of MNI that uses Handshake
modes have as area 0.037mm2 at 500MHz.
For SNI, The results presented in figure 5 show that the
area occupied by the SNIs for the three control flow has
approximately the same area by using these 4 libraries.
The 2 phases control flow has a little difference in terms
of area with other modes. It should be noted that a large
area of the slave network interface is occupied by the four
FIFOs. The HDHS and HDLL libraries allow to obtain the
minimal area compared to others libraries. The HDHS
library permits to obtain a small SNI area with high
maximum operating frequency which achieves 714MHz.
The area of SNI has as an area 0.040mm2 at 500MHz. The
HDLL library permits to get a small SNI area but with low
maximum operating frequency which achieves 500MHz.
The area of SNI that uses Credit-Based mode has as an
area 0.045mm2 and the area of SNI that uses 2 and 4
phases Handshake modes has as areas respectively
0.041mm2 at 416MHz and 0.044mm2 at 500MHz. By
using HS library, the area of SNI that uses Credit-Based
mode has as an area about 0.0483 mm2 and the area of
SNI that uses 2 Phases and 4 phases Handshake modes has
as areas respectively 0.0474mm2 and 0.0486mm2 at
500MHz. We conclude that the Credit-Based flow control
is the best choice for NoC designer to have a NI with a
low area constraint without decreasing the maximum
operating frequency. These results show that HDHS
library allows obtaining a low area with high speed.

5.2 Power estimation of Network Interfaces

The power consumption results are from the Synopsys
Design Vision (Power Compiler). An exploration of the
power/frequency trade off was performed for three NI
implementations with 32 bits AHB data fields and 32 bits
network ports using respectively Credit-Based, Handshake
2 and 4 phases. By varying the target synthesis clock,
different power estimation results were reported (Figure 6
and 7). When we increase the operation frequencies the
dynamic power is automatically increased. The results
presented in figure 6 show that the power consumption of
the MNI that uses Credit-Based control flow is the most

reduced compared to the other modes. The MNI that uses
Handshake 2 phases consumes more than other modes.
The synthesis with HDLL library permits to obtain the
lowest power consumption compared to other libraries.
The synthesis with HS library permits to get the highest
power consumption compared to other libraries and with
important leakage power. The power estimation obtained
by synthesis with HDLL library of MNI that uses Credit-
Based mode has as power 3.43mW and the estimated
power of MNI that uses 2 and 4 phases Handshake modes
has respectively 7.67mW and 7mW at 500MHz. By using
the HDHS library, we obtain 3, 65mW for credit based
mode and 8.35mW and 7.59mW for respectively 2 and 4
phase’s modes.

Fig. 6 Power of Master Network interfaces.

For HDHS library, the power increase is about 128%
between 2 phase Handshake and Credit-Based
implementations.

Fig. 7 Power of Slave Network interfaces.

The power increase is about 107% between 4 phase
Handshake and Credit-Based implementations. This is due

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 478

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

mainly to the fact that the number of states of the two sub-
modules Kernel input and Kernel output in Handshake
modes is higher than the number of states of the Credit-
Based mode and it has less switching in control signal than
Handshake. The power increase is about 10% between
Handshake 2 phases and Handshake 4 phases’
implementations. For SNI, The three modes have
approximately the same power. The synthesis with LL
library permits to have the lowest power consumption
compared to other libraries. The synthesis with HS library
permits to obtain the highest power consumption
compared to other libraries and with important leakage
power. It should be noted that the power of the slave
network interface is dominated by the power consumed by
the four FIFOs. We conclude that the Credit-Based flow
control is the best choice for NoC designer to have a NI
with low power constraint without decreasing the
maximum operating frequency.

5.3 Latency of Network Interfaces

For Master Network Interface, the latency for a write or a
read request transaction is defined as the number of cycles
needed by injection path when the request is presented at
the AHB interface to the time when the first flit of the
packet leaves the NI. The latency for a read response
transaction is defined as the number of cycles needed by
the extraction path when the response packet is presented
at the local port of the router to the time when the first
response appears at the AHB interface.

Table 1: Latency Results
Latency (cycles) 4Ph 2Ph CB
MNI Write request

read request
read response

3
3
7

3
3
5

3
3
4

SNI Write request
read request

read response

6
2
1

4
3
3

3
3
3

For Slave NI, the latency for a write or a read request
transaction is defined as the number of cycles needed by
the Request data flow when the request packet is presented
at the local port of the router to the time when the first
request appears at the AHB interface. The latency for a
read response transaction is defined as the number of
cycles needed by the Response Data flow when the
response is presented at the AHB interface to the time
when the first flit of the response packet quits the SNI.
The MNI and SNI designs are tested and verified in two
phases. In the first phase, the communication from IP to
router was tested. In the second phase, the communication
from router to IP was tested. The number of clocks to
transfer a flit from IP AHB to the router is calculated at
different stages and the results are presented in table 2.

Therefore, the time to transfer a complete packet from IP
to the router and vice versa is:
Packet Delay = FD + M (N-1) clocks / packet
(2)
Where FD present flit delay indicated in table 1, M present
the time in cycle to forward a new flit and N present
packet length.
Figure 8 presents the Master and Slave Packet delay in
clock cycles for different packets lengths respectively for
the three different flow control without congestion. These
results show that Credit-Based implementations have
always the lowest packet delay and the 4 phase have the
highest packet delay. This is evident because the time in
cycles to forward a new flit (M) for 4ph Handshake flow
control is equal to 4, 2 for 2ph Handshake flow control
and equal to 1 for Credit-Based.

Fig. 8 Packet delay of MNI and SNI for write request and read response.

5.4 Throughput of Network Interfaces

The NI is a bridge between the IP and the NoC. Therefore,
the throughput for the NI can be in two directions: the
forward direction, from the core to the NoC, and the
reverse direction, from the NoC to the core. Table 2 shows
the throughput in forward and reverse direction with clock
frequency F = 500MHz for MNI and SNI.

Table 2: Minimal throughput Results
Throughput (Gbits/s) 4Ph 2Ph CB
MNI Forward direction

Reverse direction
5,333
2,285

5,333
3,2

5,333
4

SNI Forward direction
Reverse direction

2,666
16

4
5,333

5,333
5,333

The throughput for NI in forward direction or reverse
direction is defined as the total number of flits processed
by NI per second.
Throughput = 1 / latency (Flits / Clock) (3)
Example:
The flit throughput for MNI in forward direction can be
calculated as follows:
Throughput = 1 / (3*(1/(500*106)))

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 479

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

= 100MFlits / Second=5333Mbits / Second

5.5 Physical design of 4ph MNI using High Speed
(HS) standard-cells library

We designed the master network interface IP using the
VHDL language. For logic synthesis and physical ASIC
design we used the Synopsys Design Vision and the
Cadence Encounter environments respectively. The
resulting netlist is used as an input to Cadence in order to
perform mapping and routing with a 130nm CMOS
technology. The layout of the MNI using 4 phase flow
control with HS library is shown in figure 9. The results
obtained from these operations are reported in table 3. The
latter is a synchronous circuit that operates with 1GHz as
the clock rate, which makes it more suitable for real time
communications. The MNI occupies a 0,040mm2 silicon
area and integrates 6686 equivalent gates. The correctness
of the network interface functionality is verified by using
the Synopsys simulator tool.

Fig. 9 Layout result of the 4PH MNI routed (a)and Virtuso layout.

The total Input/output is equal to 166. The core dimension
of the MNI is about 0.190mm x 0.352mm, and the core is
about 0.0575mm2. In Fig. 10 (a) we show a detailed view
of the area consumption of different parts of the master
NI.

Table 3: Chip characteristic
Technology 130nm
Buffer size 4 flits
Total Input/output 166
Flow control Handshake 4 phase
Clock frequency 1GHz
Operation Voltage 1.2V
Power Consumption Dynamic:16.92mW

 Cell Leakage: 1mW
Chip Dimension 0.190mm x 0.352mm
Total area of Core 0.0575mm2
Total area of Chip 0.0682mm2

The figures show a NI with 2 FIFOs having four words
depth and one FIFO having a two words depth. Each FIFO
payload and FIFO response has an area of 0.0076mm2,
corresponding to 18.7% of the MNI. The FIFO header has
an area of 0.0042mm2 which presents 10.5% of the MNI.
One can note that for this NI instance, a large part of the
total MNI area is consumed by the FIFOs (47.9%) as
presented in the floor-plan of figure 10(b).The Shell part
presents 23.1% of NI area, The Shell input and the Shell
output have respectively the area of 0.0018mm2 and
0.0074mm2, corresponding to 4.6% and 18.5% of the MNI
area. The Kernel part presents 28.15%. The Kernel input
and Kernel output have respectively the area of 0.0034
and 0.0079mm2, corresponding to 8.4% and 19.75% of the
MNI area.

Fig. 10 MNI area detail (a) and FIFO floorplan (b).

We will describe a SoC based on 4x4 mesh 2D NoC. This
SoC is composed of 32 IPs (Masters and Slaves), 16
MNIs, 16 SNIs, and 16 routers with five input/output
ports. The number of gates count of a single router is
about 15191. The number of gates counts of a single MNI
and SNI are respectively 6686 and 8034. The gates count
of the NoC composed of 16 routers, 16 MNI, and 16 SNI
are equal 478576 as shown in equation 4.
16. Router Gate count+ 16. (MNI Gate count + MNI Gate
count)=
(4)
16. 15191+16. (6686 + 8034)= 243056+235520=478576
The 32 NIs occupied about 50% of NoC gate count and
other gates count are from these 16 routers. Authors in
[31] have estimated PEs with complexity of about
50−100Kgates. We will estimate the SoC gate count with
different IP gate count and we estimate the percentage of
gate count that will be occupied by the NoC. For IP gates
count equal to 50Kgates, the NoC will occupy about 23%
of SoC gate count. For IP gate count equal to 75Kgates,
the NoC will occupy about 17% of SoC gate count. For IP
gate count equal to 100Kgates, the NoC will occupy about
13% of SoC gate count.

6. Comparative study

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 480

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In this section we compare some of our proposed NIs with
other architectures. This comparison is presented in Table
4. An exact comparison is complicated due to the fact that
these architectures have been implemented with different
technologies and exhibit variations in their specifications,
protocols and capabilities. Nevertheless, it will be noted
that the design presented exhibits the highest level of
modularity and flexibility for supporting other standards.
The proposed MNI and SNI implementations that use
HDHS synthesis library have the best performance
compared to the implementations using the other libraries.
For this reason we will use this implementation to
compare our NIs with other works reported in table 4. For
NI in Handshake mode, the maximum operating frequency
is about 1GHz for MNI and about 714MHz for SNI in
130nm technology. The maximum frequency of proposed
MNI is equal to the work of [22] and outperforms all other
works. The maximum frequency of proposed SNI is less
than [22-25] and outperforms the works of [18-19]. The
area of proposed MNI in Handshake modes is smaller than
other works. The area of the proposed SNI is
approximately equal to the work of [22], smaller than [18-
19-29], and finally bigger than [25].

Table 1: Comparative study
 [29] [25] [22] [18] [19] This work (HDHS)

Protocol NA OCP OCP OCP,
AXI,
DTL

NA

 AHB
2PH

 AHB
4PH

 AHB
Credit
based

Λ(µm) 0,13 0,13 0,13 0,13 0,09 0,13 0,13 0,13
Frequency

(Mhz)
NA

MNI:
725
SNI:
1086

MNI:
1000
SNI:
1000

NI:
500

NI:
719

MNI:
1000
SNI:
714

MNI:
1000
SNI:
714

MNI:
746
SNI:
625

Area
(mm2)

NI:
0.43

MNI:
0.058
SNI:
0.020

MNI:
0.036
SNI:
0.045

NI:
0.169

NI:
0.053

MNI:
0.034
SNI:
0.045

MNI:
0.033
SNI:
0.044

MNI:
0.025
SNI:
0.043

Power
(mw)

NA NA MNI:
33.5
SNI:
36.9

NA NI:
15

MNI:
16.8
SNI:
10.34

MNI:
15.31
SNI:
10.33

MNI:
5.55
SNI:
9.14

Latency
(cycles)

[8,1
0]

[4,6] MNI:
6

SNI :
10

[4,10
]

[4,5] MNI :
[3,5]
SNI :
[3,3]

MNI :
[3,7]
SNI :
[6,1]

MNI :
[3,4]
SNI :
[3,3]

For NI in Credit-Based mode, the maximum operating
frequency is about 746MHz for MNI and about 625MHz
for SNI. The maximum frequency of proposed MNI is
smaller than in the work of [22] and outperforms all other
works. The maximum frequency of proposed SNI
outperforms the works of [18] and smaller than other
works. The area of MNI in Credit-Based mode is smaller
than other works. The area of proposed SNI is
approximately smaller than [18-19-29], and finally bigger
than [22-25]. As we also can show then the power
consumption of Handshake mode is approximately the one
fourth of the Xpipes NI power [22]. We can conclude that
our work outperforms the presented other works in terms
of power consumption.

The result of latency of the NI of [29] is between 8 and 10
cycles. The latency of [25] NI in injection and extraction
path is respectively 4 and 6. In [22], the latency of MNI
and SNI are respectively 6 and 10. The latency of
AETHEREAL NI [18] is between 4 and 10 cycles.
Finally, the Latency of [19] for SINGLE and BLOCK
transmission in NI in the injection path are 4 and 5 cycles,
respectively. Its latency in extraction path is 5 cycles. For
MNI in three modes, the latency in injection path for write
or read request is equal to 3 cycles. The latency of
extraction path is between 4 and 7. The latency results of
the proposed MNI and SNI presented in table 4 shows that
the proposed NIs outperforms all other architectures in
terms of latency in injection and extraction path for MNI
and SNI.

6. Conclusion

This paper presents new network interface architectures
that allow IP cores and NoC to be designed independently
from each other. The proposed NIs includes three
fundamental separations. The first separation is horizontal,
one which distinguishes the injection path from the
extraction path. The second separation is vertical, one
which distinguishes between the IP core side and the NoC
side. The last separation is between header and payload
memories. The proposed NIs allows the reduction of the
end to end latency and packets jitter between IP cores.
Three MNI and three SNI implementations were proposed
to study the impact of flow control in terms of cost and
performance and to prove that if we change the network
part we need only to change the kernel part without
changing the shell part. It uses respectively Handshake 2
phase, Handshake 4 phase, and Credit-Based flow control.
The cost and performance of the proposed NIs are
evaluated in terms of area, power, speed, latency, jitter,
and throughput. We synthesized these NIs using standard
cells based design with ST 130nm CMOS technology
using four different libraries. The results demonstrate that
HDHS library permits to obtain better results than other
libraries in terms of area, power, and speed. The Credit-
Based flow control permits to obtain the best performance
in terms of area, power, latency, jitter, and throughput.
The 2 and 4 phase’s implementation allow obtaining the
best speed compared to the credit based implementation.
We present an instance of ASIC design of NI that uses
4phase flow control and synthesized by the High Speed
library, which shows that the cost of implementing our NI
in hardware is small (0.057mm2 after layout in a 130nm
technology, running at 1 GHz and consume about 18mW).
A comparative study has been conducted with other
works .The obtained results show that the proposed NIs
outperforms other works in terms of latency and power.
The long-term objective is to develop a tool that

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 481

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

automatically generates a specific application of NI which
accepts as inputs the IP core interface
specifications(OCP,AHB,AXI,DTL) and NoC parameters
like (flow control, routing algorithm, flit width, queuing
technique,..).

References
[1] J. Liang, S. Swaminathan, and R. Tessier, “ASOC: a scalable,

single chip communication architecture”, 9th International
Conference on Parallel Architectures and Compilation
techniques, 2000, pp. 37-46.

[2] W.J. Dally, “Virtual channel flow control,” IEEE Trans. on
Parallel and Distributed Systems., Vol.3, No. 2, 1992, pp.
194-205.

[3] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual
channels in networks on Chips: Implementation and
evaluation on Hermes NoC”, in SBCCI, 2005, pp. 178-183.

[4] L. Benini, and D.G. Micheli, “Network on Chips: A New
SoC paradigm,” IEEE Computer., Vol.35, No. 1, 2002, pp.
70-78.

[5] S. Kumar, A. Jantsch, J.P. Soininen, M. Forsell, M. Millberg,
J. Oberg, K. Tiensyrja, and A. Hemani, “A Network on Chip
Architecture and Design Methodology”, in IEEE Computer
Society Annual Symposium on VLSI, 2002, pp. 117-124.

[6] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A.A.
Jerraya, “A Generic Wrapper Architecture for Multi-
Processor SoC Cosimulation and Design”, in CODES, 2001,
pp. 195-200.

[7] M.T. Rose, The Open Book: A practical Perspective on OSI,
Prentice Hall, 1990, Upper Saddle River, NJ, USA.

[8] K. Keutzer, A.R. Newton, J.M. Rabaey, and A.S. Vincentelli,
“System-level design: Orthogonalization of concerns and
Platform-based design,” IEEE Trans. On CAD of Integrated
Circuits and Systems, Vol. 19, No 12, 2000, pp. 1523-1543.

[9] M. Sgroi, M. Sheets, M. Mihal, K. Keutzer, S. Malik, J.
Rabaey, and V.A. Sangiovanni, “Addressing System on Chip
interconnect woes through communication based design”, in
DAC, 2001, pp. 667-672.

[10]Virtual Socket Interface Alliance., Virtual Component
Interface, draft specification, 1997, V 2.2,
htpp://www.vsia.com.

[11]OCP-IP Association., Open Core Protocol specification,
2003, Release 2.0, htpp://www.ocpip.org.

[12]ARM Corporation. AMBA AHB Protocol specification,
Version 2.0, 1999, htpp://www.arm.com.

[13]ARM Corporation. AMBA AXI Protocol specification,
Version 1.0, 2004,htpp://www.arm.com.

[14] E. Salminen, A. Kulmala, and T.D. Hamalainen, “Survey of
Network-on-Chip Proposals”, OCP IP association white
paper, 2008.

[15] P. Bhojwani, and R. Mahapatra, “Interfacing cores with on
chip packet switched Networks”, in VLSI, 2003, pp.382-387.

[16] A. Baghdadi, D. Lyonnard, N. Zergainoh, and A.A. Jerraya,
“An efficient architecture model for systematic design of
application-specific multiprocessor SoC”, in DATE, 2001,
pp. 55-62.

[17] D. Lyonnard, S. Yoo, A. Baghdadi, and A.A. Jerraya,
“Automatic generation of application specific architecture for

heterogeneous multiprocessor System on Chip”, in DAC,
2001, pp. 518-523.

[18] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, and
P. Wielage, “An efficient on-chip network interface offering
guaranteed services, shared memory abstraction, and flexible
network configuration”, in DATE, 2004, pp. 878-883.

[19] E.L. Seung, H.B. Jun, S.Y. Yoon, and N. Bagherzadeh, “A
Generic Network Interface Architecture for a Networked
Processor Array (NePA),” ACS, Lecture Note in Computer
Sciences, 2008, pp. 247-260.

[20] A. Adriahantenaina, H. Charlery, A. Greiner, and L.
Mortiez, “SPIN: A scalable, packet switched, on-chip micro
network”, in DATE, 2003, pp. 70-73.

[21] B. Attia, W. Chouchene, A. Zitouni, N. Abid, and R.
Tourki, R., “Design and implementation of low latency
network interface for Network on Chip”, in IEEE
International Design & Test Workshop, 2010, pp. 37-42.

[22] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi,
and G. De Micheli, “Xpipes Lite: A Synthesis Oriented
Design Library for Networks on Chips”, in DATE, 2005, pp.
1188-1193.

[23] B. Attia, A. Zitouni, and R. Tourki, “Design and
implementation of network interface compatible OCP for
packet based NoC”, in IEEE International Conference on
Design and Technology of Integrated Systems on Nanosacale
Era, 2010, pp. 1-8.

[24] B. Attia, A. Zitouni, N. Abid, and R. Tourki, “A Modular
network interface adapter design for OCP compatibles
NoCs,” International Journal of Computer and Network
Security (IJCNS), Vol. 1, No 2,pp 101-109.

[25] T. Bjerregaard, S. Mahadevan, R.G. Olsen, and J. Sparso,
“An OCP Compliant Network Adapter for GALS based SoC
Design Using the MANGO Network-on- Chip”, in SoC,
2005, pp. 171-174.

[26] A. Ferrante, S. Medardoni, and D. Bertozzi, “Network
Interface Sharing techniques for Area Optimized NoC
Architectures”, in DSD, 2008, pp. 10-17.

[27] B. Attia, W. Chouchene, A. Zitouni, and R. Tourki,
“Network interface Sharing for SoCs based NoC”, in
International Conference on Communications, Computing
and Control Applications, 2011, pp. 1-6.

[28] B. Attia, W. Chouchene, A. Zitouni, N. Abid, and R.
Tourki, “A Modular Router Architecture Design For
Network on Chip”, in 8th International Multi-Conference on
Systems, Signals and Devices, 2011, pp. 1-6.

[29] Y.L. Lai, S.W. Yang, M.H. Sheu, Y.T. Hyang, H.Y. Tang,
and P.Z. Huang, “A High-Speed Network Interface Design
for Packet-Based NoC”, in ICCCS, 2006, pp. 2667-2671.

[30] S. Felperin, P. Raghavan, and E. Upfal, “A theory of
wormhole Routing,” IEEE Trans. on Computer, Vol. 45, No
6, pp. 704-713.

[31] D. Sylvester, and K. Keutzer, “Impact of small process
geometries on micro architectures in systems on chip,” in
proceedings of the IEEE., Vol. 89, No 4, pp. 467-489.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 482

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

