

A Conceptual Framework to Analyze Enterprise Business

Solutions from a Software Architecture Perspective

Basem Y. Alkazemi

Collage of Computer and Information Systems

Umm Al-Qura University

Makkah

Saudi Arabia

Abstract
The architectural aspects of software systems are not always

explicitly exposed to customers when a product is presented to

them by software vendors. Therefore, customers might be put at a

major risk if new emerging business needs come to light that

require modification of some of the core business processes

within their organizations. So they might need to replace their

existing systems or re-architect old ones to comply with new

architectural standards. This paper describes a proposed

framework that helps organizations to build a comprehensive

view of their system architecture prior to dealing with vendors.

Consequently, every organization can have a reference model

that facilitates negotiation and communication with software

vendors. The paper applies the proposed framework to an

organization in the region of Saudi Arabia to validate its

applicability and generates an architectural design for their

software systems.

Keywords: Software Architecture, SOA, ERP, Business Process.

1. Introduction

Many software vendors describe their products from a

business perspective in a manner to sell only. The only

things that are described to customers are the functional

aspects of the systems. However, architectural details that

express how their system is structured are not explicitly

defined by vendors. One possible reason for this is the lack

of knowledge regarding software architecture‟s significant

impact upon business needs. In fact, it is very rare to find

an organization that has a plan for adopting an extensible

architecture for their software systems prior to looking for

products in the market. They usually look for vendors that

satisfy their business needs within the timeframe and

budget available to them, with no regard for how these

systems are going to be built and what the potential

consequences of adopting a specific vendor‟s technology

might be.

 Our observation to a number of organizations across the

region of Saudi Arabia concluded that many of them

employ different technologies in their systems to satisfy a

number of common business needs. For example, some

may use Oracle E-Business Suite for their employment

management systems while they use Microsoft SharePoint

for their website. Others may use PHP for their website

and SharePoint for their intranet applications in addition to

Oracle forms for financial and warehousing applications.

Although the variety of technology within an organization

is usually unfavorable as far as management is concerned,

this variety might be beneficial to increase flexibility and

extensibility of the business needs for an organization.

However, it would not be feasible to apply this advantage

in practice unless the organization has a solid architecture

that describes different layers where every aspect of

functionality may fit.

This paper is designed to draw organizations‟ attention

within the region of Saudi Arabia towards the importance

of planning for their IT projects from an architectural

perspective in addition to the business needs as that seems

to be the part that is lacking in many IT projects in the

region. It argues that understanding architectural

specifications in addition to the functional ones is

important, especially in cases where organizations need to

ensure flexibility, extensibility and consistency of their

systems. Therefore the components of their systems that

may need to be modified, extended, or replaced can be

identified and managed more practically. This paper

describes a proposed architecture for an enterprise system

and uses this architecture as a framework to evaluate some

common enterprise solutions in the Saudi Market. We

selected Enterprise Resource Planning (ERP) [4] as a

system to evaluate against our framework from an

architectural perspective. One reason for selecting such a

system is that ERP is commonly known as a software

system that manages the different business applications

within organizations. There is no survey in the existing

literature that discusses the dimensions we described in

this paper as the base of comparison between different

ERP vendors. Most of the surveys are based on attributes

such as functional capabilities, usability, cost, technology

used and customer satisfaction rather than architectural

features. Moreover, this paper establishes the basis for

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 77

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

mailto:bykazemi@uqu.edu.sa

achieving comprehensive alignment between business

improvement and software architecture activities that is

always lacking among enterprises [17].

The remainder of this paper is organized as follows.

Section 2 presents a background discussion about software

architecture to set up the context of the work. Section 3

describes the key quality attributes from a systems

perspective. Section 4 presents the proposed architectural

layer of an enterprise solution. Section 5 discusses the

main features of a number of ERP solutions in the market.

A case study that reports the utilization of our framework

to generate a system architecture for an organization is

described in section 6. Section 7 presents migration

roadmap of UQU systems to comply with our framework.

Finally, the conclusion and possible recommendations are

given in section 8.

2. Background Review on Software

Architecture

People usually refer to the term „architecture‟ to indicate

the physical construction of a building in terms of external

shape, and also how the rooms are structured within that

building. In software, the word „architecture‟ is a term that

is in general use, with a number of different interpretations.

However, as an analogy to its meaning in civil engineering,

it inspires the meaning of creating a product (a software

system in this case) from a number of selected components

rather than building a single monolithic one. So the way

components must be incorporated, the orders in which they

must be placed, and the mechanism of interaction between

them, are parts of what a system architecture describes.

Bas et al. [7] defined software architecture as the structure

of a system that comprises software elements, their

external visible characteristics, and the relationship

between them. IEEE 1471 [8] defines software architecture

as “the fundamental organization of a system embodied in

its components, their relationship to each other‟s and the

environment, and the principles guiding its design and

evolution”. Jones [9] defined architecture as the structure

that is composed of components and rules that establish the

basis for the interaction between them. All the definitions

agree that architecture is concerned with the constituting

parts of a system and the relationship between them.

In the literature, many of the available works have

explained the significance of considering architecture in

software systems. One reason for considering software

architecture is to help our understanding of complex

software systems. Shaw and Garlan [10] suggested that

architecture can be used to define the overall design of a

system. Garlan and Perry [11] identified the benefits of

considering software architecture in software development

as providing support for re-using, evolving, analyzing, and

managing software. Budgen [12] considered software

architecture to be a way of describing the constructional

aspects of a software system at a high level of abstraction

(e.g. design stage). Allen [13] identified architecture as

being the vehicle to communicate between the requirement

and the implementation stages. Szyperski et al. [14]

suggested that architecture is important for establishing a

context for software systems representing standards and

platform requirements.

Garlan et al. [15] identified a number of architectural

characteristics that might cause a mismatch to occur in

terms of component interaction within a system. These

characteristics are:

 The infrastructure that a component is primarily
built on.

 Control issues of whether a component can
generate a control signal or not.

 The data type manipulated by a system and the
way it is transferred between components.

 The pattern of interaction between components.

 The sequence that components must be instantiated
and invoked with.

Yakimovitch et al. [16] refined the work of Garlan and

identified five variables that describe assumptions about

components‟ interactions, namely packaging, control,

information flow, synchronization, and binding. Their

main motivation was to establish a mapping between

architectural assumptions and a number of problem

domains that conform to certain standard architectural

types. They demonstrated that the defined variables can be

used to abstractly classify different software architectures.

All of the above-presented work emphasizes the

importance of considering software architecture as a

vehicle to fully understand the different parts of a system.

This can help organizations to fulfill their business needs.

In fact, considering software architecture is significant to

organizations as it helps them to identify whether or not a

functional component can be seamlessly integrated into

their system without interrupting their daily working

routine. In addition, the system must be able to

accommodate possible growth in an organization‟s

business. As a result, a number of attributes must be

satisfied by software systems to ensure the readiness of

such a system as the business grows. The next section

discusses a number of key quality attributes that establish

the context for evaluating a vendor‟s solutions.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 78

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. System Quality Attributes

In the context of software engineering best practices, an

enterprise software system must satisfy a number of key

quality attributes that will ensure its readiness to

accommodate new business needs without affecting its

overall software architecture. So, a system adhering to

these attributes can be considered a healthy system to

accommodate emerging business needs. These attributes

include:

 Reference schema: tables in the database must be
prioritized based on the main business objectives
of the organization. For example, the human
resources (HR) schema is usually the primary asset
in most organizations. So any application must be
linked to this schema in order to provide services
to the corresponding employee.

 Applications decoupling: every application must
provide only its basic functionality without mixing
its concern with other application business. In
addition, applications must not be aware of any
other applications in the system. Their main task is
to receive requests, process them, and provide
results. So, any hardcoded links between
applications must be eliminated.

 Application architecture: applications must be
well structured in the sense that their composing
components can be identified and the relationship
between them is defined. The architecture of the
application can then be utilized to identify the
computational components from the data and
control exchange components.

 Separation of concerns: the functional components
of an application must be distinct in the sense that
their business logics are not interleaved. For
instance, credential check functionality must not be
mixed with data retrieval or computation algorithm
functionality. Every concern must be separated in a
modular way (i.e. component) so it cannot be
confused with other functionalities of an
application.

 Standardization of interfaces: software
applications must be wrapped in a way that
complies with the standard interface used across
the various systems within an organization. The
interface usually defines the standard data
exchanging model and control topology that is
common to all systems.

 Dynamic binding: this attribute needs to be
satisfied in enterprise systems where software
applications can be used differently as per process
design. In fact, this feature promotes a wider level

of integration between different systems that
conform to a standard interface.

 Integration mechanism: applications need to
expose their standard interfaces in a layer within
the overall environment where reaching them can
be facilitated. This is usually referred to as a
mediator platform where requests can be managed
in terms of scheduling, routing, and finding of
applications, among other things.

 Authority matrix: a system might be accessed by
many users, and everyone has their own privileges
to execute specific functionality. This is a
mandatory attribute that any enterprise system
must effectively handle and manage.

 Data warehouse: some organizations may have
multiple databases for different types of
application. This may increase the administration
and maintenance overheads. Moreover, this may
conflict with the strategy adopted by the
organization that needs to integrate their scattered
systems. A single unified data source must
therefore be employed that wraps all the different
databases and exposes a single interface to the
applications. This approach is advantageous in the
case of having various database types (e.g. Oracle,
SQL, MySql).

To the best of our knowledge, these attributes are the most

significant ones that organizations must consider when

defining their system architecture. The identified attributes

are the main driver for establishing our proposed

architectural framework, which is given in the next section.

4. Proposed Enterprise System Architecture

One key driver for establishing our framework is the

representation of workflow within a software system.

Currently many systems develop their business processes

hardcoded into the source code. So, whenever new

business processes are required to be implemented the

overall code must be modified. Moreover, applications are

integrated in a one-to-one manner by writing glue code to

establish the integration. This glue code is usually written

as a mediator between two applications. Although this

approach might look simple to some developers, it causes

process design to become totally confused and mixed. In

some cases glue code is injected into one of the

applications themselves. This worst scenario as it will

result in very tangled code that cannot be managed over

the years.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 79

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Our proposed framework considers SOA [5] as an

integration facilitator mechanism and not as a service

delivery mechanism. The framework is composed of

different layers that, we believe, any enterprise solution in

the market must satisfy in order to ensure flexibility and

extensibility of their systems. Figure 1 presents our

proposed architecture for an enterprise solution.

Data Access Layer

Business Layer

Exposure Layer

Communication Layer

Orchestration Layer

Policy Layer

Fig. 1 Architectural Layers of Enterprise Solution

Each layer is independent of the other surrounding layers

in terms of their main functionality. The description of

these layers is as follows:

 Data Access Layer: this layer is responsible for
managing the interaction between application and
database and hiding the databases used in the
organization. So, if different database technologies
are used (e.g. SQL, Oracle), this layer will manage
the connectivity with the corresponding source.

 Business Layer: this layer is responsible for
executing the basic functionality that represents an
organization‟s business needs. In the context of an
ERP solution, this layer represents the fundamental
modules offered by the solution such as HR,
Finance, Projects, and Sales. Every one of these
modules must be a standalone application that is
not aware of any other modules.

 Exposure Layer: this layer is responsible for
exposing the available applications from the
application layers into services (e.g. web services,
com components). All applications are therefore
decoupled from their underlying environment and
made available through request-response
interaction mode.

 Communication Layer: the integration layer is
responsible for establishing the communication
pattern and routing protocols that enable service

discovery and interaction. It defines the policies
that comply with the standards adopted by
vendors. For example, web services interact by
exchanging SOAP messages over HTTP protocol.
Any interaction between services must be
accomplished through this layer. This is usually
referred to as the Enterprise Service Bus (ESB)
layer.

 Orchestration Layer: this layer defines the
business processes that are employed by an
organization. It is responsible for establishing the
sequence by which services are going to be
invoked to satisfy business requirements. For
example, an attendance service might need to issue
a request to a finance service to deduct a certain
amount from an employee salary.

 Policy Layer: this layer is responsible for defining
the privileges for accessing services. A different
level of access rights can therefore be granted at
this layer according to the defined policy.

The identified layers are not interchangeable as they must

build up in a bottom-up manner. So, for example, a

database can be established and tables created for an ERP

system. Then, a number of standalone applications are

developed on top of these tables to utilize the data in the

tables. These applications must then be exposed in a

standard manner in order to facilitate their integration with

other applications to achieve new business needs. So the

new exposed interfaces are pooled and made ready for

requests. Workflows can then be defined on top of the

available pool of services in order to integrate different

applications seamlessly without affecting each

application‟s concern. In fact, a workflow defines the

design of a system where different components can be

executed in a pre-defined sequence. Once all the business

requirements are established (i.e. all functionality is

implemented), there should be privileges assigned to

personnel who are authorized to execute certain processes

in the system.

5. ERP Solutions Analysis

A number of well-known ERP solutions are available

nowadays in the market. Oracle, for instance, is among the

prominent vendors in this field through their Oracle Apps,

or the E-Business suite (EBS) [1]. Oracle ERP is a three-

tier system that is composed of four basic modules, namely

Human Resources, Project Management, Finance, and

Asset Management. These modules are built on top of a

unified Oracle database. The interaction between these

modules is achieved via the Business Event System (BES)

that triggers message creation or consumption of any

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 80

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

registered parties. Oracle currently offers an additional

package, namely the SOA suite, which can be integrated

with the E-Business suite in order to promote enhanced

scalability. ERP applications can therefore be exposed on

the Oracle Service Bus (OSB) as services. These services

then interact with each other through a business process

design defined in BPEL. Recently, the key features of the

SOA suite became an integral part of the Oracle E-business

suite R12.1 package with the inclusion of the Oracle EBS

adapter which exposes pl/sql as services. However, these

added features are sold with different licenses which can

be very expensive to some organizations, especially those

in the government sector.

Microsoft offers a number of ERP solutions to suit various

customer needs, one of which that is known as a

comprehensive solution is Dynamics AX [2]. It employs

the three-tier architectural pattern, namely, client tier,

Application Object Server (AOS) tier, and database tier.

The client contains forms and reports code. AOS is used to

execute application objects such as classes and queries.

The database is normally used to store data for the ERP.

Microsoft Dynamics AX utilizes the Application

Integration Framework (AIF) to facilitate the integration of

application-to-application and also business-to-business.

AIF supports the creation of generic web services and also

document services; it also facilitates the consumption of

external web services from within Dynamic AX. Another

ERP solution provided by Microsoft is the Dynamics GP,

which is also based on a three-tier architectural pattern.

The application tier is composed of three main

components: the Dexterity tool and runtime, Dynamics

Application Dictionary, and SQL server. The Dexterity

tool is used to build the forms and also to attach scripting

code using sanScript to applications. The Dexterity

runtime environment is used to enable the execution of a

functioning application to end-users. This tool is therefore

responsible for the development and the execution of the

application interfaces. The Dynamics Application

Dictionary (DAD) is responsible for storing the business

logics in common component architecture such as COM+

and DCOM [6], so other distributed applications can use

them as service providers. The main design consideration

of this dictionary is to separate the presentation logic from

the actual business logic of an application, so services can

be accessed independently of any form or application of

the presentation layer. The workflow engine is not part of

the overall structure but Dynamics utilizes SharePoint to

provide this feature.

SAP ERP [3], known as SAP R/3, is another prominent

solution in the market. It is primarily based on a three-tier

architectural style: the presentation layer, the application

layer, and the database layer. The presentation layer

represents a tiny application, namely sapgui.exe, that is

usually installed on the client's machine. The application

servers, namely SAP Netweaver, host different SAP

services that execute code written in APAB/4 language. A

messaging server is responsible for routing requests

between applications and establishing a means of

interaction between them. The main modules exhibited by

SAP ERP are: Financials and Controlling (FICO), Human

Resources (HR), Materials Management (MM), Sales &

Distribution (SD), and Production Planning (PP).

It is apparent from the above that all the described ERP

solutions provide similar kinds of functionality and also

they share a common three-tier architectural pattern. The

three-tier architectural pattern can satisfy, to some extent,

the scalability requirement we described earlier; however,

it is not very efficient in terms of integrating services or

applications. Currently, the business logics are

implemented in the application tier in all the ERP

solutions. In Oracle ERP, some business logics are stored

on a database as well. So when there is a need to integrate

two or more applications or services together, there is a

need to either modify part of the application's code or write

an additional mediator application that establishes the

linking between the corresponding parties. Therefore, our

proposed solution to integrate workflow business in the

context can tackle this problem and solidify the application

layer. Moreover, it can satisfy the scalability and

integration requirements identified earlier. The mapping of

these solutions to our framework is given in Table 1 below.

Table 1: ERP solutions analysis

Layer Oracle

ERP

Microsoft

Dynamics

SAP

R/3

Data source × √ √

Business
implementation

√ √ √

Exposure × × ×

Communication × × ×

Policy √ √ √

Orchestration × × ×

The Oracle ERP does not adopt the principle of data

source where different types and technology of databases

can be used, as it is restricted to its own technology

platform. This is not the case in Microsoft Dynamics and

also in SAP R/3 as the database link layer is developed to

manage interconnectivity with any type of database

servers. None of the ERP products adopt the notion of

services where they decouple business logics from the

underlying environment. Currently every application must

be written in a specific programming language that sticks

to certain architectural specification. This adds extra

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 81

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

overheads when there is a future need for potential

development. All the three ERP solutions lack a well-

defined integration and communication layer that is

responsible for managing interactions and also finding

services. Microsoft Dynamics has a workflow engine that

defines how documents must be flowing within an

organization. However, the workflow engine is not

designed to facilitate the orchestration and integration of

applications or services.

It is obvious that all the ERP solutions focus mainly on the

functional side to satisfy business needs; however, an

architectural arrangement to support scalability and

flexibility is not considered in the original building block

of the system. These additional capabilities can be

obtained for an enormous additional cost even though they

play a significant role in enhancing the scalability and

flexibility of software systems within organizations.

6. Case Study

We selected Umm Al-Qura University (UQU) as a case

study for applying our framework as their environment is

somewhat complicated to manage and control. We have

worked at UQU in the IT deanship for more than three

years. We observed, throughout this period, a number of

challenges that hinder the university from fulfilling its

mission. Some challenges are related to the functional

capabilities of their systems while the majority relate to the

processes and integration of different systems. Therefore,

we decided to apply our study to the benefit of the

university in order to comply with the new emerging

business requirements.

Currently, one of the main objectives of UQU business is

to establish a fully integrated environment that supports e-

government business needs, so they need to have a

rigorous solution that promotes changes without

interrupting their daily working activities. Umm Al-Qura

University established its information systems in early

1995 to serve around 3,600 employees and nearly 40,000

students at that time. It owns old-fashioned systems based

on Oracle 6i for forms and reports that are built entirely on

client-server pattern. The major functional systems include

an in-house-built ERP, Student Information System (SIS),

Library Information System (LIS), and Healthcare

Information System (HIS). These systems are used today at

the university to serve around 75,000 students and more

than 7,000 employees with some enhancement to their

functionality. However, software systems at UQU still lack

many capabilities that become core-requirement nowadays

in terms of compatibility with different environments (e.g.

mobile devices) and also the services provided to students

and faculty members in the University. Moreover, with the

pioneering e-government movements within the region of

Saudi Arabia, it becomes necessary that organizations

apply major changes to their systems in order to

accommodate these new requirements, one of which is

process automation which solely requires splitting

functional aspects of an application from the process

aspects. Currently, modifications to add features to any of

the systems are done in an ad-hoc manner where the

application's code is modified to satisfy new business

requirements. Specifically, business processes are

implemented directly into the forms, confusing the

functional aspects of an application with the non-functional

ones. As a result, the complexity of UQU systems builds

up rapidly in a manner that will become very hard to

manage in the near future.

Our analysis of the main technologies used at UQU

revealed that it currently has three different environments:

SharePoint, PHP, and Oracle. Our proposed architecture is

meant to integrate all systems regardless in a technology-

neutral manner. The proposed system architecture for

UQU is given in Figure 2 below.

MS-IIS
Web Services

Data Access

ora

Oracle ERP Apps

SharePoint (Portal)

SQL
Server

Web based Services
(PHP)

MySQL

Consume
services

Active Directory

WWF/BPEL

Fig. 2 UQU‟s Proposed System Architecture

The figure illustrates the proposed architecture for

satisfying the business need of UQU based on the

resources that are currently available to the university. The

main objective of this solution is to promote a fully

integrated environment that facilitates internal and external

data exchange, in addition to promoting scalability for

future development. UQU currently owns a full package of

SharePoint 2010, an in-house built Oracle ERP solution, a

website and a number of services in PHP, and an Internet

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 82

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Information Server (IIS). In our proposed solution,

SharePoint is utilized to play two main roles: the web

presence and the service orchestration layer where business

processes are defined through windows workflow

foundations (WWF) provided by the SharePoint workflow

engine. Services are exposed to SharePoint through the

Microsoft-IIS layer where web services are defined.

Therefore every application must be wrapped and exposed

as a standalone web service that can be consumed by

SharePoint. This capability simulates the basic

functionality of an ESB for service integration and

management which represent the communication layer for

integrating the various applications in an organization.

SharePoint 2010 must work only on an SQL server, hence,

in this solution, we propose using the SQL server for

document flow management purposes without interfering

with the university database by any means. The resulting

architecture should promote a high degree of extensibility

and flexibility where different business processes within or

between departments become composable and fully

automated.

7. UQU Systems Migration Guideline

We referred partially to the SMART process [18] to help

us examining the feasibility of migrating UQU legacy

systems into the new SOA based environment. The

analysis uncovers a number of activities that need to be

conducted in order to implement the proposed solution,

they are:

 Re-factor applications in order to eliminate
potential decoupling applications from each other
so everyone can provide its standard set of
functionality without any reference to other
applications in the system.

 Extract stored PL/SQL procedures in the Oracle
DB and wrap them with containers to be exposed
as web services.

 Business logic must be separated from the Oracle
forms by following the Model-View-Controller
(MVC) architectural pattern. So, business logics
can be accessed from different views and not
restricted to a single usage. This might be achieved
through the migration to the ADF. So, extract the
source code from oracle forms and encapsulate
them in a well-defined business component (BC)
models that can be invoked directly by forms.
Thus, functionality that is embedded in forms can
be de-coupled in self-contained components.

 Establish the linkage between forms, BC web-
service, and PL/SQL web-service. So, forms can
be hardcoded to invoke BC services. However, BC

services must interact with the PL/SQL services
via a defined work flow in order to support
dynamic binding. So, no code must be used to
establish the linkage between services.

 The resulted web services must be exposed
through Microsoft-IIS that establishes messages
routing protocol between web services. The
Microsoft-IIS is considered as the service layer in
this scenario.

 Active Directory must be integrated to the service
layer in order to provide credential check and
assign basic privileges to users according to their
pre-defined profiles.

 Utilize the workflow (WF) engine provided by
SharePoint 2010 in order to implement business
processes. The implemented WF represents the
main thread of control that establishes the design
for consuming the exposed services. So, services
can be placed and executed in a sequence to fulfill
business requirements.

 The functional interface must be separated from
the architectural interface [19]. So, UQU team
must identifying the business logic such as data
link, connectors, and modules life-cycle control
code and separate them from the core functional
business logic. This helps to identify the potential
functional services that can be consumed directly
by clients and separate them from any supporting
services that may be related to the architecture of
the legacy system.

The above set of activities describes how UQU can

migrate their current applications to satisfy SOA basic

requirements. These activities are considered with the

assumption that UQU is going to utilize the current Oracle

application not only as black boxes but as components that

are not going to be modified in further.

8. Conclusion

This paper presented our proposed framework to evaluate

enterprise solutions in the market. The framework is based

primarily on the concept of SOA to define the different

architectural layers. Although this study was limited only

to three ERP solutions in the market, these solutions are

the most commonly known ones in the Saudi Market. The

paper has drawn organizations‟ attention to the idea of

investing in the process of defining software architecture

for their systems in order to generate a reference model to

fit different technology in the market to their business

needs. The next step in this research is to implement the

potential migrating roadmap resulted from this work to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 83

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

migrate the current systems at UQU to comply with the

defined framework.

Acknowledgments

The author would like to thank the IT dean Dr.Fahad Al-

Zahrani for supporting and encouraging this work. Also

special thanks to Mr.Ashraf Asfour who helped in

preparing data used in this research and facilitating

accessibility to the underlying system architecture. This

work would not be possible without the support of Umm

Al-Qura University.

References
[1] Oracle®, Oracle E-Business Suite Concepts, technical

report, Release 12.1 Part No. E12841-04, 2010.

[2] A. Luszczak, Using Microsoft Dynamics AX 2009, Vieweg

and Teubner, 2010.

[3] V. Kale, Implementing SAP R/3: The Guide for Business

and Technology Managers, SAMS, 2000.

[4] B. Wagner, E. Monk, Enterprise Resource Planning, Course

Technology, 2008.

[5] T. Erl, Service-Oriented Architecture (SOA): Concepts,

Technology, and Design, Prentice Hall, 2005.

[6] G.T. Heineman, W.T. Councill, Component-Based Software

Engineering: Putting the Pieces Together, Addison-Wesley

Professional, 2001.

[7] L.Bass, P. Clements, R. Kazman, Software Architecture in

Practice, Addison-Wesley, 2003.

[8] ISO/IEC. IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems. IEEE Std 1471.

2000, Accessed 11 - 2008, Available from:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00875

998.

[9] A. Jones, The Maturing of Software Architecture. In

Software Engineering Symposium.1993.Software

Engineering Institute.

[10] M. Shaw, D. Garlan, Software Architecture: Perspectives on

an Emerging Discipline, Prentice Hall, 1996.

[11] D. Garlan, D. Perry, Introduction to the Special Issue on

Software Architecture. IEEE Transactions on software

Engineering, 1995. 21(4): p. 269-274.

[12] D. Budgen, Software Design, second edition, Pearson

Addison-Wesley, 2003.

[13] R. Allen, A Formal Approach to Software Architecture,

PhD Dissertation, Carnegie Mellon University, 1997.

[14] C. Szyperski, D. Gruntz, and M. Murer, Component

Software - Beyond Object-Oriented Programming. 2nd

edition, Addison-Wesley (ACM Press), 2002.

[15] D. Garlan, A. Allen, and J. Ockerbloom, Architectural

Mismatch: Why Reuse Is So Hard. IEEE Software, 1995.

12(6): p. 17-26.

[16] D. Yakimovitch, J. Bieman, and V. Basili, Software

architecture classification for estimating the cost of COTS

integration. In Proceedings of the 21st international

conference on Software engineering 1999. IEEE Computer

Society Press.

[17] ELECTRONIC SOURCE: R. Malveau, Bridging the Gap:

Business and Software Architecture, Part 1, 2004, Cutter

Consortium,www.cutter.com/research/2004/edge040203.ht

ml, accessed in 2012.

[18] L. Grace, M. Edwin, S. Dennis, and S. Soumya. SMART:

Analyzing the Reuse Potential of Legacy Components in a

Service-Oriented Architecture Environment (CMU/SEI-

2008-TN-008). Software Engineering Institute, Carnegie

Mellon University, 2008.

http://www.sei.cmu.edu/library/abstracts/reports/08tn008.cf

m.

[19] B.Y. Alkazemi, A Precise Characterization of Software

Component Interfaces, Journal of Software, Vol 6, No 3

(2011), 349-365, doi:10.4304/jsw.6.3.349-365, Mar 2011.

Basem Y. Alkazemi is an assistant professor at Umm Al-Qura
University (UQU) in Saudi Arabia under the school of computer
science & Engineering. He obtained his PhD in 2009 from
Newcastle University in U.K. His PhD topic was concerned with
addressing the complexity of re-using open-source software
components. Basem is currently holding the position of vice dean
of IT deanship for e-government at UQU. One of his main duties is
to establish a framework that leads to the integration of all the
university software systems in a unified model. He is a member in
the IEEE, SIGSOFT-ACM, and SEI societies. His main research
interests include software architectural patterns, software product
lines, Aspect-oriented SE, SOA, and CBSE.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 84

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.sei.cmu.edu/library/abstracts/reports/08tn008.cfm
http://www.sei.cmu.edu/library/abstracts/reports/08tn008.cfm

