

An An An An Empirical Empirical Empirical Empirical Analysis of Defect Prone Design PatternAnalysis of Defect Prone Design PatternAnalysis of Defect Prone Design PatternAnalysis of Defect Prone Design Pattern

Mamoona Jalil1, Javed Farzand2 and Muhammad Ilyas3

 1Department of Computer Science and Information Technology, University of Sargodha

Sargodha, Pakistan

2Department of Computer Science and Information Technology, University of Sargodha

Sargodha, Pakistan

3Department of Computer Science and Information Technology, University of Sargodha

Sargodha, Pakistan

Abstract
Design patterns are problem-solution pairs that provide proven

solutions for commonly occurring design problems. They are

used to increase maintainability, reusability, comprehensibility

and code quality. However, some studies have indicated

relationship between design patterns and defects that doubts the

claimed benefits of design patterns. In this paper we present an

empirical study to evaluate the error proneness of design patterns.

We extract the design patterns from open source software and

map these patterns to post-release defects. Information on defects

is extracted from version control repositories and bug databases.

We have applied Mann-Whitney test to find the design patterns

that are more error-prone than others.

Keywords: Design Patter, Code Quality, Reusability,

Comprehensibility, Error-Prone Modules.

1. Introduction

Patterns have been developed in different discipline of

software engineering. Major objective of patterns is to

produce high-quality solutions by considering limitation of

time. Patterns yields towards reusability and support to

simplify analysis and design processes by choosing

existing solutions of different problems. Patterns can

simplify analysis and design processes by reusing existing

solutions of particular problems. A comprehensive

collection of patterns that are broadly used in software

analysis and design is design pattern [10].

Studies of Design patterns started in 1980’s [5] and gained

popularity in early 90’s [4]. Software design pattern have

become very popular in object oriented paradigm, as it

shows relationship and interaction between objects and

classes. This relationship or interaction do not cope the

final specification of objects and classes. Basic occurrence

of design pattern is to help out designers to keep focus on

different aspects like, How to interact with design, How to

improve and transfer knowledge through design patterns,

How to improve the software documentation, How to

encapsulate the experience, How to improve the common

vocabulary of software to reduce domain related barrier,

etc.[1][2][3].

A good quality design pattern mostly focuses problems of

object oriented software design and present a solution

which apparently improve (or proportional to) its quality

with respect to (aspects like) reusability, maintainability,

comprehensibility and flexibility to changes [6][7].

However, some common arguments regarding the use of

design patterns also often related to defects [8][9].

In this research, we have discussed different design

patterns and defects incorporated in those design patterns.

We performed a case study on different software projects.

During the study, we perform a comparative analysis

among different patterns and try to find out solution, that

which design pattern is more error prone with respect to a

particular scenario.

In this research, we have discussed different design

patterns and defects incorporated in those design patterns.

We have proposed an approach in which error-prone

design patterns are identified and extracted. For this

purpose, we have taken five open source systems and

among those, java files which contain bugs are observed

for pattern occurrence. Four design patterns have been

considered for evaluation; Singleton, Factory, Composite

and Adapter. We have analyzed that which design pattern

among pairs of patterns is likely to produce more errors

than its partner. Different hypothesis are established and

statistical tests are performed. It has been evaluated that

Adapter pattern is more error prone as compare to other

patterns.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 178

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The rest of the paper is organized as follows: Section 2

reviews the related work. In section 3, the proposed

framework is provided. Hypothesis studies are results are

covered in Section 4. The final section gives conclusion of

research work.

2. Related Work

Design pattern describe good solutions to commonly

recurring problems in software design [10]. Gamma et al.

[4] has described design patterns in details and classified

them on the basis of two parameters. The first criterion is

known as Purpose, which tells what a pattern does.

Patterns may have three kinds of purposes; creational,

structural and behavioral. The second criterion is called

Scope, which determines whether the pattern mainly

applies to classes or objects. Class patterns conduct inter-

relationships of classes and their sub-classes. These

patterns are based on inheritance that is why they are static

fixed at compile time [10][4].

Design pattern proposes good solutions to commonly

occurring problem in software design. During the

maintenance phase of software system, the correctness of

design of software system must be checked according to

some criteria. This is done because of checking that defects

exist in design and if they exist, corrective measures are

performed. Design pattern defects are poor or bad

solutions to mostly occurring problem in software design

[9].

Lerina et al. [7] has also highlighted design pattern defects.

Naouel Moha et al. have explained different types of

design defects. Design patterns defects contain problems at

different levels of granularity starting from architectural

problems i.e anti-patterns to low level problems i.e. code

smells [11][12]. An anti-pattern suggests that solution to

design problem generate negative or incorrect results.

They have explained the following different types of

design defects.

2.1 Intra-Class Design Defects

Intra-class design defects includes design defect concerned

with internal structure of a class. Methods with so many

invocations are error-prone and tough to maintain.

2.2 Behavioural Design Defects

It includes defects concerned with application semantics.

One more example of this kind of defects concern changes

in the system environment.

2.3 Inter-Class Design Defects

This classification contains design defect concerned with

external structure of classes and their relationships. All

design defects related to architecture belong to this

category, e.g. mixing of different algorithms within a

single data structure is a defect related to architecture.

On the other hand Gamma et al. [4] has classified defects

that tell the nature of design pattern defects as follows:

Creational design pattern defects: These patterns are

linked with creational design patterns, i.e. Abstract,

Factory, Builder, Singleton etc.

Structural design pattern defects: Structural design

pattern defects are linked with structural patterns including

Composite, Decorator, and Façade etc.

Behavioral design pattern defects: These patterns are

linked with behavioral patterns i.e. Command, Iterator and

Visitor etc.

There are four kinds of design pattern defects named

missing, in excess, deformed and distorted. In [13] they

distinguish among four kinds of design pattern defects.

• An approximate or deformed design pattern is a

design pattern that is not implemented properly

according to the GOF patterns but there is no error in

it.

• A distorted or degraded design pattern is distorted

form of design pattern that is dangerous for the code

quality.

• A missing design pattern generates poor designs.

• An excess design pattern is related to excessive use of

design patterns [13].

Naouel Moha et al. has argued that detection of design

defects is needed for enhancing the quality of software

systems. They presented a validation of their previously

presented DÉCOR method. Using four design defects and

their detection in 10 reverse engineered designs. DÉCOR

is a method that specifies design defects, automatically

generate detection algorithm and detect design defects.

They have also described that design defects are bad

solutions to commonly occurring problems in object-

oriented programming. Quality of programs can be

accessed by using design principles like low coupling and

high cohesion. They propose an approach established on

the combined use of metrics and FCA to propose

corrections to design defects in object-oriented programs.

A case study of a specific defect, the Blob, which is

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 179

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

depicted from the Azureus project exemplify their

approach.

3. Proposed work

Design patterns are problem-solution pairs that can be used

to solve recurring design problems. In this section, we will

describe our methodology, project under study, hypothesis

and results.

3.1 Methodology

We have selected some open source software systems and

studied their statistics which includes total number of java

files in the specific project. Design patterns have been

identified from source code and all required information

has been putted in some table and name of design pattern

has also been mentioned in table. Then a bug repository of

each project has to be checked. In bug reports, we have

tried to know that which bugs are there and how

programmers have removed them in different versions.

Then mapping of bugs to design patterns has been done.

The error producing design patterns has been highlighted.

3.2 Project Selection

For this study, five projects are selected from the open

source repository (sourceforge.net). These systems belong

to the category of ‘Software Development’. All projects

are written in the Java language. The reason of selection

for these projects is the easy availability. The category

“Software Development” is selected because of its

reasonable size having 6923 projects available. So

selection on the basis of number of downloads and

recommendations are quite easy.

A brief description of the selected projects is given below:

JEdit: JEdit is a programmer's text editor. It uses the

Swing toolkit for the GUI and can be configured as

powerful IDE through the use of its plug-in architecture.

Eclipse Checkstyle Plug-in: The Eclipse Checkstyle plug-

in integrates the Checkstyle Java code auditor into the

Eclipse IDE. The plug-in provides real-time feedback to

the user about violations of rules that check for coding

style and possible error prone code constructs.

JSmooth: JSmooth creates standard Windows executable

files (.exe) that smartly launch java applications. It makes

java deployment much smoother and user-friendly, as it is

able to find and run Java VMs by itself, or help the user

get one if none are available.

JACOB-JAVA COM Bridge: JACOB is a JAVA-COM

Bridge that allows you to call COM automation

components from Java. It uses JNI to make native calls to

the COM libraries.

Hibernate: Hibernate is an Object/Relational Mapping

tool for Java environments. The term Object/Relational

Mapping (ORM) refers to the technique of mapping a data

representation from an object model to a relational data

model with a SQL-based schema. Hibernate - Relational

Persistence for Idiomatic Java.

3.3 Design Pattern

There are total 23 design patterns described in [9]. We

have selected five design patterns based on their common

use and availability in literature. Following is the brief

description of the selected design patterns:

• Singleton pattern fall under the category of Creational

Patterns. The intent is to ensure a class has only one

instance and provide a global access point to it.

• Factory Method falls under the category of Creational

Patterns. The intent is to define an interface for object

creation, but subclasses will decide which class to

instantiate. Factory Method lets a class defer

instantiation to subclasses.

• Adapter pattern comes in the category of Structural

Pattern. The intent is to convert the interface of a class

into another interface expected by client.

• Composite Pattern comes under the category of

Structural Pattern. The intent is to compose objects

into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and

compositions of objects uniformly.

• Observer Pattern is a part of Behavioral Pattern. The

intent is to define a one-to-many dependency between

objects so that when state of one object changes, all its

dependents are notified and updated automatically.

3.4 Extraction of Design Patterns

We have manually extracted the design patterns from

source code. The reason for choosing the manual method is

to achieve high precision and accuracy for pattern

extraction. Most of the automated methods have poor

precision and accuracy, so manual extraction will

overcome this problem. To extract the design patterns, we

have reverse engineered the source code to design

diagrams. From these diagrams, patterns are identified

according to the pattern templates. Figure 1 shows a simple

class diagram that is used for the identification of design

patterns. We make similar diagrams for all the classes

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 180

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 Java Class ArrayType (org.hibernate.type).java

3.5 Mapping of Bugs

We take the bug information from the bug databases of

respective projects. The bug databases provide information

on the type of bug, description, component and module

details, status and the developer who is assigned to fix the

bug. Such information can be easily extracted using bug

database servers like bugzilla. We extract this information

and store into a local database for further use.

In order to map the bugs to source code locations, we use

version control systems. These systems provide the

information on changes made to the source code. For this

study, subversion is used to extract the log and

modifications data. The subversion log holds information

about revision number, date of modification, number of

lines added or deleted, developer and a comment

describing the modification. This information is helpful in

identifying the revisions in which a bug was fixed. To

locate the origin of bugs, modification data is required

which can be obtained using a differencing tool. We take

the revision in which a bug was fixed and take difference

with the previous revision. Difference between each two

consecutive revisions is taken until the source of bug is

found. The revision containing the source of bug is

scanned for the presence of a design pattern. We extracted

this information and store into a local database.

4. Hypothesis

We have established the following hypothesis to support

our idea.

4.1 First Hypothesis

Null Hypothesis:

The pair of patterns (Singleton, Factory) will have same

central tendency (Median) to produce errors.

MedianS = MedianF (where S = Singleton and F=

Factory)

Alternate Hypothesis:

The pair of patterns (Singleton, Factory) will have

different tendency (Median) to produce errors.

MedianS ≠ MedianF (where S = Singleton and F=

Factory)

4.2 Second Hypothesis

Null Hypothesis:
The pair of patterns (Composite, Adapter) will have same

central tendency (Median) to produce errors.

MedianC = MedianA (where C = Composite and A=

Adapter)

Alternate Hypothesis:

The pair of patterns (Composite, Adapter) will have

different tendency (Median) to produce errors.

MedianC ≠ MedianA (where C = Composite and A=

Adapter)

4.3 Third Hypothesis

Null Hypothesis:
The pair of patterns (Singleton, Composite) will have same

central tendency (Median) to produce errors.

MedianS = MedianC (where S=Singleton and C =

Composite)

Alternate Hypothesis:

The pair of patterns (Singleton, Composite) will have

different tendency (Median) to produce errors.

MedianS ≠ MedianC (where S=Singleton and C =

Composite)

4.4 Fourth Hypothesis

Null Hypothesis:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 181

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The pair of patterns (Singleton, Adapter) will have same

central tendency (Median) to produce errors.

MedianS = MedianA (where S = Singleton and A=

Adapter)

Alternate Hypothesis:

The pair of patterns (Singleton, Adapter) will have

different tendency (Median) to produce errors.

MedianS ≠ MedianA (where S = Singleton and A=

Adapter)

4.5 Fifth Hypothesis

Null Hypothesis:
The pair of patterns (Factory, Composite) will have same

central tendency (Median) to produce errors.

MedianF = MedianC (where F=Factory and C =

Composite)

Alternate Hypothesis:

The pair of patterns (Factory, Composite) will have

different tendency (Median) to produce errors.

MedianF ≠ MedianC (where F=Factory and C =

Composite)

4.6 Sixth Hypothesis

Null Hypothesis:
The pair of patterns (Factory, Adapter) will have same

central tendency (Median) to produce errors.

MedianF = MedianA (where F = Factory and A= Adapter)

Alternate Hypothesis:

The pair of patterns (Factory, Adapter) will have different

tendency (Median) to produce errors.

MedianF ≠ MedianA (where F = Factory and A= Adapter)

4.7 Mann-Whitney U Test

For the purpose of checking independency of each possible

pairs of design patterns (6 pairs in this case), Mann-

Whitney U test in SPSS is performed. The variable ‘Bug

Count’ is selected as “Test Variable” and ‘Pattern’ is

selected as “Group Variable”. There are four patterns i.e.

“Singleton, Factory, Composite, Adapter” and their

possible pairs are shown below:

1. SF (Singleton, Factory)

2. CA (Composite, Adapter)

3. SC (Singleton, Composite)

4. SA (Singleton, Adapter)

5. FC (Factory, Composite)

6. FA (Factory, Adapter)

4.8 Results

After applying Mann-Whitney U test, following results

have been found.

1). (Pattern1 (Singleton, Factory)

Table1. Statistics description, Ranks and Test Results of Hypothesis 1

Since (p-value= 0.748 > 0.05 = α), the null hypothesis

can’t be rejected

Conclusions: At the α = 0.05, there is enough evidence to

conclude that there is no difference in the median bug

count of the two patterns.

2). Pattern2 (Composite, Adapter)

Table 2. Test Rank and Results of Hypothesis 2

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 182

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Since (p-value= 0.002 < 0.05 = α), the null hypothesis

can’t be accepted.

Conclusions: At the α = 0.05, there is enough evidence to

conclude that there is difference in the median bug count

of the two patterns.

3). Pattern3 (Singleton, Composite)

Table 3. Test Rank and Results of Hypothesis 3

Since (p-value= 0.007 < 0.05 = α), the null hypothesis

can’t be accepted.

Conclusions: At the α = 0.05, there is enough evidence to

conclude that there is difference in the median bug count

of the two patterns.

4). Pattern4 (Singelton, Adapter)

Table 4. Test Rank and Results of Hypothesis 4

Since (p-value= 0.025 < 0.05 = α), the null hypothesis

can’t be accepted.

Conclusions: At the α = 0.05, there is enough evidence to

conclude that there is difference in the median bug count

of the two patterns.

5). Pattern5 (Factory, Composite)

Table 5. Test Rank and Results of Hypothesis 5

Since (p-value= 0.007 < 0.05 = α), the null hypothesis

can’t be accepted.

Conclusions: At the α = 0.05, there is enough evidence to

conclude that there is difference in the median bug count

of the two patterns.

6). Pattern6 (Factory, Adapter)

Table 6. Test Rank and Results of Hypothesis 6

Since (p-value= 0.025 < 0.05 = α), the null hypothesis

can’t be accepted.

Conclusions: At the α = 0.05, there is enough evidence to

conclude that there is difference in the median bug count

of the two patterns.

5. Conclusions

Design patterns are reusable solutions to frequently

occurring problems in software design. The expert

designers like to use previously made solutions for their

problems instead of spending time on recreating the

solutions. But, obviously these solution are not completely

error free. For this, we have conducted this study to find

out which patterns is more error prone. The Mann-Whitney

U Test’ results reject our null hypothesis in all the cases

except first one (i.e. Singleton, Factory). Therefore it is

concluded that each pattern has independent tendency to

produce errors. Now for evaluating that which pattern is

more error prone, the results of Mann-Whitney U Test are

analyzed. For this purpose, the Mean Rank value of each

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 183

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

pattern in each group is highlighted and their average has

been calculated.

Table 7. Patterns and Mean Rank value of each pattern

These values show that more error prone pattern among

the four patterns (Singleton, Factory, Composite, Adapter)

is Adapter pattern. One other reason of being more error

prone is that it is excessively used in all the projects

especially Hibernate Project. So when a pattern will be

excessively used then its tendency of producing errors

would be more for sure.

References
[1]. K. N. Loo, S. P. Lee, “Representing design pattern

interaction roles and variants”, ICCET, 2010 2nd

International Conference on , vol.6, no., pp.V6-470-V6-474,

16-18 April 2010

[2]. D. Budgen, Software Design, Second ed. Essex, England:

Pearson Education Limited, 2003.

[3]. E. Agerbo, A. Cornils, "How to preserve the benefits of

Design Patterns," ACM SIGPLAN Notices, vol. 33, pp.

134-143, 1998.

[4]. E. Gamma, R. Helm, R. Johnson et al., “Design Patterns:

Elements of Reusable Object-Oriented Software”. Addison-

Wesley. ISBN 0-201-63361-2.

[5]. K. Beck, W. Cunningham, "Using Pattern Languages for

Object-Oriented Program". OOPSLA '87 Retrieved 2006-

05-26.

[6]. R. Ferenc, A. Beszedes, L. Fulop et at.,“Design Pattern

Mining Enhanced by Machine Learning”, 25-30 September

2005, Budapest, Hungary

[7]. L. Aversano, L. Cerulo, M.D. Penta, “The relationship

between design patterns defects and crosscutting and cross

cutting concern scattering degree”, Software, IET, vol.3,

no.5, pp.395-409, October 2009

[8]. M. Vokac, "Defect frequency and design patterns: an

empirical study of industrial code," Software Engineering,

IEEE Transactions on , vol.30, no.12, pp. 904- 917, Dec.

2004

[9]. Y.G. Gue´he´neuc, H. Albin-Amiot, “Using Design Patterns

and Constraints to Automate the Detection and Correction

of Inter-Class Design Defects,” Proc. 39th Int’l Conf. and

Exhibition Technology of Object-Oriented Languages and

Systems, pp. 296-305, 2001.

[10]. J. Dong, Y. Zhao, Y. Sun.” A Matrix-Based Approach to

Recovering Design Patterns”, IEEE Transaction on systems

and cybernetics-part A: systems and humans, vol 39, NO

6.November 2009.

[11]. N. Moha, Y. Gueheneuc, L. Duchien et al.,”Discussion on

the Results of the Detection of Design Defects”. ECOOP

workshop on Object-Oriented Reengineering, July--August

2007. Springer-Verlag

[12]. N. Moha, Y. Gueheneuc, L. Duchien et al.,”On the

Automatic Detection and Correction of Software

Architectural Defects in Object-Oriented Designs”. ECOOP

Workshop on Object-Oriented Reengineering, July 26, 2005,

Universities of Glasgow and Strathclyde, Glasgow, UK

[13]. N. Moha, D. Huynh, Y. Guéhéneuc., “A Taxonomy and a

First Study of Design Pattern Defects”. Proceedings of the

STEP International Workshop on Design Pattern Theory

and Practice, September 25-30, 2005, Budapest, Hungary.

Mamoona Jalil

was awarded a Bachelor’s degree in Computer

Sciences from the University of Sargodha and currently doing
M.S. in Computer Sciences from the same university. Her
research interests include Software Engineering, Design Pattern
and other topics.

Javed Farzand received a Master degree in Computer Sciences
in 2003 and a Doctor of Informatics from Technical University of
Graz, Austria in 2009. His research interests include Design
Pattern, Software Testing and e-learning. He is currently an
assistant professor in the Department of Computer Science and
Information Technology at the University of Sargodha, Pakistan.

Muhammad Ilyas received a Master degree in Software Project
Management in 2004 from National University of Computer and
Emerging Sciences, Lahore and a Doctor of Informatics from
Johannes Kepler University, Linz Austria in 2010. His research
interests include Software Engineering, Design Pattern and
knowledge base systems. He is currently an assistant professor in
the Department of Computer Science and Information Technology
at the University of Sargodha, Pakistan.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 184

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

