
Performance analysis on data access patterns in layered
Information Systems, an Architectural Perspective

GholamAli Nejad HajAli Irani1, Zahra Jafari2

1 Faculty of Engineering, University of Bonab
Bonab, 5551761167, Iran

2 Department of Computer Engineering, Islamic Azad University, Tabriz Branch
Tabriz, Iran

Abstract

Layered architectures are the main architectures that are used in
architecture of Information Systems. Data Access Layer (DAL) is
a common layer in all layered architecture of Information
Systems. One of the most important steps in architectural design
of information systems is designing the DAL. More than 20 Data
Access Patterns (DAP) have been developed for DALs. So
providing a DAL based on existing DAPs is major activity in
architectural design. Therefore an architect should be familiar to
all existing DAPs and their evaluation parameters.
Performance is one of most important parameter in architecture
evaluation. In this paper, different aspects of performance of
existing DAPs have been investigated and analyzed. To obtain
this aim, firstly, a new classification has been provided for
categorizing all DAPs based on architectures difference of them.
Secondly, a simulation program as named DALSim has been
developed for measuring performance of all DAPs. Finally, some
comparisons of DAPs have been provided based on DALSim
results.
Based on provided classification for DAPs and performance
comparison results of them, architects of information systems can
easily compare and evaluate existing DAPs. With fully
development of provided results in other aspect such as
modifiability, extensibility, security etc., a complete framework
for all DAPs can be provided.
Keywords: Layered Software Architecture, Layered Information
Systems, Data Access Patterns.

1. Introduction

The most important problem in developing large scale
software is its architecture. Architectural styles assist the
architects in presenting their architecture and make some
simplicity in transition of experiments from experts to the
students. Layered architecture as one of the architectural
styles, widely used in Information Systems [4]. Different
types of layered architectures such as 3 layer architecture
[1], 5 layer architecture [2] etc., have been provided as yet.
Data Access Layer (DAL) as a common layer exists in all
types of layered architecture. There are some various

methods to implement DALs that named Data Access
Patterns (DAP).
More than 20 DAPs for Information System have been
provided. Therefore in the content of DAPs, it is necessary
to provide an evaluation framework for all existing DAPs.
For providing an evaluation framework for all DAPs, all
aspect of them such as extensibility, performance,
modifiability, security etc, which are named quality
attributes should be considered.
To obtain this aim, some steps as named DALFra-Process
have been provided as following:

1- To investigate concepts of data access layer and its
responsibilities and other related concepts.

2- To collect and classify all existing DAPs for
information systems.

3- To collect quality attributes that affect on different
aspects of DAPs.

4- To investigate measurements on each quality attribute
and evaluate each of them.

5- To provide a general evaluation framework for all
DAPs.

6- To provide guidelines to use and evolution of
provided framework.

Performance is one of the important quality attributes in
software architecture. In this paper, because of the large
size of works to reach that mentioned framework,
performance analysis of that has been provided.
To obtain this aim, first of all, step 1 and 2 of DALFra-
Process have been done completely. Then a new
simulation program as named DALSim has been written.
So performance analysis on each DAP have been provided
using the DALSim and measurement diagram of
performance analysis of each other have been presented as
results of this paper.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 66

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2. DAL, DAP and Persistence

All layered architectures for Information Systems have
used three base layers [1]. Firstly, User-Interface (UI) layer
is responsible for communications between outside and
inside the software system. Secondly, Business Logic
Layer (BLL) performs all logics about the steps of
software processes and usecases. Thirdly, Data Access
Layer is an interface between Database System (DBMS)
and internal layers (BLL and UI). Basically none of the
other layers can directly access to DBMS and all
functionalities on DBMS should be perform by the DAL.
Basic functionalities of DBMS are CRUD functions [5].
So each DAL should perform CRUD functionalities. On
the other hand, authentication and authorization of BLL
classes should perform by the DAL as well.
Finally, the major responsibilities that each DAP should
perform [5] are as following: CRUD functionalities,
connecting to DBMS, disconnecting from DBMS,
managing code based transactions, handling all DAL
exception, etc.
Some architectural styles have been developed for DALs
which were named Data Access Patterns. In [6,7] more
than 20 patterns have been gathered. Software architects
can use each of DAP in their architectures.
Persistence so called Persistence Framework (PF) is
software package or components that can be used as a
DAL in Information Systems architecture. In [8,9] more
than 50 PF can be found.
Persistence and DAPs are different. PFs are software
packages similar a platform for DAPs. It means that each
DAP can be implement with a PF. For example Hibernate
[10] is most famous PF for java platforms and each DAP
can be implementing with Hibernate.

3. Data Access Patterns Classification

Software architecture is a fundamental organization about
components [11]. More than 20 DAPs have been provided
for information systems [6,7]. So, based on architectural
perspective and after an investigation in to these patterns
we reached to a general classification in a way that every
pattern is falling in one of these categories.
DAP0: Patterns with no data access layer. In these patterns
all of BLL classes perform their functionalities to DBMS
by themselves. Advantages of these patterns are
performance which may be used in real time systems. An
instant of this category is introduced in [6] by the name of
“Transaction Script”. The model of DAP0 is shown in
figure 1.
DAP0Sp: this is DAP0 with difference that BLL classes
use Stored Procedures to fetch data and alter them instead
of connecting directly to the database. In enterprise

information systems where problem domain is very vast
and there are complicated use cases, using this methods
will make a big problem in development process.

class DAP0

Data TierData Access Layer (DAL)Business Logic Layer (BLL)User Interface (UI)

DatabaseBLLClass

+ CRUD() : void

UIClass

+ CRUD() : void

«flow»

«flow»

Fig. 1 DAP0, without any DAL.

DAP1: It encapsulates access to the database. In these
patterns, using one or more classes in data access layer,
implementation details like database name, server name,
user name and password are kept hidden from upper layers.
Now all of BLL classes use these classes to communicate
with database. There are methods defined in DAL classes
to perform requests coming from BLL classes including
create, read, update and delete (CRUD) operations. This
pattern is like “Metadata Mapping” introduced in [6]. In
these patterns an interface between BLL and DAL has
defined supporting all data access methods and for each
database type a class has been created and inherited from
that interface [7]. The model of DAP1 is shown in figure 2.
DAP1T: same as DAP1 except that this kind of pattern has
two methods (we call them “Begin” and “End”) in order to
support transaction. These two methods are used to start
and finish transactions. CRUD operations are executed
after a transaction has started (by calling Begin method)
and at last it will be finished (by calling End method). The
whole transaction will be done (commit state) or rejected
(rollback) if there were errors. In the case of rollback,
relevant error message will be presented to user and all
changes to database (affiliated by this transaction) will be
rolled back.
DAP2: In this pattern, for each table in the project, a class
will be created (we call them “Entity” classes) and CRUD
operation for that table performed by its class. Advantage
is that one can put syntactical and access control on each
table separately. This pattern is introduced as “Table data
gateway” in [6]. The suggested model of DAP2 is shown
in figure 3.
DAP2F1: for setting better control and stronger security
and also respecting to modularity principal, this pattern has
some improvements to DAP2.
In order to give permission to an entity to select data from
other entity classes, this pattern define a “Finder” class for
each entity class and gather them in a common layer
(accessible to all of entity classes). Finder is responsible

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 67

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

for selecting data from its respective entity and serves all
of entity classes [6].
DAP2F2: same as DAP2F1 except that we have just one
general Finder class able to select data from all entity
tables and serve all entity classes [7].

DAP2F1Sp and DAP2F2Sp: implemented with stored
procedures (for higher performance) and DAP2T:
supporting transactions.
With the same concept DAP2F1T, DAP2F2T,
DAP2F1SpT, DAP2F2SpT can be defined.

class DAP1

Data TierData Access Layer (DAL)Business Logic Layer (BLL)User Interface (UI)

Database
BLLClassUIClass DBAccessor

+ CRUD() : void«flow»

«flow»

«flow»

Fig. 2 DAP1: Hiding details of DBMS by a DBAccessor Class.

class DAP2

Data TierData Access Layer (DAL)Business Logic Layer (BLL)

Database

Entity1

+ Add() : void
+ Save() : void

BLLClass
DBAccessor

+ CRUD() : void

Entity2

+ Add() : void
+ Save() : void

Entity3

+ Add() : void
+ Save() : void

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

Fig. 3 DAP2, Access to each data via its entity class.

DAP3: similar to DAP2, this pattern is using entity classes
for tables. The difference is that respecting to object
oriented heuristics all CRUD methods are implemented in
a common class and all entity classes inherit these methods
from that. Adding support for transactions, implementing
with stored procedures and separating Finder classes from
entity classes are possible in this pattern to define new
patterns. “Object-Relational Metadata Mapper” pattern
introduced in [6] falls in this category. The model of DAP3
is shown in figure 4.
DAP3M: same as DAP3 except that all of the Meta-data of
the tables and fields are stored and the parent class which
all entity classes are inherited from that can check validity
of table names, view names, field names and data type and
so on, using this Meta-data. Meta-Data holds schema

information including the information of tables, views and
their ID’s. Every module has several tables or views each
having names and aliases. Each table or view has several
fields. In this pattern parent class is able to create CRUD
executable statements dynamically. The model of DAP3M
is shown in figure 5.
DAP4M: unlikely DAP2 and DAP3 this pattern doesn’t
create an entity class for each table. In order to improve
extendibility and modifiability this pattern uses Meta-data
(like DAP3M) and defines some general classes in DAL to
do all tasks. In this pattern when a BLL class wants to do a
CRUD operation, sends all information (table name, fields
name and values and action) to DAL and then validity of
information are checked. If all information were valid, an

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 68

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

executable statement (depending on request) has made
dynamically and execute.

“Layer supertype” pattern introduced in [6] is like this
pattern. The model of DAP3 is shown in figure 6.

class DAP3

Data TierData Access Layer (DAL)Business Logic Layer (BLL)

Database

Entity1

+ Add() : void
+ Save() : void

BLLClass
DBAccessor

+ CRUD() : void

Entity2

+ Add() : void
+ Save() : void

Entity3

+ Add() : void
+ Save() : void

BaseEntity

Add() : void
Save() : void

«flow»

«flow»

«flow»

«flow»

«flow»

Fig. 4 DAP4: All entity classes inherit from a base entity class.

class DAP3M

Data TierData Access Layer (DAL)Business Logic Layer (BLL)

Database

Entity1

+ Add() : void
+ Save() : void

BLLClass
DBAccessor

+ CRUD() : void
Entity2

+ Add() : void
+ Save() : void

Entity3

+ Add() : void
+ Save() : void

BaseEntity

Add() : void
Save() : void

Data Tier::
Database::
MetaData

MetaData Reader

+ GetMetaData() : void
«flow»

«flow»

«flow»

«table» MetaData

«flow»

«flow»

«flow»

«flow»

Fig. 5 DAP3M: DAP3 with Meta Data functionality.

class DAP4

Data TierData Access Layer (DAL)Business Logic Layer (BLL)

Database

BLLClass
DBAccessor

+ CRUD() : void

BaseEntity

+ Add() : void
+ Save() : void

Database::
MetaData

MetaData Reader

+ GetMetaData() : void«flow»

«table» MetaData

«flow»

«flow»

«flow»

«flow»

Fig. 6 DAP4, fully meta data based pattern.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 69

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

All categorized patterns shown in table 1.

Table 1: Provided category for all existing DAPs.

Code Description

DAP0 These methods don’t use any data access layer and any parts of code directly connect to database. Due to high
performance, these methods mostly are used in real time systems.

DAP1 These methods use one or more classes in data access layer to encapsulate database access details.

DAP2 These methods use DAP0. Also one entity class is created for each table in database and all CRUD (Create,
Retrieve, Update and Delete) methods on this table are handled by its entity class.

DAP3 These methods are similar to DAP2 and entity classes are created for each table, but based on object oriented
heuristics, all CRUD methods implemented in one class and other entity classes inherit from it.

DAP3M These methods like DAP3, but metadata of all tables are stored in database as well. All entity classes inherit
from Base Class. It create SQL command dynamically and manage them using stored metadata.

DAP4
In these methods unlike DAP3 and DAP2, entity classes for each table are not created. To gain excellent
extendibility and modifiability (like DAP3M), metadata of all tables is stored in database and one or more
classes perform all CRUD methods for all tables.

4. Performance Analysis

The time needed to response to an event or which events in
one period of time are defined as performance [12]. For
measuring performance of DAPs, there are different
parameters can be affected. But with the architectural
perspective, communications take longer time in
comparison with computations. So, just components and
relations among them have been considered in
measurement of performance.
Two types of components exist in architecture of DAPs.
Firstly, existing classed that make the each DAP and
secondly components of DBMS that can be Stored
Procedures (Sp) or Triggers or Functions that are written
in DBMS.
For measuring and comparing performance of existing
DAPs, a new simulation application that named DALSim
has been developed. All source codes of DALSim are
available at [13]. For comparing performance of each DAP,
all CRUD functionalities should be implemented. Due to
long working of implementing all CRUD functionalities,
all DAPs implemented just for Insert operation.

4.1 Architecture Difference

First aspect on analysis of DAPs is difference in their
architecture. For analyzing them, some evaluation charts
have been provided based on our simulation application
(DALSim). In DALSim, the time of running each DAP
tested 20 times. So the median number of 20 times has
been calculated. In all charts, X-axis is number of Insert
operation times and Y-axis the time of Insert operation per
second. Figure 7 shows the comparison of one class
difference in architecture.

Fig. 7 Evaluation chart for one class difference in architecture.

DAP3 and DAP4 have most classes in comparison with
DAP0. MVSDAP [14] as a new pattern that is kind of
DAP4 is implemented in DALSim. Figure 8 shows the
comparison of architecture in minimum and maximum
class difference in architecture.

4.2 Stored Procedure Difference

Second aspect of analysis of DAPs is difference in using
the written functions or Stored Procedures in DBMS. By
the use of Stored Procedures, Business Login of processes
and usecases is transferred into DBMS [3]. In this case,
DAL is removed from the architecture and all Stored
Procedures in DBMS can directly connect to each data and
manipulate them and it is disadvantage of using Stored
Procedures.
Because of difference in architecture, new software
application as a simulator has been developed and source
code of it available at [15]. For evaluating this method,
DAP2 as an average mode of classes is compared with

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 70

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

DAP2Sp. Figure 9 shows the evaluation chart of DAP2
and DAP2Sp. In this chart as shown in figure 9, scope of
ranges is selected 1000. DAP2Sp is much faster than
DAP2, so in 10000 instances, difference is approximately
15 seconds.

Fig. 8 Evaluation chart for minimum and maximum class difference.

0
5

10
15
20
25
30
35

10
0

10
0
0

20
0
0

30
0
0

40
0
0

50
0
0

60
0
0

70
0
0

80
0
0

90
0
0

10
0
0
0

DAP2Sp

DAP2

Fig. 9 Evaluation chart for use and non use of Stored Procedures.

5. Conclusion and future works

In this paper towards a general framework for existing
DAPs some steps has been suggested. Then in order to step
1 and 2, by the analysis of concepts and the architecture of
all DAPs, a new classification for all existing data access
patterns has been provided based on architectural
perspective and all DAPs can be placed in it.
So, performance as a major quality attribute of any
evaluation framework has been selected. Then, for
analyzing the performance of DAPs, new simulation
software has been developed and performance of existing

DAPs has been measured. Afterwards, evaluation charts of
performance analysis are shown.
For the future works, by the use of the process used, other
quality attributes of DAPs such as extensibility,
modifiability, security etc, can be provided. Completing
the proposed framework, it can help software architect to
evaluate and select their sufficient DAP for their
architectures.

References

[1] D. Alur, J. Crupi, D. Malks, Core J2EE Patterns, Best
Practices and Design Strategies, Second Edition, Sun
Microsystems Inc. 2003.

[2] R. Lhotka, Expert C# 2008 Business Objects, Apress, 2008.
[3] L. Fischer, BPM Excellence in Practice 2009: Innovation,

Implementation and Impact Award-winning Case Studies in
Workflow and Business Process Management, Future
Strategies, Incorporated, 2009.

[4] P. D. Sheriff, Fundamentals of N-Tier Architecture, PDSA,
Inc., 2006.

[5] S. K. Rahimi, F. S. Haug, Distributed Database Management
Systems: A Practical Approach, IEEE Computer Society,
2010.

[6] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R.
Stafford. Patterns of Enterprise Application Architecture,
Addison Wesley, 2002.

[7] C. Nock. Data Access Patterns: Database Interactions in
Object-Oriented Applications, Addison Wesley, 2003.

[8] C# Persistence Layer Source Codes, available online at:
http://Csharp-source.net/persistence.

[9] Java Persistence Layer Source Codes, available online at:
http://Java-source.net/persistence.

[10] G. Reese. Java Database Best Practices, O'Reilly, 2003.
[11] Recommended Practice for Architectural Description of

Software Intensive Systems. Technical Report IEEE P1471-
2000, IEEE Standards Department, The Architecture
Working Group of the Software Engineering Committee,
2000.

[12] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies, Addison Wesley,
2002.

[13] Data Access Layer Simulator (DALSim) source code
available online at:
http://www.4shared.com/rar/E2Vzoa8U/DALSim-
Source_Codes.html.

[14] G. Nejad HajAli Irani, V. Tawosi, MVSDAP: a new
extensible, modifiable and secure data access pattern for
layered Information Systems, International Journal of
Computer Science Issues, Vol. 9, Issue 2, No 1, 76-84, 2012.

[15] Stored Procedure Based simulation source codes available
online at: http://www.4shared.com/rar/V9fW0Pri/DAP2-
DAP2SP.html.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 71

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

