

An Aspect-oriented Middleware for Adaptation of Pervasive
Systems

Abdelkrim Benamar 1, Noureddine Belkhatir 2 and Fethi Tarik Bendimerad 3

1 Computer Science Department, University of Abou Bekr Belkaid,
Tlemcen, 13000, Algeria

2 Computer Science Department, University of Pierre Mendes,

Grenoble, 38041, France

3 Telecommunication Department, University of Abou Bekr Belkaid
Tlemcen, 13000, Algeria

Abstract
The emerging pervasive platforms have to address several
challenges such as mobility, multimodality, context-awareness
and content adaptation. However, implementing adaptation using
conventional development techniques is challenging as
adaptation requirements tend to affect multiple elements of a
pervasive environment. Moreover, a feature model for pervasive
applications will help both to deploy various configurations of
the middleware tailored to each device. But, several crosscutting
variable features and dependencies between features are
commonly found in pervasive computing. To address this
problem we propose an aspect-oriented middleware platform,
able to deal with the high dynamic issue of pervasive systems. In
this paper, we present the key architectural concepts of our
platform, and we provide implementation details of typical use
case.

Keywords: Pervasive computing, Adaptation, Middleware,
Aspect-oriented applications.

1. Introduction

As the advancement of embedded and communication
technologies, growing quantities of computational units
are attached to our surroundings or even to ourselves. Due
to the increasing amount of computational resources and
scarcity of human controls and supervisions, a new
paradigm of computer utilization, known as pervasive or
ubiquitous computing, was proposed by Weiser [22]. The
pervasive computing has been considered as the third era
of computing after main-frame and personal computing. In
the scenario of pervasive computing, computational units
and information processing activities are embedded in all
surrounding and everyday devices, functioning invisibly.
Human users are able to access information from more
than one specific device and most likely from different
physical locations, rather than engaged with one computer.

According to this scenario, human users may not
necessarily be aware of the existence of embedded devices
and computations occurred behind the scene.

Therefore one of the challenges of pervasive computing is
the definition of advance mechanisms that support the
deployment and the tailored-configuration of pervasive
applications through various kinds of devices with
different capacities and characteristics. Another challenge
is the provision of mechanisms that allow the runtime
reconfiguration of pervasive applications for dealing with
context changes. This means that a pervasive application
have to deal with static and dynamic changes, so its
architecture should be well modularized to facilitate its
adaptation to the evolution of devices and environment.

A Software Product Line (SPL) approach would be very
useful to express the different requirements of devices in
terms of commonality and variability of a middleware
platforms family. Normally, a middleware platform
provides all the common services most used by distributed
applications. But in pervasive applications resource
constraint is an important limitation, so only a specific
middleware platform configuration that fits the device
characteristics must be installed. Feature modeling
analyzes commonality and variability from a domain
perspective [14]. Then, a feature model allows specifying
where is the variability in an independent way to the core
asset, and enables reasoning about all the different
possible configurations.

A feature model for pervasive applications will help to
specify different configurations of middleware according
to existing devices profiles. This will allow the
deployment of different versions of middleware tailored to
the resource constraints of small devices and appliances.
In addition, the explicit existence of a feature model

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 129

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

specification will also help to support the dynamic
reconfiguration of a middleware platform according to
changing contexts, or to runtime variations of device
resources. On the other hand, SPL promotes the notion of
architecture centric software engineering [4]. Then, a
feature model can be used as input for generating an
architectural representation of a product line. Likewise
most of current distributed applications, several
crosscutting variable features and dependencies between
features are commonly found in pervasive computing.
Some of these crosscutting variables features are security,
context-aware and fault-tolerance and so on. If we design
these crosscutting features in a traditional way we will
drastically reduce reusability, adaptability and the
evolution of the product line. In order to solve this
problem of crosscutting variables features and
dependencies between features we will use an Aspect-
Oriented (AO) approach. Aspect-Oriented Software
Development (AOSD) promotes the separation of
concerns at every stage of the software lifecycle, from
requirements and architectural design (early aspects) to
implementation. Then, using this approach we can define
the middleware architecture in a more cohesive and
decouple way, alleviating the reconfiguration and the
evolution tasks. In principle, AO middleware is defined as
a middleware platform that supports the execution of AO
applications. On the other hand, the internal platform
architecture of such middleware is not full AO. Some
efforts have been done towards the definition of a truly
AO middleware platform architecture, but only some
specific middleware concerns are separated. In this paper
we will focus on the feature model definition and we also
present a use case middleware implementation.

The remainder of this paper is organized as follows. In
Section 2 we present an overview of pervasive computing
issues, SPL and feature models and concepts of AO
middleware. Section 3 describes the design principles and
outlines the feature model of our middleware. Section 4
provides the key architectural aspects and section 5 shows
how they have proven to be viable in current
implementations of actual use case. Section 6 sketches out
main related work while section 7 concludes the paper and
identifies directions for future work.

2. Backgrounds

2.1 Pervasive computing

To stress the challenge that comes with pervasive systems,
we consider a typical ubiquitous scenario where one
student plays also the role of administrator of an online
student forum regarding main events in the campus. She is

interested in news concerning her campus and accesses the
web via a smartphone which is both General Packet Radio
Service (GPRS) and IEEE 802.11/Wireless Fidelity (WiFi)
enabled. While exploiting GPRS, she prefers having an
imageless version of the news, but when she switches to
the campus WiFi connection, which is fast and costless,
she wants to get full web pages, while keeping on working
in a seamless way. In both cases, content layout must be
adapted to fit the smartphone display she uses and news
must be formatted according to her forum style sheets.
Besides, as she often drives to the campus, she wants to
learn about news also via phone calls: when this happens,
she authenticates by spelling a secret password and a
synthesized voice reads to her the only news that matches
her customized preferences. The above and similar
ubiquity scenarios stress many currently debated research
fields, such as mobility support and context awareness,
multimodality and multi-channel access to content, content
aggregation and service composition, variously
interconnected.

Mobility needs are usually grouped into three categories:
user, terminal and service mobility [2]. User mobility
allows users to have a uniform and consistent view of their
specific working environment (user preferences and/or
service requirements) independent of their current location.
Terminal mobility allows devices to move and (re)connect
to different networks while remaining reachable and
keeping communication sessions consistent. Resource
mobility allows resources to move across different
locations and still remain available independent of their
physical location and the position of their clients.

Context-awareness refers to the capability of leveraging
conditions of the user herself and of her surrounding
physical and computational environment to provide more
relevant or brand new services. To provide a brief
example, a printing service could leverage user position
and identity to choose the nearest printer to which she is
authorized to send a document to. Though location is
certainly a common and pre-eminent piece of context,
there is much more to context than position and identity.

Services can also exploit time notion, knowledge of device
capabilities and user preferences to process requests in the
most suitable way, as well as discover and interact with
other computing-capable objects or query the environment
features for available pieces of information. For instance,
web browser requests usually convey device software
capabilities by declaring the client software version, the
available support for graphical formats and so on. An
exhaustive definition of context could be actually illusive,
since it can in general refer to every known piece of
information about user and environment. Thus, the most

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 130

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

reasonable solution for obtaining ubiquitous context is
probably to assemble context information from a
combination of context related services [1], possibly
deployed both at client side and at network infrastructure
or server side.

Device heterogeneity calls for multimodal interfaces and
content adaptation: users often need to access some unique
content or application via different user interfaces and they
also need to obtain information presented according to
their preferences or device features. As an example, a user
may request a service by using one of different input
modes, such as keyboard, hand-writing or speech
recognition, gestures and so on. In response, she could get
different corresponding output formats, such as a text-only
document, an image or a vocal reading. We refer to multi-
channel access as the ability of providing a same service
or information content through different media channels
and platforms.

2.2 Adaptation of distributed software systems

Adaptation proved, along the years, to be a major issue
towards the development of dependable distributed
software systems. In principle, we may distinguish three
basic types of adaptation situations based on the targeted
needs [15]. First, we have corrective adaptation that aims
at dealing with faults causing failures in the constituents of
a system. Second, we have perfective adaptation that
targets changes performed towards meeting the evolving
functional and non-functional requirements of the system.
Finally, we have adaptive reconfiguration aiming at the
proper functioning of devices and their hosted applications
that are dynamically integrated in a computing system
without prior knowledge of the functional constraints
(e.g., available functionalities and resources) imposed by
this system. The first two types of adaptation were
typically targeted by stationary distributed systems. On the
other hand, the need for the last type of adaptation arose
with the latest emergence of pervasive computing systems.
An in between evolution with respect to these two system
domains were nomadic computing systems, which added
wide area mobility to stationary distributed systems and
were a precursor to pervasive computing systems. There,
mobility makes the computing environment less
predictable than in stationary systems, thus as well
implying the need for adaptive reconfiguration, to a lesser
extent, however, than in pervasive systems.

Adaptation in stationary distributed systems –
architecturally modeled in terms of components and
connectors [9] – concerns adding, removing or
substituting components or connectors. Changes should

take place at runtime to avoid compromising the
availability of the overall system.

Being one step further, pervasive computing systems aim
at making computational power available everywhere.
Mobile and stationary devices will dynamically connect
and coordinate to seamlessly help people in accomplishing
their tasks. For this vision to become reality, systems must
adapt themselves with respect to the constantly changing
conditions of the pervasive environment: (i) the highly
dynamic character of the computing and networking
environment due to the intense use of the wireless medium
and the mobility of the users; (ii) the resource constraints
of mobile devices, e.g., in terms of CPU, memory and
battery power; and (iii) the high heterogeneity of
integrated technologies in terms of networks, devices and
software infrastructures.

2.3 Software Product Lines and Feature Models

Product Line Software Engineering (PLSE) has the ability
to exploit commonality and manage variability among
products from a domain perspective [14]. In the feature-
oriented approach, commonalities and variabilities are
analyzed in terms of features. A feature is any prominent
and distinctive concept or characteristic that is visible to
various stakeholders [14]. The features can be organized
into a feature model that represents all possible products
of a software product line. Feature modeling analyzes
commonality and variability from a domain perspective.
Commonalities are modeled as mandatory features and
variabilities are modeled as variable features which are
classified as alternative or optional features.

In features diagrams three kinds of relationships are found:
compose of (when the feature is composed of several sub-
features), generalization or specialization (when the
feature is a generalization of the sub-features), and
implemented by (when the sub-feature is needed to
implement the feature). Furthermore, for each variable
feature, feature dependency analysis can identify
dependencies between features. Examples of such
dependencies are the mutual dependency and mutual
exclusion relationships. Finally the features can be
classified in four layers: capability, operating environment,
domain technology and implementation technique. The
capability layer is composed by the user visible
characteristics, such us services, operations, non-
functional characteristics and so on. The operating
environment layer contains the environment in which the
application is used. The domain technology layer is the
way to implements the capability layer elements. Finally,
in the implementation techniques layer are the techniques
used to implements the capability layer elements.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 131

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2.4 Middleware for aspect-oriented applications

Many proposals claim to provide an AO middleware level,
are really not fully AO platforms for developing AO
applications. Our proposal tries to bring the aspect-
oriented benefits to the middleware itself, in order to deal
with heterogeneity of devices and communication
technologies and the high dynamism of pervasive
environments. Considering this approach, the final
application will be just another platform component. This
means, that the specific functionality of final pervasive
applications could be developed using a non AO language.

This will encourage developers of pervasive applications,
usually non experts in aspect-orientation, and more
accustomed to low level programming to use a
middleware. In an AO approach the middleware can be
considered as a collection of aspects with many of them
being completely standard (formerly known as common
services such as persistence or security). Usually in non-
AO middleware the list of common services offered by a
platform is fixed, and is not possible neither extend nor
customize them by end users. The aspects provide us the
facility of add, remove or change an architectural element
without modifying their rest of the architectural. In AO
middleware the end user may add new services in a non-
invasive way, by means of adding a new aspect, for
adapting the platform for example to a new application
domain. So, in an AO middleware is permitted to define
extensions of an AO middleware that can be highly
proprietary, developed by end users. Let’s consider the
definition of a custom authentication. Using an AO
approach end users can decide whether to use or not a
security aspect depending on the execution environment.
This can be realized as simple as, for secure environments
(e.g. inside an Intranet) the security aspect is not
considered as part of the aspect composition rules, but for
insecure environments yes. In the latter case, the first user
access will be intercepted and an authentication aspect will
be evaluated after message delivery. Even more, since the
security aspects are modeled separately from application
components, it is easier to change their implementation
than to use a password authentication.

3. Design principles

Most current middleware solutions adopt a TINA-like [5]
architectural model and focus on enriching middleware
with dedicated features that services and users in turn
exploit to face mobile, multimodal and/or ubiquitous
challenges. But when the number of functionalities
increases and they need to interact with each other,
middleware complexity inevitably grows, making this
approach inadequate for facing the wide domain of

ubiquity support. In our opinion, the only viable approach
for dealing with such increasing complexity is simplifying
middleware design by leaving it only the core of
management and coordination functions, and by moving
ubiquity feature logic outside the middleware layer. As a
result, the middleware still adopts a TINA model because
of its clear distinction of users, services/contents accessed
by users, and middleware, but we simplify middleware
logic by applying a pattern of delegation: we introduce
entities that are responsible for realizing mobility and
multimodality logic, leaving the middleware only
coordination responsibility.

3.1 Users

In current multimodal and multi-channel scenarios, users
access services and contents by means of a plethora of
different hardware devices and client software interfaces.
Many factors drive the rapid emergence of these needs
among users. Technological innovation provides users
with new types of wireless connectivity and new portable
devices that allow them to communicate and work in much
more effective ways.

Social reasons are also playing an important role:
accessibility themes as well as part of research in the
multimodal field aim at crossing the digital gap that
separates impaired users from traditional web contents and
services. In our vision, a truly ubiquitous platform should
encompass and serve every kind of device and/or user
interface, from a mere, largely diffused web browser to,
say, a specific audio interface for visually impaired users.

3.2 Services

In our model, any kind of content-related action
constitutes a service: from generation to content
adaptation, from enrichment to delivery. Most of these
operations are no longer available as predefined in
middleware functions, but are accessible as third-party
services. Services are characterized not only by their type
and description, but also by their semantic behavior and by
their binding requirements, so as to emphasize
composition with one another. Thus, new services can be
requested and deployed at any time, preventing the need to
know them all at middleware start-up.

3.3 Middleware

Middleware is the most common solution that is widely
used to facilitate interoperability and coordination in the
presence of dynamism and heterogeneity. Research and
developmental work in the area of middleware for
distributed systems has been in progress for several years,
both in academia and industry [3], worldwide. Over the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 132

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

last few years, however, several research groups across the
world have been engaged in building and experimenting
middleware solutions to address the challenging scenario
of pervasive computing environments. In same context,
we propose to follow the guidelines presented in [14] to
design a correct feature model of middleware platform.
Globally, the middleware will follow a microkernel and
services structure. The microkernel term describes a form
of operating system design in which the amount of code
that must be executed in privileged mode is maintained to
an absolute minimum [10]. As a consequence, the rest of
services are built as independent modules that are plugged
and executed by the kernel. In this way, we obtain a more
modular and reusable system. Furthermore, we distinguish
between mandatory base services and the rest of optional
extra services that will be added according to applications
requirements.

Then, as is shown in Fig. 1, the middleware feature is
composed by two mandatory features, the microkernel and
the services that can be basic or extra services. The basic
services (e.g., lookup, discovery, communication, device
manager and fault tolerance) are also a mandatory feature
but the extra services (e.g., security, persistence, error
handling, login, context-aware, position location…) are an
optional feature. All these features are in the capability
layer. This layer contains all the user visible
characteristics. In our case the user of the middleware will
be the applications, and then in this layer we found all the
microkernel details and all the services. The middleware
can be used in many kinds of devices (e.g., PDA,
smartphone) and allow to use several communication
types (e.g., wifi, bluetooth).

Moreover, the operation environment layer that represents
the application environment provides these two features
(device type and communication type). The device type
feature will have many alternatives sub-features depending
on the kind of devices. The same thing happens with the
communication type feature. The domain technology used
to implement the middleware is an aspect-oriented
microkernel structure. On the other hand, for each service
we will use its own domain technology, but for sake of
simplicity we only draw two generic features, one for the
base services and other for the extra services. Finally, the
middleware is implemented through Aspect-Oriented
Programming (AOP) technique. Then, the implementation
technique layer supports the AOP feature.

 Middleware

Microkernel Services

Base
Services

Device Type

Extra
Services

Communication
Type

PDA Smartphone… Bluetooth …

Aspect Oriented
Microkernel
Structure

Wifi

Base Services
Special

Technologies

Extra Services
Special

Technologies

Implementation
Technology
Layer

Aspect Oriented
Programming

Domain
Technology
Layer

Capability
Layer

Operating
Environment
Layer

 …

Composed of

Generalisation /
Specialisation

Implemented by Alternative Feature

Mandatory
Feature

Optional
Feature

Fig. 1 Middleware Feature Model.

Fig. 2 shows the microkernel detailed feature models. The
microkernel is composed by the container, factory, context
manager and service manager sub-features. The container
is the responsible to search the required services. The
factory element creates and instantiates such services. The
context manager has to be aware of all the context
changes. We have found four entities that provoke context
changes.
− Application restrictions: an application may vary and

require different services that were required before of
its variation (i.e., an application needs to be secure only
in some moments, and then the optional security service
will be active only in these moments)

− Environment properties: an environment can change
and some services may not be executed in the same way
before (i.e., if one device is missing)

− Device constrains: a pervasive system has to be aware
of device constraints (i.e., if the battery is less than a
low value maybe all the graphics in the application
must be changed by text)

− User preferences: to process user requests in the most
suitable way (e.g., let a user interested by accessing the
web via a smartphone which is both GPRS and WiFi
enabled. While exploiting GPRS, he prefers having an
imageless version, but when he switches to the WiFi
connection, he wants to get full web pages)

The last sub-feature of the microkernel is the service
manager that manages the architecture of the middleware
and runs the application. It has two sub-features, the
architectural manager and the weaver. The last is an
interpreter that composes all the elements of the
middleware and application. Since the middleware uses

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 133

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

AOP approach we call this interpreter weaver. The
architectural manager is composed by the architectural
description and the selector. The architectural description
is composed by two sub-features, the middleware PLA
(Product Line Architecture) description and one instance
of this product line. The selector is a tool that produces a
particular product from a product line, taken account the
context properties (device constraints, user
preferences…etc).

Microkernel

Container Factory Context
Manager Service

Manager

Application
Restrictions

Environment
Properties

Device
Contrains

User
Preferences

Architectural
Manager

Weaver

Architectural
Description

Selector

Middleware
PLA

Middleware
Architecture

Fig. 2 Microkernel feature model.

4. Middleware architecture

As is shown in the previous section the middleware
architecture will be composed by two components (the
application itself and the microkernel) and several
aspectual components (all the services). Likewise most of
traditional middleware platforms architecture, we follow a
layer approach (as shown in Fig. 3). The application level
is in the top and the middleware itself is just after. The
first sub-layer of the middleware is the application
services like security, context awareness, error-handling,
and so on. These services use the base services that are in
the next layer, such as communication and lookup. Below
these layers is the microkernel (as shown in the feature
model description) which is composed by the container,
the factory, the context manager and the service manager.
The product line architectural description of the
middleware is place inside of the service manager. The
microkernel, through the context manager, has to know the
context properties. With this information and with the
architectural description of the application, the service
manager runs the automatic selector facility in order to
instantiate a particular middleware architecture of the
product line architecture. This is a static configuration of
the middleware. Using the context properties, the factory
wills instantiate the specific selected services. In order to
run the application the service manager has the weaver
that is the responsible of make the composition between
aspectual components, corresponding to the services, and

the components (microkernel and application). If a change
is made in the context (user properties, device constraints
...) the microkernel will use the selector again and a new
particular middleware of the product line will be
instantiate. The responsible to perform this is the extra
service context-aware that has access to the context
manager. Then, this is the dynamic reconfiguration of the
middleware.

Microkernel

Context
Manager

App1 App2 … Appn Application
Layer

Base
Services

Extra
Services Security … Persistance

Communication Lookup …

Context-Aware

 Device Manager

Factory Container

Service Manager

Architectural Manager

Architectural Description Weaver

Selector

Fig. 3 Middleware architecture.

5. Middleware implementation

To illustrate the application of middleware solution, we
present our experience with using AO middleware to
modularize adaptation in a pervasive environment.
Specifically, this application involves two pervasive
devices (e.g., PDA, smartphone) to be deployed at
strategic public locations across Tlemcen university
campus. Furthermore, the prototype is aimed at supporting
a range of applications including, but not limited to,
displaying news, disseminating information on upcoming
events and assisting visitors (and also staff and students)
in navigating their way around campus. Visitors often
need to find their way to various destinations around
campus. The destination can be a physical location such as
a building, department or auditorium or it can be an event
such as a conference being hosted in a particular building.
Furthermore, each new display added to the environment
must adapt its specific properties to those of the
environment.

5.1 Implementation details

When modularizing adaptation we need to address three
specific facets of adaptation within our pervasive
environment. The first two facets are application
independent and relate to any application deployed in the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 134

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

environment while the third facet is specific to the
navigation application:
• Display management: As the environment expands

more displays will be incorporated into it. All new
displays must have their specific properties adapted
for use within the pervasive environment.

• Content management: The navigation content (an
arrow in this case) is only one type of content to be
displayed on the devices. There are other types of
content that also need to be delivered to the devices.
Furthermore, as new displays are added, the content
already being displayed within the environment has to
be made available on them as well.

• Display adaptation: As a new destination is added or
an existing destination changed (e.g., change of venue
for an event), the displays need to be adapted to guide
the users to the correct destination. Furthermore, if a
display is moved to a different location it should be
adapted to display the content in a correct fashion
based on its new location.

5.1.1 Display manager aspect

The DisplayManager aspect (as depicted in Fig. 4)
encapsulates all functionality relating to incorporation of
new displays or adaptation of their properties to the
pervasive environment. The aspect maintains a collection
of all displays incorporated into the environment and has a
public method to traverse the collection (as shown in lines
5-7 of Fig. 4). This is useful for other elements of the
system, especially the ContentManager aspect, which
needs to access all the displays in the system from time to
time as new content becomes available.

The DisplayIncorporation pointcut (as shown in
lines 18-19 of Fig. 4) captures all calls to the static method
introduced into the Display class. An after advice then
adds the incorporated display to the display collections in
the aspect as well as adapts the properties of the newly
incorporated display to the pervasive environment.
Note that although the DisplayManager aspect affects
only a single class, nevertheless it encapsulates a coherent
concern. This use of an aspect is, therefore, very much in
line with good separation of concerns practice.

Fig. 4 Display manager aspect.

5.1.2 Content manager aspect

The ContentManager aspect is depicted in Fig. 5. It
declares all types of content and must implement the
Content interface (as shown in line 5 of Fig. 5). Note that
in this case there is only one type of content, Arrow,
shown but in practice the pervasive environment displays
a variety of content. The Content interface provides an
application independent point of reference for the
pointcuts within the aspect, hence decoupling content
management from the type of content being managed. Any
classes that manipulate content in the pervasive
applications deployed in the environment are required to
implement the ContentManipulator interface, which
specifies a number of methods for content addition,
removal and update. Like the Content interface, the
ContentManipulator interface also provides an
application-independent point of reference to capture all
content manipulation behavior within the applications in
the environment, including the navigation application.

The contentAddition pointcut (as shown in lines 7-9
of Fig. 5) traps calls to addContent methods in all
application classes manipulating content. An after advice
for the pointcut then traverses all the displays registered
with the DisplayManager and updates them with the
new content. The contentDeletion and
contentUpdate pointcuts (as shown in lines 11-17 of
Fig. 5) and their associated advice perform similar
functions upon content deletion and update.

The pushContentOnNewDisplay pointcut (as shown
in lines 19-20 of Fig. 5) captures the instantiation of all
sub-classes of the Display class. An after advice then
pushes the available content onto the newly instantiated
display.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 135

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5 Content manager aspect.

5.1.3 Display adaptation aspect

While the DisplayManager and ContentManager
aspects are application independent and handle adaptation
facets that span across applications in the pervasive
environment, the DisplayAdaptation aspect,
depicted in Fig. 6, is specific to the navigation application.
The destinationChanged pointcut in this aspect (as
shown in lines 5-9 of Fig. 6) captures the change in
location of an existing destination or the creation of a new
destination. An after advice for the pointcut invokes the
adaptation rules for the displays to adapt the content
accordingly. The displayMoved pointcut (as shown in
lines 11-14 of Fig. 6) identifies that a display has been
moved by capturing the change in its location vector. An
associated after advice then proceeds to adapt the content
of the moved display and any neighboring displays
accordingly.

Fig. 6 Display adaptation aspect.

5.2 Execution scenario

As mentioned earlier, our prototype involves only two
types of displays (e.g., PDA, smartphone). Due to the high
modularity of applications based AOP techniques each
new display can be easily added to the environment (as
shown in Fig. 7) and its specific properties are adapted to
those of the environment.

Fig. 7 Adding a new display Flat LCD Panel.

Recall that our prototype is aimed at assisting users in
navigating their way around campus. The destination can
be either physical location such as department (as shown
in Fig. 8.a) or event such as a conference (as shown in Fig.
8.b).

a. Physical location

b. Event

Fig. 8 Selection of destination.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 136

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Furthermore, the corresponding paths to the physical
location or event (hosted in computer science department)
are respectively shown in Fig. 9.a and Fig. 9.b.

a. Physical location

b. Event

Fig. 9 Proposition of path.

5.3 Discussion

The three aspects used in this paper (e.g.,
DisplayManager, ContentManager and
DisplayAdaptation) clearly demonstrate that AOP
constructs provide an effective means to modularize both
application independent and application specific facets of
adaptation in a pervasive environment. The use of aspects
makes it easier to not only adapt the environment to
changes in content but also makes it possible to react to
the reorganization of the displays in an effective fashion.
Furthermore, any changes to the adaptation characteristics
of the environment or the navigation application are
localized within the aspects hence avoiding changes to
multiple elements of the system that would have otherwise
been required.

There are also interesting observations to be made about
the design of the adaptation concern. Firstly, the use of
Content and ContentManipulator as application

independent points of reference makes it possible to
decouple the ContentManager from application-
specific content and content manipulation operations.

Moreover, this technique allows to decouple the
persistence concern from application-specific data. On the
other hand, we can observe that the notion of one large
aspect (or one in any other AOP technique) modularizing
a crosscutting concern does not make sense in the case of
the adaptation aspect either. The three aspects and the
Content and ContentManipulator interfaces
together modularize adaptation (as shown in Fig. 10).
While different classes and aspects modularize specific
facets of the adaptation concern, it is the framework
binding them together that, in fact, aspectises this
particular crosscutting concern.

<<aspect>>

Display
Manager

Application
specific

<<aspect>>

Content
Manager

<<interface>>

Content
Manipulator

<<aspect>>

Display
Adaptation

<<interface>>

Content

All attribute, method & advice
sections are suppressed;

 denotes Usage

Fig. 10 Framework modularizing Adaptation.

6. Related works

Efforts in supporting ubiquity greatly concentrate now on
developing services and middleware platform logic.
Current ubiquitous and mobile environments obey some
standards and specifications, presenting solutions for
specific ubiquity aspects. Research follows some main
directions, mostly concerned with design guidelines and
feature standardization, middleware proposals and the idea
of providing toolkits to create ‘ubiquity-enabled’
applications. However, these research directions tend to
evolve separately from each other, focusing on particular
problems or goals, and they altogether lack a unified
approach to ubiquity support.

CoBrA (Context Broker Architecture) is a pervasive
context-aware computing infrastructure that supports
ubiquitous agents, services and devices, to behave
intelligently, according to their situational contexts [11]. It
is a broker-centric agent architecture, that provides
knowledge sharing, context reasoning, and privacy
protection support for ubiquitous context-aware systems,
using a collection of ontologies, called COBRA-ONT, for
modeling the context in an intelligent meeting room
environment. These ontologies expressed in the Web
Ontology Language (OWL), define typical concepts

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 137

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

associated with places, agents, and events and are mapped
to the emerging consensus ontologies that are relevant to
the development of smart spaces.

GAIA is an infrastructure for smart spaces, which are
ubiquitous computing environments that encompass
physical spaces [18]. Ontologies are introduced in this
system, as an efficient way to manage the diversity and
complexity of describing resources, that is, devices and
services. They work as a system specification for
configuration management, by providing a standard
taxonomy of the different kinds of entities, including
applications, services, devices, users, and data sources.
Therefore, these ontologies are beneficial for semantic
discovery, matchmaking, interoperability between entities,
and interaction between human users and computers.
Additionally, the GAIA ontologies are used to make
GAIA systems context-aware. They model contextual
information, including physical, environmental, personal,
social, application, and system contexts. They describe the
relations between different entities and establish axioms
and constraints on the properties of the entities that must
be satisfied.

CoCA (Collaborative Context-Aware) is a collaborative,
domain independent, context-aware middleware platform,
which can be used for context-aware application
development in ubiquitous computing [7]. It is an
architecture for context-aware services, focused on context
reasoning in ubiquitous computing environments, using
semantic ontology and collaborative approaches. This
model uses an ontology for modeling and management of
context semantics and a relational database schema for
modeling and management of context data. These two
elements are linked through the semantic relations built in
the ontology.

In [20] ontology-based approach is proposed for modeling
ubiquitous computing applications employs ontology
merging and alignment to capture and store in an ontology
repository information needed by task-based activity
spheres in order to represent their environment, goals,
states, events and available resources. The dynamic
behavior of the sphere is represented as a series of merged
ontologies. Every ontology snapshot provides a static
description of the sphere, each time it undergoes
asynchronously a state transition. The state transitions can
then be modeled based on Discrete Event Systems (DES)
and the dynamic behavior can be controlled by using
Supervisory Control Theory (SCT). Each activity sphere
has a dual hypostasis: one concerning how this sphere
conceives itself and the other one concerning how it is
perceived by other activity spheres. Each activity sphere is
described by its embedded ontological objects (i.e.

ontologies and alignments). The ontological representation
of activity spheres depends on their motivators (as a
creator or observer) point of view. Ontologies are used for
the semantic description of the components that are
involved in the achievement of an activity, and alignments
describe semantically their context. In this sense,
ontologies and ontology alignments are the foundations of
an activity sphere, which are used to deal with semantic
interoperability, dynamic nature, context awareness and
adaptive services.

PURPLE [13] is an adaptive, context-aware and
component-based middleware for ubiquitous computing.
The use of EFL (lightweight, efficient and reflective
component platform running on Linux) offers the
technique in multi-level reflection, which provides the
advantages of flexibility in implementing and extension.
Specifically, PURPLE authors discussed the context-
awareness mechanism for system-level reconfiguration
using strategy control and the working process in
adaptation and system consistency control. Based on the
testing result, they conclude that the overhead by
introducing reflection is small enough to be negligible.
Furthermore, the work does not address a number of key
issues within ubiquitous computing domain, such as the
support for mobility, agent-based programming paradigm.
CAST (Context-Awareness Simulation Toolkit), is a
toolkit which allow to acquire, express and safely use the
context information of ubiquitous computing environment
[12]. CAST generates users and devices in a virtual home
domain, designates their relation and acquires virtual
context information. The created context information is
reused by the request of application and put into use for
context learning. Particularly, CAST gives a consideration
to security in the process of context acquisition and its
consumption. That is, with applying SSCM(SPKI/SDSI
Certificate Manager) to test if the created context
information was valid information and if the application
that called for the context had legitimate authority to do
so. CAST not only captures virtual context information,
but it also guarantees the safe sharing of the context
information requested by the application.

Scooby [17] provides an effective method for combining
services to meet the needs of users in a variety of
pervasive computing scenarios. Scooby uses a specifically
designed composition language, which separates coding of
services as building blocks from their composition into
useful applications which respond to available resources.
The Scooby language and middleware provide a rich
system for matching advertised services with
requirements, while using many familiar techniques from
languages such as Java. Both the advertised and required
characteristics of those services can be dynamic, so that

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 138

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the inevitable changes in capability and requirements that
flow from pervasive computing scenarios can be
accommodated. This approach lends itself to the
development of end-user configuration tools, as explored
in the NatHab project [16], where programming language
APIs and exposure to source code present a significant
obstacle to most users. The (re-)binding of services is an
important part of the middleware, and the Scooby system
provides for bindings which take account of both types
and characteristics of the service in order to dynamically
respond to the requirements of the application and the
visible facilities. A content-based event communications
model was employed, to support this approach.

In [21], an ambient intelligence (AmI) platform is
proposed to facilitate fast integration of different control
algorithms, device networks and user interfaces. This
platform defines the overall hardware/software
architecture and communication standards. It consists of
four layers, namely the ubiquitous environment,
middleware, multi-agent system and application layer. The
multi-agent system is implemented using Java Agent
DEvelopment (JADE) framework and allows users to
incorporate multiple control algorithms as agents for
managing different tasks. The Universal Plug and Play
(UPnP) device discovery protocol is used as a middleware,
which isolates the multi-agent system and physical
ubiquitous environment while providing a standard
communication channel between the two. An XML
content language has been designed to provide standard
communication between various user interfaces and the
multi-agent system. A mobile ubiquitous setup box is
designed to allow fast construction of ubiquitous
environments in any physical space. The real time
performance analysis shows the potential of the proposed
AmI platform to be used in real-life AmI applications.

MyAds [6] is system capable of exploiting pervasive
technologies to autonomously adapt the contents to the
evolution of the interests among an audience, and
validated the ideas behind it through experimental
execution of a prototype platform on a test-bed of
distributed machines. Results confirm the advantages of
the use of audience-sensitive advertisement techniques,
whereby the impact of the advertisement can be optimized
towards a bigger part of the audience. Furthermore, they
show that a proper exploitation of the auction-based
allocation paradigm leads to an enhancement of the
economic efficiency at both sides of the transaction, in
particular at advertiser’s side where the ratio between the
cost of the investment and the final impact results is
optimized in a way to increase the segment of the
interested audience while reducing the sustained cost per
person.

SARA [9] is a resource and location aware framework to
support the large-scale deployment of heterogeneous
applications in ubiquitous environments. The basic tenet
of SARA revolves around the concepts of virtual
registries, most likely residence and the location vector.
Object registration and discovery are achieved by hashing
the object id to obtain the physical co-ordinates of a point
(P) within the network service area. The set of mobile
nodes in the virtual registry containing P assume the
responsibility of registering and maintaining information
about the object. The basic design principle for SARA
scheme is to use geographical mapping for the hashing as
opposed to node mapping since nodes are mobile. SARA
is scalable, since the hash function is uniform and this
ensures that the information stored in the network is
spread across the network. The simulation results showed
that SARA was robust and scalable and performed
particularly well as the density of nodes in the network
increased. However, SARA fails to face some ubiquity
challenges, as security needs to be incorporated into its
service architecture at various levels. Also, node location
information stored in the network must be protected to
guarantee user privacy. The schemes developed to ensure
user privacy must also take into account the resource
constrained environment.
In [19] a resource optimized quality assured context
mediation framework based on efficient context-aware
data fusion and semantic-based context delivery. In this
framework, contexts are first fused by an active fusion
technique based on Dynamic Bayesian Networks and
ontology, and further mediated using a composable
ontological rule-based model with the involvement of
users or application developers. The fused context data are
then organized into an ontology-based semantic network
together with the associated ontologies in order to
facilitate efficient context delivery. Experimental results
using SunSPOT, which is a small, wireless, battery
powered experimental platform, demonstrate the promise
of this approach.

7. Conclusion

In this paper we have shown the troubles of the pervasive
systems and how a middleware approach can solve them.
We have followed the layer structure for the middleware,
with a microkernel and several services in order to get a
more reusable and adaptable middleware. The adoption of
a basic idea of decoupling middleware from services and
users led to a simple and lightweight platform and granted
our solution a twofold goal. On the one hand, middleware
provides a unified approach to ubiquity support and
addresses the issues of mobility, multimodality and
content-adaptation in service provisioning; on the other
hand, it can dynamically and automatically react to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 139

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

reconfigure services on a user context basis. Furthermore,
we have proposed to use an AO middleware that allows
dynamic reconfiguration, because the reconfiguration is an
issue very important for context-aware pervasive system.

Mainly, in this paper we have focus in the design of the
feature model of the middleware product family, that after
it will be used to produce the middleware architectural
product line. Then, also we have shown the architecture of
the middleware following the layer approach. After,
having the product line architecture we will start the
implementation of the middleware, beginning with the
microkernel and after with the services. During all this
process new services of the middleware product line can
appear as needed, then the product line feature model will
have modified. We have completely implemented and
deployed a use cases to verify the viability and
effectiveness of our approach.

Encouraging results are calling for further research
activities. We are currently working on dynamic
composition of some services modeled as aspects and
driven by an AO Domain Specific Language (DSL). This
DSL will be an extension of an AO Architecture
Description Language (ADL) with variability. Moreover,
we plan to use AO-ADL to describe a real system, and we
will discuss the main benefits of the symmetric
decomposition model and the extension of AO-ADL
connector with aspectual binding informatio(n.

References
[1] G. D. Abowd, and E. D. Mynatt, “Charting Past, Present, and

Future Research in Ubiquitous Computing”, ACM
Transactions on Computer Human Interaction, Vol. 7, No. 1,
2000.

[2] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli,
“Dynamic Binding in Mobile Applications”, IEEE Internet
Computing, Vol. 7, No. 2, 2003, pp. 34-42.

[3] A. Benamar, N. Belkhatir, and F. T. Bendimerad,
“Proposition of Generic Deployment Platform for
Component based Applications, Journal of Software
Engineering, Vol. 2, No. 1, 2008, pp. 23-38.

[4] J. Bosh, Design and Use of Software Architectures: Adopting
and Evolving a Product-Line Approach, Addison Wesley
2000.

[5] M. Chapman, and S. Montesi, “Overall Concepts and
Principles of TINA”, 1995 http://www.tinac.com/specificati-
ons/documents/overall.pdf

[6] A. Di Ferdinando, A. Rosi, R. Lent, A. Manzalini, and F.
Zambonelli, “MyAds: A System for Adaptive Pervasive
Advertisements”, Pervasive and Mobile Computing. Vol. 5,
2009, pp. 385-401.

[7] D. Ejigu, M. Scuturici, and L. Brunie, “CoCA, A
Collaborative Context-aware Service Platform for Pervasive
Computing”, in 4th IEEE International Conference on
Information Technology, pp. 297-302, Las Vegas, 2007.

[8] D. Garlan, and M. Shaw, “An Introduction to Software
Architecture”, Technical Report, CMU-CS-94-166, Carnegie
Mellon University, 1994.

[9] A. Gopalan, and T. Znati, “SARA: a Service Architecture for
Resource aware Ubiquitous Environments”, Pervasive and
Mobile Computing, Vol. 6, 2010, pp. 1-20.

[10] P. Greenwood, et al., “AOSD reference architecture”,
AOSD-Europe-ULANC-37, 2008.

[11] L. Kagal, V. Korolev, Chen, H. Joshi, A., and T. Finin,
“Centaurus: A Framework for Intelligent Services in a
Mobile Environment”, in 21st IEEE International Conference
on Distributed Computing Systems, pp. 195-201,
Washington 2001.

[12] I. S. Kim, Y.L. Lee, and H. H Lee, “CAST Middleware:
Security Middleware of Context-awareness Simulation
Toolkit for Ubiquitous Computing Research Environment”,
in Huang, D.S. (eds.), ICIC 2006, LNCS, Vol. 344, pp. 506-
513, Springer, Heidelberg.

[13] Z. Kuo, W. Yanni, Z. Zhenkun, W. Xiaoge, C. Yu, A
Component-based Reflective Middleware Approach to
Context-aware Adaptive Systems” in Lowe, D., Gaedke, M.
(eds.), ICWE 2005, LNCS, Vol. 3579, pp. 429-434, Springer,
Heidelberg.

[14] K. Lee, C. K. Kyo, L. Jaejcon, “Concepts and Guidelines of
Feature Modeling for Product Line Software Engineering”,
LNCS, Springer-Verlag, vol. 2319, 2002, pp. 62-77.

[15] P. Oreizy, N. Medvidovic, and R.N. Taylor, “Architecture-
based Runtime Software Evolution”, in ACM International
Conference on Software Engineering, Kyoto, 1998, pp. 177-
186.

[16] T. Owen, I. Wakeman, B. Keller, J. Weeds, and D. Weir,
“Managing the Policies of non-Technical Users in a Dynamic
World”, in 6th IEEE International Workshop on Policies for
Distributed Systems and Networks, Stockholm, 2005, pp.
251-254.

[17] J. Robinson, I. Wakeman, and D. Chalmers, “Composing
Software Services in the Pervasive Computing Environment:
Languages or APIs”, Pervasive and Mobile Computing. Vol.
4, 2008, pp. 481-505.

[18] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt, “GAIA: A Middleware
Infrastructure to Enable Active Spaces”. IEEE Pervasive
Computing, Vol. 1, No 4, 2002, pp. 74-83.

[19] N. Roy, T. Gu, S.K. Das, “Supporting Pervasive Computing
Applications with Active Context Fusion and Semantic
Context Delivery”, Pervasive and Mobile Computing, Vol. 6,
2010, pp. 21-42.

[20] L. Seremeti, C. Goumopoulos, and A. Kameas, “Ontology-
based Modeling of Dynamic Ubiquitous Computing
Applications as Evolving Activity Spheres”, Pervasive and
Mobile Computing, Vol. 5, 2009, pp. 574-591.

[21] K. I. K. Wang, W. H. Abdulla, and, Z. Salcic, “Ambient
Intelligence Platform using Multi-agent System and Mobile
Ubiquitous Hardware”, Pervasive and Mobile Computing,
Vol. 5, 2009, pp. 558-573.

[22] M. Weiser, “Computer for the 21st Century”. Scientific
American, Vol. 265, No 3, 1991, pp. 94-100.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 140

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Abdelkrim Benamar is currently a postdoctoral research fellow in
Mobile and Pervasive Computing group in Computer Science
Department at the University of Tlemcen, Algeria. He received his
Ph.D. degrees in Computer Science from the University of
Tlemcen in 2007. He received his MS and B.E. degree from Oran
University, Algeria, in 1999 and 1992, respectively. His research
interests include context-aware resource management in mobile,
pervasive and grid computing environment.

Noureddine Belkhatir received his Ms degree in Computer
Science from the University of Algiers, Algeria, in 1973. From the
1985 onwards he has been working in the Computer Science
Department at the University of Grenoble, France. Now he is full
professor in Computer Science and has been Chairman of the
above Department from 2005 to 2010. He took part to several
European and national projects on distributed computing and
massively parallel architectures. He has published about 70
papers on national and international journals and on Conference
Proceedings.

Fethi Tarik Bendimerad is a University Professor of Engineering
and the Founding Director of the Telecommunication Laboratory at
the University of Tlemcen, Algeria. His current research interests
include wireless sensor networks, mobile and pervasive
computing, design and modeling of smart environments, pervasive
security, resource and mobility management in wireless networks,
and mobile grid computing.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 141

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

