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Abstract 

Load Balancing (LB) has been an increasingly important 
issue for handling computational intensive task in a grid 
system. By developing strategies that can schedule such 
tasks to resources in a way that balance out the load, the 
total processing time will be reduced with improved 
resource utilization. In this paper, an Enhanced Genetic 
Algorithm (EGA) is proposed for achieving task 
scheduling with load balancing. The simulation results 
show that proposed algorithm yields better performance 
when compared with other traditional heuristic 
approaches. 
Keywords: Load Balancing, Task Scheduling, Genetic 
Algorithm, Grid. 
 
1. Introduction 

 
Grid computing environment [15] has become a cost 
effective and popular choice to achieve high performance 
and to solve large scale computation problems. Grid 
computing involves coupled and coordinated use of 
geographically distributed resources for purposes such as 
large scale computation and distributed data analysis. 
Task scheduling [4] and load balancing [16] are key grid 
services, where issues of load balancing represent a 
common concern for most grid infrastructure developers. 
In fact, it would be inaccurate to say that the computing 
power of any system increases proportionally with the 
number of resources involved. Care should be taken so 
that resources do not become overloaded and some other 
stays idle. In general, load balancing algorithms can be 
roughly classified as centralized or decentralized in terms 
of location where the load balancing decisions are made.  

A load balancing scheme usually consists of 
three phases: information collection, decision making and 
data migration. During the information collection phase, 
load balancer gathers the information of workload 
distribution, state of computing environment and detects 
whether there is load imbalance. The decision making 
phase focuses on calculating an optimal data distribution, 
while the data migration phase transfers the excess 
amount of workload from overloaded resource to under 

loaded ones. In the past decades, a lot of research has 
focused on the development of effective load balancing 
algorithms for grid computing environment [1]. To make 
effective use of tremendous capabilities of the 
computational resources distributed within the grid 
environments and maximize the resource utilization, 
efficient task scheduling algorithms are required [11] 
[13]. Task scheduling algorithms are commonly applied 
by the grid manager to optimally dispatch the task to the 
grid resources [9] [14]. 

Decision about the assigning of tasks to the resources 
and finding the best match between the tasks and 
resources is NP-complete problem [2] [3]. This paper 
proposes a new task scheduling algorithm to maximize 
the utilization of grid resources. The algorithm uses 
genetic heuristic and searches the possible couples of the 
tasks and resources to find the best matching between 
them.  

The rest of the paper is organized as follows: Section 2 
presents related work and our motivation. Section 3 
presents the system model. Section 4 describes in detail 
the design of the proposed algorithm. In Section 5, the 
performance of proposed algorithm is compared with 
other traditional heuristic approaches in a series of 
simulations. Finally, this paper is concluded in Section 6.  

 
2. Related Work 
 
A lot of research had already been done in the field of 
distributed environment related to load balancing. Due to 
some specific parameters of grid environments such as 
relatively high communication costs between resources, 
most of previously given scheduling and load balancing 
algorithms are not applicable to these systems [7] [8]. 
Therefore, there have been ongoing attempts to propose 
new scheduling algorithms, especially within 
heterogeneous distributed systems and grid environments 
[12] [13]. Some of these works are discussed below 
briefly.  
      [6] presented Min_min algorithm in which minimum 
completion time of each task with respect to all resources 
is computed. Then the task having overall minimum 
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completion time is selected and assigned to the 
corresponding resource. The mapped task is removed and 
process is repeated until the remaining tasks are mapped. 
[6] also presented Max_min algorithm in which 
minimum completion time of each task with respect to all 
resources is computed. Then the task having overall 
maximum completion time is selected and assigned to the 
corresponding resource. The mapped task is removed and 
process is repeated until the remaining tasks are mapped. 
     In [7], authors have presented an algorithm (QoS 
guided Min_min) which schedules tasks requiring high 
bandwidth before the others. Therefore, if the bandwidth 
required by different tasks varies highly, it provides better 
results than the conventional Min_min algorithm. 
Whenever the bandwidth requirement of all the tasks is 
almost same, the QoS guided Min_min algorithm act 
similar to the Min_min algorithm. [8] proposed a new 
algorithm called RASA. RASA uses the advantages of 
both Min_min, Max_min algorithm. To achieve this, 
RASA firstly estimate the completion time of the tasks on 
each of the available resources, and then applies the 
Max_min and Min_min algorithms alternatively. 
Experimental results show that RASA is better in 
comparison with both Min_min and Max_min algorithms 
within grid environments. 
      Wang et al. [10] have presented a genetic-algorithm 
based approach to dispatch and schedule subtasks within 
grid environments. Subtasks are produced from 
decomposition of tasks in grid manager and they should 
be scheduled appropriately. The genetic algorithm based 
approach separates the matching and scheduling 
representations and provides independence between the 
chromosome structure and the details of the 
communication subsystems. Furthermore, the algorithm 
considers the overlap existing among all computations 
and communications that obey subtask precedence 
constraints. The simulation task presented in [10] for 
small-sized problems shows that the genetic algorithm 
based approach can found the optimal solution for these 
types of problems. [5] [14] also presented genetic based 
approach to find the optimal schedule. In [16], authors 
proposed a solution based upon CPU queue length as the 
load optimization criteria.  
   
 
3. System Model 
 
We have proposed a model in which grid sites are 
clustered into regional grids around a set of meta-
schedulers in terms of network transfer delay and meta-
schedulers are organized in a fully decentralized fashion 
as shown in Fig. 1.  

 

      Meta-Scheduler 
Task Submission 

Region-1 

Meta-Scheduler 

Region-2 

      Meta-Scheduler 

Region-3 

Task Submission 

User 

Grid Site 

User 

User 

 
Fig. 1 Decentralized Grid Model. 

The user will submit their tasks to the meta-scheduler 
which select feasible resources from its region for these 
tasks and finally generate task-to-resource mapping using 
Enhanced Genetic Algorithm. 

4. Proposed Algorithm 
 
The main objective of proposed algorithm is to achieve 
maximum resource utilization and a well-balanced load 
among all resources. To achieve this objective, it will 
consider Makespan value which represents the latest 
completion time when all tasks involved are considered 
together instead of looking for an earliest completion time 
for each task individually. 
    The EGA is designed based on the standard GAs. The 
method requires an encoding scheme which can represent 
all legal solutions to the optimization problem. Any 
particular solution is uniquely represented by a particular 
chromosome (or schedule). Chromosomes are 
manipulated in various ways by applying two genetic 
operators until the termination condition is met. In order 
for this manipulation to proceed in the right direction, a 
quality function called fitness function, is required. In this 
section we present an in-depth discussion on EGA by 
enumerating several major points involved. The notations 
used in the description of EGA are illustrated in Table 1. 
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Table 1: Notations Used 

Notation Meaning 

m No. of Tasks 
n No. of Resources 
S No. of schedules 
I No. of iterations 

etc( i, j ) Estimated time of completion of 
Task i on Resource j 

M_Span( i ) Make span of ith schedule 
B_Time( i, j) Busy time of ith resource during jth 

schedule 
R(i,j,k,t) ith Resource during jth schedule will 

run kth task for time t units 
Ut( i, j ) Utilization value of ith resource 

during  jth schedule 
A_Ut( i ) Average resource utilization value of 

ith schedule 
Load( i, S ) Determine the number of tasks 

allocated to resource i in schedule S 
A_Task( i, j ) Allocate a new task as ith entry  in 

resource j 
T_Task( i, j ) Transfer task from resource i to 

resource j 
Entry( i, j ) ith entry of jth schedule 

Size(i) Size of ith schedule 
 
4.1 Encoding Mechanism (Generation of 
Population) 
The population is generated consisting of S schedules in 
which 1st and 2nd schedules are generated using optimal 
strategies and remaining schedules on random basis. The 
generation of any schedule deploys a coding scheme 
satisfying following properties: 

i) Size( i ) = m for 1≤ i ≤ S 
ii) Entry (i, k) = <Ti, Rj, etc (Ti, Rj )> for  

1≤ i ≤ m, 1≤ k ≤ S, 1≤ j ≤ n  
Let these schedules are denoted as S1, S2, …, SS. 
 
4.2 Fitness Function  
The main objective is to get task assignments that will 
achieve well balanced load among all resources. The 
fitness function will measure the performance of 
schedules in relation to above said objective. To achieve 
maximum load balance, we first introduce the concept of 
average resource utilization. The average resource 
utilization is defined as the sum of all resources 
utilization divided by total number of resources. So, 
expected utilization of each resource based upon task 
assignment is calculated. This can be achieved by 
dividing the completion time of last task at each resource 
by the makespan. For each schedule Sj, calculate the busy 
time of all resources, makespan, utilization value of all 
resources and average utilization value as: 
B_Time (i, j) = maxt{R (i, j, k, t)}  
                        for 1≤ i ≤ n, 1≤ j ≤ S, 1≤ k ≤ m           

                                

M_Span ( j ) = max {B_Time (i, j)}       
                              

Ut (i, j) = B_Time (i, j)/M_Span ( j )         
                    n 
A_Ut ( j ) = ∑ Ut (i, j)/n         
                   i=1 

 Now arrange the schedules according to decreasing value 
of fitness function (A_Ut) to obtain new population S11, 
S21, …, SS1  i.e. A_Ut (S11) ≥A_Ut (S21) ≥A_Ut (S31) ≥ 
……..≥A_Ut (SS1). 

 
4.3 Genetic Operators  
Specialized crossover and mutation operators are 
developed for use with three-tuple coding scheme. The 
working of these operators is described below. 

Crossover Operator: A single cross over operator is 
applied on existing population using following steps: 

A) Generate a new population consisting of S schedules 
out of which second half schedules OSS/2+1,  OSS/2+2, …, 
OSS are created as given below. 

             OSk = S(k-S/2)1   for S/2+1 ≤ k ≤ S     
B) Generate remaining schedules in the following 

manner: 
   a) Select randomly any two resources Ri and Rj which 

will act as base of crossover.  
   b) Apply following computations using the base values: 
      i) Start with the first schedule S11 containing entries 

of the form <Tk, Rj , etc(Tk, Rj )>, on interchanging 
resources Ri, Rj in all entries of schedule we get: 

                Tuple before crossover: < T1, Ri, etc (T1, Ri)>, 
                                                     < T2, Rj, etc (T2, Rj)> 
                Tuple after crossover:   < T1, Rj, etc (T1, Rj)>,  
                                                    < T2, Ri, etc (T2, Ri)> 
     ii) The above step (i) is repeated for schedules S21,…., 

SS/21 to obtain next S/2 schedules represented as 
COS1 ,COS2 ,…,COSS/2 i.e. 

                 Schedules before crossover: S11, S21, …, SS/21 
                 Schedules after crossover:   COS1 , …,COSS/2  

Mutation Operator: This operator is modified to 
balance load among various resources in term of 
ensuring that busy time of each resource in a given 
schedule approaches to make span of schedule i.e.   

            B_Time (i, j) ≈ M_Span ( j )   i є (1, 2,…, n) and  
                                           j є (COS1 , COS2 ,…, COSS/2)  
Consider the population consisting of S/2 schedules 
COS1, COS2 …COSS/2 generated after implementation of 
crossover operator. 
i) Start with the first schedule COS1 having entries of the 

form <Tk, Rj , etc(Tk, Rj )> and perform following steps: 
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   a) Calculate load of each resource and allocated tasks in 
   a schedule in following manner: 
      Load (j, COS1) = Count (<Tk, Rj , etc(Tk, Rj )> where 
             1 ≤ j ≤ n, <Tk, Rj , etc(Tk, Rj )> є COS1 
            And Count (*) is a function which counts the   

tuples having second entry as Rj  
     A_Task (i, j) = k iff <Tk, Rj , etc(Tk, Rj )> є COS1  
                                for 1 ≤ i ≤ Load (j, COS1)  

b) Find resources Rmin, Rmax having minimum and 
maximum load. 

          Rmin = min {Load (j, COS1)}   
                1 ≤ j ≤ n  

       Rmax= max {Load (j, COS1)}    
                1 ≤ j ≤ n  
c)  Transfer a task from Rmax to Rmin so that a portion of 
load gets balanced. 

  T_Task (Rmax , Rmin) = A_Task (Load (Rmax, COS1), Rmax)   
d) New load values and task assignment at imbalance 
resources are: 

          At Rmin: Load (Rmin, COS1) = Load (Rmin, COS1) + 1 
             A_Task (Load (Rmin, COS1), Rmin) =   

A_Task (Load (Rmax, COS1), Rmax)    
     At Rmax: Load (Rmax, COS1) = Load (Rmax, COS1) – 1 
e)  Repeat steps b) to d) until the load is balanced. 

ii) The above step (i) is repeated for schedules 
COS2,…,COSS/2 to obtain new S/2 schedules. 

         Schedules before mutation: COS1 , COS2 …COSS/2                  
         Schedules after mutation:   OS1, OS2 …OSS/2 
The schedules generated after implementation of mutation 
operator are combined with OSS/2+1, OSS/2+2 …OSS to 
produce a new population of S schedule OS1, OS2 
,…,OSS. Find fitness value of each schedule OSj and then 
arrange these schedules of current population according to 
decreasing value of fitness function. After applying 
crossover and mutation operators I number of times, the 
final population comprising of S schedules is generated. 
 
5. Experimental Results 
In this section, we present some experiments that have 
been carried out to test the efficiency and effectiveness of 
proposed algorithm. The functional code is implemented 
using simulator built in C language on an Intel core 2 
duo, 2 GHz window based laptop. The performance of 
EGA is tested on two datasets which differ from one 
another on the basis of expected completion time of tasks 
i.e. DS1 (ETC varies from 100 to 200 units) and DS2 (ETC 
varies from 100 to 500 units). The following assumptions 
are devised for simulation model: 
i) Tasks are mutually independent i.e. there is no 
precedence constraint between tasks. 
ii) Tasks are computationally intensive and 
communications overhead are negligible. 

iii) Each resource has different computational capability 
i.e. heterogeneous environment. 
In order to determine whether EGA can search a near 
optimal schedule for a large number of tasks or resources, 
the simulation was performed in three scenarios.  
 
5.1 Scenario 1 (Effect of load in terms of tasks on 
average resource utilization) 

   The number of tasks is varied from 25 to 300 while 
keeping other simulation parameters as: n=30, S=40, 
I=500. The average results of execution of the algorithms 
on different data sets are demonstrated in Table 2, Fig. 2 
and Fig. 3. 

 
Table 2: Average Resource utilization on different datasets under scenario 1 
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Fig. 2 Effect of load variation on DS1. 

 

No. 
of 

Tasks 

DS 1 DS 2 

EGA 
Max_
min 

Min_
min EGA 

Max_
min 

Min_
min 

25 .8091 .7818 .659 0.7785 0.6786 0.62 
45 .9143 .7712 .7238 0.7927 0.6885 0.5656 
60 .9655 .808 .8528 0.8906 0.7992 0.6979 
90 .9823 .8333 .8771 0.9477 0.8861 0.7363 
100 .9674 .8919 .8024 0.9272 0.887 0.7862 
200 .9670 .9366 .8973 0.9383 0.9173 0.839 
300 .9718 .9471 .9423 0.9634 0.9502 0.8934 
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Fig. 3 Effect of load variation on DS 2. 
 

5.2 Scenario 2 (Effect of scalability on average 
resource utilization) 
The number of resources is varied from 10 to 40 while 
keeping other simulation parameters as: m=200, S=40, 
I=500. The average results of execution of the algorithms on 
different data sets are demonstrated in Table 3, Fig. 4 and 
Fig. 5. 

 
Table 3: Average Resource utilization on different datasets under   scenario 2 
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Fig.4 Effect of scalability on DS 1. 
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                    Fig. 5 Effect of scalability on DS 2. 
 
5.3 Scenario 3 (Effect of load and scalability on 
average resource utilization) 
 
The number of tasks is varied from 15 to 200 and resources 
are varied from 5 to 45 while keeping other simulation 
parameters as: S=40, I=500. The average results of 
execution of the algorithms on four different data sets are 
demonstrated in Table 4, Fig. 6 and Fig. 7.  

Table 4: Average Resource utilization on different datasets under scenario 3 

 

No. 
of 

Reso
urces 

DS 1 DS 2 

EGA 
Max_
min 

Min_
min EGA 

Max_
min 

Min_
min 

10 .9885 .9767 .971 .99 .9855 .9423 

15 .9844 .965 .938 .98 .9725 .9413 
20 .9864 .9517 .9533 .961 .9546 .8811 

25 .9858 .9557 .9255 .9719 .9491 .8715 

30 .9670 .9366 .8973 .9383 .9173 .8391 
35 .9734 .9062 .9277 .9368 .911 .8575 

40 .9780 .9004 .8733 .9302 .9184 .843 

 

No. of 
Resou
rces 

No. 
of 

Tasks 

DS 1 DS 2 

EGA 
Max_
min 

Min_
min EGA 

Max_
min 

Min_
min 

5 15 0.9867 0.8917 0.8683 0.9823 0.8549 0.7522 

5 25 0.97 0.9443 0.8738 0.9588 0.8932 0.8611 

10 30 0.987 0.9067 0.9143 0.9375 0.8431 0.7528 

10 50 0.9857 0.9169 0.9276 0.9667 0.9303 0.8183 

15 45 0.9754 0.827 0.8133 0.9439 0.8486 0.7801 

15 75 0.9738 0.9035 0.9138 0.9504 0.8873 0.8053 

20 60 0.9756 0.8466 0.8722 0.9432 0.8642 0.7532 

20 100 0.9895 0.919 0.8746 0.95 0.9089 0.8486 

25 150 0.9814 0.928 0.9261 0.9557 0.9363 0.8874 

45 200 0.9581 0.9115 0.8732 0.9133 0.8863 0.8324 
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Fig. 6 Effect of load and scalability on DS 1. 
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        Fig. 7 Effect of load and scalability on DS 2. 

 
6. Conclusions 
Load balancing leads to achieve minimum waiting time, 
improves the response time and resource utilization rate. 
The problem of load balancing in grid environment is 
directly related to allocation of tasks among 
computational resources available in the system. In this 
paper we have proposed a genetic based algorithm for 
load balancing across resources for computational 
intensive tasks on grid environments. From the simulation 
results, it is concluded that the proposed algorithm has 
been effective under various load conditions and in terms 
of scalability. 
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