

Enhancement of User’s Call Logging facilities using Push DEnhancement of User’s Call Logging facilities using Push DEnhancement of User’s Call Logging facilities using Push DEnhancement of User’s Call Logging facilities using Push Down own own own
Automata (PDA) with Real Time Automata (PDA) with Real Time Automata (PDA) with Real Time Automata (PDA) with Real Time Constraint Notation (RTCN) Constraint Notation (RTCN) Constraint Notation (RTCN) Constraint Notation (RTCN)

Vivek Kr. Singh1, S. P. Tripathi 2, J. B. Singh3 and R. P. Agarwal4

 1 School of Computer Science & Information Technology, Shobhit University, Research Scholar

Meerut, U.P. 250110, India

2 Department of Computer Science & Engineering, Gautam Buddh Technical University, IET

Lucknow, U.P. 226021, India

3 School of Computer Engineering & Information Technology, Shobhit University, Professor

Meerut, U.P. 250110, India

4 School of Computer Engineering & Information Technology, Shobhit University, Professor

Meerut, U.P. 250110, India

Abstract
This paper highlights the use of Push – Down Automata (PDA)

in storing and maintaining the call logs. The special feature about

this paper is to maintain incoming call record from the different

mobile service provider in a mobile in clustered way to the user.

It focuses on real time constraint notation being applied to the

push down automata for formal verification of the model.

Keywords: Push Down Automata (PDA), Object Constraint

Language(OCL)

1. Introduction

The focus of this paper is to provide a framework that can

record the calls coming to a particular mobile service

provider with special characteristics of logging the service

provider of each call. In order to achieve this goal we have

identified two basic steps, the first step deals with the

development of Ubiquitous computing environment as the

calls coming will be from various sources. Secondly,

development of push down automata model for call logs

database management system. Since OCL [5] is being

applied on Object Oriented Language [2] we will be

representing the entire communication framework into

Object Oriented Language. In database application it is

beneficial as a part of database schema.

2. An Introduction to Push Down Automata
(PDA):
A Push Down Automata (PDA) is finite automata with

auxiliary storage devices called stacks. A pushdown

automaton (PDA) may be pictured as a finite automaton

with the stack or pushdown store onto which symbols

may be ‘pushed’ or from which they may be ‘popped’

Fig. 01 : Push Down Automata Model

2.1 Transitions in Pushdown Automata

A Transitions in Push Down Automata (PDA) is depends

on

1. The current state of the machine;

2. The symbol read from the input tape;

3. The top symbol on the stack.

Outcomes of the transition are

1. After reading the input alphabet current state may

be transit to new state or on same state (loop

condition)

2. On the top of the Stack new Stack Alphabet may

be Pushed or current Top of the Stack Alphabet

may be popped

3. No change on the Top of the Stack

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 216

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2.2 Formal Definition of Pushdown Automata (PDA)

A Pushdown Automata (PDA) M is represented by seven

tuples as (Q, Σ, Γ, δ, q0, Z0, F) where

1. Q is finite set of states

2. Σ is finite set of input alphabets

3. Γ is finite set of Stack alphabets

4. q0 is the initial state and q0 Є Q

5. F is the finite set of final states and F Є Q

6. δ is the Transition Function defined as

δ: Q x (Σ ⋃ ε) x Γ ⇾ (Q x Γ
*
)

Transtion Fuction δ can defined the moves as two types :

First type of moves in which PDA reads one input symbol

from the input tape. Let q Є Q, a Є Σ and Z Є Γ and

δ(q, a, Z) = {(q1, γ1), (q2, γ2), (q3, γ3),…, (qm, γm)} …. (1)

where q1, q2, q3,….. qm Є Q and γ1, γ2, γ3, … γm Є Γ
*

Equation (1) can be defined as : PDA is in state q, reads

input alphabet a from the input tape and Z is the top

symbol of the stack, PDA can change its state to any one of

q1, q2, q3, …. , qm and replace top of the stack by γ1 , γ2, γ3 ,

… , γm i.e. if the next state is q1, Z will be replaced by γ1, if

the next state is q2, Z will be replaced by γ2 …. and so on.

Second type of moves in which no input symbol is read

from the input tape i.e. existence of null string (ε) then in

this case Equation (1) can be represented as

δ(q, ε, Z) = {(q1, γ1), (q2, γ2), (q3, γ3),…, (qm, γm)} …. (2)

2.3 Instantaneous Description (ID) :

A configuration of PDA at a given instant of time is called

instantaneous description (ID), is defined to be a member

of Q X Σ X Γ
*
 : The first component is the state of the

machine, the second is the portion of the input yet to be

read and third is the contents of the stack i.e. for every

(q, γ) Є δ(p, a, Z) and for every x Є Σ
*
 and α Є Γ

*
 we

define

(p, ax, Zα) ⊢ (q, x, γa)

2.4 Acceptance by PDA through Empty Stack:

Let a string w is accepted by Empty Stack or Null Stack by

M if and only if

(q0, w, Z0) ⊢ (q, ε, ε) for some q Є Q

A Push Down Automata accepted by empty stack is

represented as :

M = {Q, Σ, Γ, δ, q0, Z0, Φ }

3. An Introduction to Object Constraint
Language (OCL) & Real Time Constraint
Notation (RTCN):

The Object Constraint Language (OCL) is a modeling

language with which we can build software models. It is

defined as a standard "add-on" to the Unified Modeling

Language (UML), the Object Management Group (OMG)

standard for object-oriented analysis and design. Every

expression written in OCL relies on the types (i.e., the

classes, interfaces, and so on) that are defined in the UML

diagrams. The use of OCL therefore includes the use of at

least some aspects of UML.

OCL expressions can be used anywhere in the model to

indicate a value. A value can be a simple value, such as an

integer, but it may also be a reference to an object, a

collection of values, or a collection of references to

objects. An OCL expression can represent, e.g., a boolean

value used as a condition in a statechart, or a message in an

interaction diagram. An OCL expression can be used to

refer to a specific object in an interaction or object

diagram.

An outstanding characteristic of OCL is its mathematical

foundation. It is based on mathematical set theory and

predicate logic, and it has a formal mathematical

semantics.

A real-time constraint notations are used in object-oriented

language that provide sufficient real-time specifications as

one may expect from a real-time language, while

integrating these specifications within the object-oriented

tapestry [6,7,8,9]. The significant aspects in object

oriented real-time modeling can be identified as:

1. The use of inheritance and redefinition of real-time

constraints through the inheritance hierarchy and extension

of the inheritance of the state and behavior of a class to

include the definition of temporal constraints.

2. The reuse of the temporal constraint specifications

through the inheritance mechanism and across class

boundaries. These temporal constraints can be referenced

to formulate new constraints in a consistent manner in

classes.

3. Time-abstraction seems like a natural approach to

specifying timing constraints, where the constraint is

defined at the class definition and then associated with the

class implementation. The temporal behavior of an object

is made independent of the object’s actual implementation

by relating the temporal constraint to a labeled code

block..[14]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 217

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4. Proposed Work: Push Down Automata
Model for Mobile Call Logs Storage in
Clustered way:

Working of Push Down Automata Model for Mobile Call

Logs Storage in Cluster way can be represent by the flow

chart as shown in Fig. 2

Fig. 2 : Flow Chart for Working of Push Down Automata Model

for Mobile Incoming Call Logs Storage in Cluster way

Flow Chart for working of Push Down Automata Model

for Mobile Incoming Call Logs Storage in Cluster way is

divided into following steps:

Step1: Occurrence of Incoming Call on user mobile

through a Mobile Service Provider

Step2: Call received by the User

Step3: Call record updating process by STACK PUSH

operation

Step4: Check for STACK condition : (FULL / NOT

FULL)

Step5: Two cases may occur:

IF YES: Call record clustering process start by STACK

POP operation

IF NO : GO TO STEP 3

Step6 : User View : Clustered view of incoming call

records of different Mobile Service Providers

Steps 01 to 06 as mentioned above can be modeled with

the help of Push Down Automata. We are proposed a

model for storage of Mobile Call logs for different Mobile

services in cluster way for a summary to know how many

calls are received by various types of mobile service.

To achieve this goal first we design the Push Down

Automata (PDA) as

MMOBILE = {QMOBILE, ΣMOBILE, ΓMOBILE, δMOBILE, q0, Z0, Φ }

QMOBILE : is the set of states for maintaining the call logs

from different mobile service provider and it is represented

by two states as

qpush : is the state when the incoming calls are received by

the user and stack alphabets assigned to different service

provider is PUSHED on the stack and at that time stack is

not FULL i.e. (STACK ≠ FULL)

qpop : is the state when the STACK of call log memory is

full (STACK = FULL) and user is the process to get a

clustered view of call records for incoming calls from

different mobile service providers with the help of POP

operation of STACK alphabets allocated to different

mobile service provider calls

ΣMOBILE : is finite set of input alphabet for incoming calls

for different mobile service provider i.e.

ΣMOBILE = {a, b, c, d} where

a represents : BSNL service provider

b represents : VODAPHONE service provider

c represents : RELIANCE service provider

d represents : IDEA service provider

ΓMOBILE : is finite set of STACK alphabets for incoming

calls for different mobile service providers i.e.

ΓMOBILE = {ZBSNL, ZVODAPHONE, ZRELIANCE, ZIDEA, Z0}

For STACK operation (PUSH) when a call received from

different mobile service provider is represented as:

 ZBSNL : ZBSNL stack alphabet is pushed on the STACK

when a call is received from BSNL service provider

ZVODAPHONE : ZVODAPHONE stack alphabet is pushed on the

STACK when a call is received from VODAPHONE

service provider

ZRELIANCE : ZRELIANCE stack alphabet is pushed on the

STACK when a call is received from RELIANCE service

provider

ZIDEA : ZIDEA stack alphabet is pushed on the STACK when

a call is received from IDEA service provider

q0 : is the initial state when mobile phone is just switched

ON and transit to qpush when the first call is received after

the mobile is switched ON

Z0 : is the initial STACK alphabet

δMOBILE : is the Transition Function to update the STACK

when different types of calls are received from different

mobile service providers and is defined as:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 218

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

δMOBILE : Transition Function is defined as

QMOBILE x (ΣMOBILE) x ΓMOBILE ⇾ (QMOBILE x ΓMOBILE
*
)

4.1 Push Down Automata (PDA) Transitions for

Incoming Call Updation:
Fig. 3 represents the incoming call updation by PUSH

operation according to call received through a specific

Mobile Service Provider.

Fig. 3 : Incoming Call Record Updation

According STACK record as mentioned in Figure(3),

sequence of incoming calls are :

BSNL(a), VODAPHONE(b), BSNL(a), IDEA(d),

DOCOMO(c), BSNL(a)

Then according to above sequence of call received the

input string identified on the input tape is

abadca ………. (3)

PDA Transitions for input string as mentioned in (3) is :

1. δ(q0, a, Z0) = (qPUSH, ZBSNLZ0)

2. δ(qPUSH, b, ZBSNL) = (qPUSH, ZVODAPHONEZBSNL)

3. δ(qPUSH, a, ZVODAPHONE) = (qPUSH, ZBSNLZVODAPHONE)

4. δ(qPUSH, d, ZBSNL) = (qPUSH, ZIDEAZBSNL)

5. δ(qPUSH, c, ZIDEA) = (qPUSH, ZRELIANCEZIDEA)

6. δ(qPUSH, a, ZRELIANCE) = (qPUSH, ZBSNLZDOCOMO)

4.2 Instantaneous Description (ID) for Incoming

Call updation:

As per the rules Instantaneous Description (ID) for the

input string as mentioned in (3) is :

q0, abadca, Z0 ⊢ qPUSH, badca, ZBSNLZ0 ⊢ qPUSH, adca,

ZVODAPHONEZBSNLZ0 ⊢ qPUSH, dca, ZBSNLZVODAPHONEZBSNLZ0

⊢ qPUSH, ca, ZIDEAZBSNLZVODAPHONEZBSNLZ0 ⊢ qPUSH, a,

ZRELIANCEZIDEAZBSNLZVODAPHONEZBSNLZ0 ⊢ qPUSH, ε ,

ZBSNLZRELIANCEZIDEAZBSNLZVODAPHONEZBSNLZ0

4.2 Push Down Automata (PDA) Transitions to

generate Cluster view of Call Logs(Incoming)

when STACK = FULL:
Incoming call log updation, as shown in Figure (3), will

continue till STACK ≠ FULL. When the STACK = FULL

then transition for Cluster view generation is started

according to following steps:

Step 1: Suppose that as STACK = FULL then # symbol is

generated on the input tape and qPUSH is converted to qPOP

1. (qPUSH, #, ZBSNL) = (qPOP, ZBSNL)

2. (qPUSH, #, ZVODAPHONE) = (qPOP, ZVODAPHONE)

3. (qPUSH, #, ZRELIANCE) = (qPOP, ZRELIANCE)

4. (qPUSH, #, ZIDEA) = (qPOP, ZIDEA)

Step 2: It is assumed that when STACK = FULL that user

will not received any incoming call till the STACK is not

empty. In this case READ head will continue read #

symbol on the input tape and following transitions are

occur for the generation of Cluster view of incoming call

logs with the help of STACK POP operation as follows:

1. (qPOP, #, ZBSNL) = (qPOP, ε)

2. (qPOP, #, ZVODAPHONE) = (qPOP, ε)

3. (qPOP, #, ZRELIANCE) = (qPOP, ε)

4. (qPOP, #, ZIDEA) = (qPOP, ε)

According to incoming call sequence as shown in equation

(3), all POP operation are carried out as transition 1 to 4

mentioned above and clustered view will be generated as:

0

0.5

1

1.5

2

2.5

3

INCOMING CALL for abadca

BSNL

VODAPHONE

RELIANCE

IDEA

Fig. 4 : Cluster view of Incoming Calls

Fig. 4 shows that the cluster view of input string abadca

and can be interpreted as:

No. of BSNL calls : 03 (number of a’s in input string)

No. of VODAPHONE calls : 01 (number of b’s in input

string)

No. of RELIANCE calls : 01 (number of c’s in input

string)

No. of IDEA calls : 01 (number of d’s in input string)

Step 3: When Top of the STACK = Z0 it implies that all

the stack alphabets corresponding to different service

provider is popped out and Top of the STACK is Z0 then

state qPOP is transit to qPUSH and mobile set is ready to

receive incoming call. Step 3 condition in PDA model can

be completed with the help of transition:

1. (qPOP, #, Z0) = (qPUSH, Z0)

4.3 Verification Using Object Constraint

Language (OCL):
A constraint as given by Kleppe[11] is defined as

“restriction on one or more values of an object – oriented

model or system”. A restriction of the multiplicity of an

association can be expressed either directly by using

syntactical construct of Object Oriented Notation.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 219

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Basically three types of constraints can be classified in

Database Management System:

1. Implicit Constraint: An Implicit Constraint, which

represents an integrity rule applied on data models.

2. Explicit Constraint: An Explicit Constraint, which

represents the Business Rules.

3. Inherent Constraint: An Inherent Constraint, which

are specified in a schema but are assumed to hold by

the definition of relational model.

The order to apply constraint on the database we have used

OCL invariant on SQL Table consisting of details of the

Caller, his/her number and location. The transformation

pattern is given as:

Context : Session

Inv: for Incoming Calls

Inv: Self.Stack ⇾⇾⇾⇾ Empty()

Pre: Self.Stack = QMobile

Post: Self.Value = ΓMOBILE

Context : Record Call

Session.Record =

(if QPUSH! = a then ‘ZBSNL’ or

 b then ‘ZVODAPHONE’ or

 c then ‘ZRELIANCE’ else

 d then ‘ZIDEA’)

Context : Cluster View Generation

Session.Cluster View =

(if STACK = FULL then

qPUSH = qPOP

end if)

Session.READ =

(if Input string = abadca then

Count := 03 for BSNL and

Count := 01 for VODAPHONE and

Count := 01 for RELIANCE and

Count := 01 for IDEA

end if)

5. Conclusion
This paper focuses on the development of a feature in

mobile phone for user to view number of incoming calls in

cluster view to know how many calls are received from

different mobile service providers. This process can also

be implemented for outgoing calls & helps to mobile

service providers to analysis comparative calls rates from

different mobile service provider.

6. Reference:
[1] Bruce, K “A Pattern Language for Object RDBMS

Integration, Knowledge System

Group.”

[2] Dresden UML Tool Set,

http://www.st.inf.tu.dresden.de

[3] Melton, J “SQL’s Stored procedures ” A complete

guide, Morgan Kaufman, 1998

[4] M. Weiser, “The Computer for the Twenty – First

century” Scientific Aug 1991, pp 94 -101.

[5] Wanner; J & Kleppe, A: “The Object Constraint

Language”, Addison Wesley, 1999.

[6] Gligor, V. and Luckenbaugh, G., (1983) “An

Assessment of the Real-time Requirements for

Programming Environments and Languages”, Proceedings

of the IEEE Real-time System Symposium, Washington

DC., 3-19.

[7] Kligerman, E., and Stoyenko, A., (1986) “Real-time

Euclid: A Language for Reliable Real-time Systems”,

IEEE Trans. on Software Engineering, Vol. SE-12, No. 9,

Sept

[8] Pereira, C., (1993) “Putting OO to work: Results from

Applying the Object-Oriented Paradigm during the

Development of Real-time Applications”, Fifth Euromicro

Workshop on Real-time Systems Proceedings. Apr. 166-

170.

[9] Bihari, T., Gopinath, P., and Schwan, K.,

(1989)”Object-Oriented Design of Real-time Software”,

IEEE Software Trans., 194-201.

[10] Alexander P. Pons1 and Moiez A. Tapia2, “Real-time

Constraint Specification in Object-Oriented Languages”

[11] Anneke G. Kleppe, Jos Warmer: “The Object

Constraint Language: Precise Modeling with UML

(Addison-Wesley Object Technology Series)”

Acknowledgments

Vivek Kumar Singh is currently working as Assistant Professor in
the Department of I. T. at BBDNITM, Lucknow. He has over 11
years of teaching experience. He has done his B.Tech in
Computer Science & Engineering from Purvanchal University in
2001, M.Tech from U.P.Technical University, Lucknow in 2006, he
is pursuing his Ph.D. from Shobhit University, Meerut. He has
published numbers of papers in referred National journals. His
teaching areas are: Theory of Automata & Formal Language,
Design & Analysis of Algorithm & Computer Architecture

Dr. S. P. Tripathi is currently working as Professor in Department
of Computer Science & Engineering at I.E.T. Lucknow. He has
over 30 years of experience. He has published numbers of papers
in referred Journals.

Dr. J. B. Singh is currently working as Dean Students Welfare at
Shobhit University, Meerut. He has 38 years of teaching
experience and has published number of papers in referred
Journals.

Dr. R. P. Agarwal is currently working as Professor & Director in
School of CE&IT at Shobhit University, Meerut. He has 40 years
of teaching experience and has published number of papers in
referred Journals.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 220

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

