
New Modular Software Development Principles, a decentralized
approach

GholamAli Nejad HajAli Irani

Faculty of Engineering, University of Bonab
Bonab, 5551761167, East Azerbaijan, Iran

Abstract
Modularity is a critical issue in large-scale software systems. For
example more than 1200 Content Management Systems (CMS)
have been developed as yet and any CMS consists of numerous
modules and lots of modules have been developed and they
cannot use modules of each other. It is due to lack of modularity
parameters such as extensible, modifiable and flexible etc.
In this paper, new modular software development principles have
been provided. To obtain this aim, firstly all problems of existing
approaches have been investigated and categorized as the
requirement list. Secondly, for solving these requirements, three
new modular principles have been provided. Then two case
studies have been investigated to show the applicability of
provided principles. Finally, to evaluate provided principles, is
shown that new principles can cover all disadvantages of existing
approaches.
New provided principles can be used in any scopes of
information systems such as Service Oriented Platforms and any
large-scale modular software.
Keywords: Modular Software Architecture, Quality Attributes,
Object Oriented Design.

1. Introduction

Modularity as an object oriented principle helps to have
extensible, modifiable and flexible software. To have
maximum quality of modularity, maximum amount of
cohesion and minimum amount of coupling are needed [1].
Based on [1], the biggest problem in modular development
is decomposability problem, means that decomposing each
system to parts that are independent from each other is so
difficult [1]. So the big trade-off has been made between
being modular and modular decomposition. Therefore
quality of modularity may be affected.
As increasing variety and complexity of software systems,
some methodologies have emerged to overcome their
complexity, such as Structural or Process-Centered
methodologies, Object-Oriented methodologies and Agent-
Oriented methodologies etc.
On the other hand, as increasing the scale and complexity
of software systems, two thought schools have been used.
The Centralized approach and The Decentralized approach.
Each methodology can use Centralized thinking or

Decentralized thinking or both of them. In the centralized
approach, the critical and common parts of data or
functionality have been collected in the central part called
the Core or Kernel and the major functionalities of system
have been performed or managed by the Core.
In most methodologies and software centralized
approaches have used. As increasing the scale and
complexity of software, scale and complexity of Core is
increasing as well. Then management of Core is turned to a
big problem. Therefore as increasing scale of Core, the
Core can turn a GOD module [2]. Therefore quality of
modularity may be affected.
The number of software companies is increasingly being
larger. So, nowadays, there are some various solutions and
patterns for any given problem. For example for Content
Management Systems (CMS) [3] in Web Applications,
more than 1200 CMS have been provided [4] and each
CMS consist of some module [3]. For example, Drupal has
more than 8700 modules [5].
Therefore, for CMS domain, there are some variety of
solutions and same implementation of them. For another
example there are more than 30 Accounting Systems and
each of them consists of some modules [6]. Similarly, there
are some same implementations and same solutions for
Accounting Systems area. Likewise, this problem exists in
some scopes of software systems. Therefore quality of
modularity may be affected.
In this paper, to reach a highest modularity, new modular
principles have been provided based on decentralized
approach and using object-oriented principles and
heuristics. To obtain this aim and in order to solving the
modularity problem and increase the quality of modularity,
following steps have been provided:

1. To investigate and categorize the problems of
current approaches.

2. To analyze and investigate different aspects of
modularity

3. To provide new modular principles to solve
modularity problems.

4. To present a case study to show the abilities of
provided principles.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 61

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. To prepare guidelines for using of provided
principles.

2. Problems of current approaches

Considering that there are several patterns for any problem
in software engineering, increasing the scale of software,
leverages the scale and complexity of Core in turn.
Therefore Core turned to be a God-Class [2].
There are many heuristics to manage and decrease the
complexity of God-Classes [2]. But in general, with
increasing the scale of software, the complexity of Core
increases as well and the modifications and extensions on
Core may affect other modules. All of these disadvantages
originate from the centralization of Core. In the remaining,
the problems and disadvantages of centralization have
been investigated and categorized.

Req1.1: Simple and small-scale modules have to obey the
current patterns in Core. So the time required to develop
them will increase and the dependency between modules
and Core will increase as well. Therefore installing small-
scale modules in other systems will be harder and hence
portability, integrability and reusability of modules
decrease and finally cause to decrease the modularity of
modules.
Req1.2: Generally speaking, the patterns placed in Core
are not complete certainly and they may not be suitable for
developing large-scale modules. So, we may be forced to
develop a new pattern in the development of large-scale
modules. So, similar Req1.1 portability, integrability and
reusability of modules decrease.
Req1.3: Modules are not free in selecting their patterns,
but instead they are forced to use the Core’s patterns. So,
in order to use a written module in another system, we
must change all connecting protocols. Therefore the
portability and integrability of modules decrease. Due to
Req1.1, Req1.2 and Req1.3, in the centralized approaches
written modules for a Core are deeply depending on Core.
So each modification in Core may affect all modules.
Req2: All approaches, patterns or management
mechanisms of Core may vary with the modules. So
modules and the Core itself don’t need to know their
mechanisms (so called Big Picture). Therefore if Core and
modules be aware of the structures and patterns of each
other, the security of system may be compromised and it
may oppose the encapsulation principles of object oriented
principles.
Req3: Due to the centralized thinking and collecting
common parts and codes in Core and the dependency of
modules on Core, performing a Unit Test on modules may
be hard as the quality of testability is decreased.

Req4: Due to the centralized thinking and collecting
common codes in Core and the dependency of modules on
Core, each extension and modification in the Core my
affect all modules of system. So, the modifiability and
extensibility of modules are decreased.
Based on the centralized approach, module development
performs quickly. But centralization has some other
problems which finally reduce the modularity of modules
and system. All these problems besides the affected quality
attributes are shown in table 1.

Table 1. Quality attributes affected by the Centralized approach.
LEGENDSRPITM

M: Modifiability;
T: Testability;
I: Integrity;
P: Portability;
R: Reusability;
S: Security.

xxxReq1.1

xxxReq1.2

xxReq1.3

xReq2

xReq3

xReq4

3. Modular Principles

Surveying the problems of table 1, some modular
principles are needed which will help to develop new
architectures to solve the current problems. In this section,
five new principles have been provided to obtain maximum
quality of modularity.
In [1] five rules and five fundamental principles have been
provided for modular software. But the principles have
been defined in a high abstraction level and are more
general. But more detailed principles are required.
Based on the object oriented principles and heuristics [2]
and the five modular principles in [1], three strategies can
be identified to help us to approach the main goal that is to
achieve the highest modularity. These are as the followings:

1. To minimize the Core: with the decentralized
approach and to decrease the scale of Core,
dependencies of modules on Core are lowering as
well. Then modifications and extensions in Core
may have minimum effects on modules. With this
strategy the complexity of Core can be distributed
among modules.

2. To minimize the modules inter-relationships: to
increase the independency of modules, that is; such
structures and architectures must be suggested that
minimize the relationships and direct access among
modules. Therefore the modularity of modules
increases.

3. To standardize the external visibility of all modules
and the Core per se. All modules and Core and their
relationships have to use standard interfaces. These

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 62

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

standards should be defined for any given
information system.

3.1 Decentralize Principle

The most important problem in the centralized approach is
God-Classes [2] and with increasing the scale of software,
the scale of Core increases as well and Core turns to be a
God-Module.
God-Modules can be defined as similar God-Classes which
are so large scale in data and functionality compared with
other modules. There are several object oriented heuristics
for the management of GOD-Classes and other object
oriented problems [2]. But they are about classes and
objects.
Everything can be an object [7], so a module can be
considered as an object. Then object oriented heuristics
can be applied on the modules to overcome the complexity
of God-Modules in the modular software. For example by
analyzing the concepts of encapsulation principle [7] and
object oriented heuristics H2.1 and H5.3 from [2], we can
say that each module must manage all its data by itself and
no part of the program has right to access any module’s
data, except with their permission.
Data of modules can be files, database records or their web
services etc. For example, a module can have several files.
Each platform for this module should hold the files so that
other modules could not access to those files. Based on the
encapsulation principle, each module must be able to set
Private, Public, Protected and other tags to its own data in
any level of abstraction. Therefore, new modular
architecture may arise such as Modular File Access System,
Modular Service Access System, and Modular Data
Access System and so on.
So, to gain maximum quality of modularity the first
principle has been provided based on these points:

1. In order to decentralize approach, each module
should perform its functionalities itself.

2. To resolve God-Modules of software [2] and
distribute Core complexity among modules.

3. To reduce dependencies between Core and modules
[1], Core must be minimizing.

4. Due to H2.8, H2.9, H2.10, H3.1 and H3.2, each
module should perform its functionalities itself.

Finally, the first principle is as given below:
P1: All functionalities of each module have to be rendered
with and within it.

3.2 Pure Modular Principles

To have maximum quality of modularity, modules
coupling should be minimized and modules must have

minimal dependencies. To capture this issue, the
architecture of human body can be used. One of the most
important points in the architecture of human body is that
there are not any direct relationships among the modules of
human body and all relationships are presented by the
blood vessels and the modules do not know about the other
modules’ functionalities. There are some standard
compounds like Hormones in blood which modules can
either consume or produce (some of) them.
Accordingly, to obtain maximum modularity, the structure
can be used that there is no direct relationship among the
modules and modules know nothing about each other and
just use standard compounds.
In the other hand, by the analysis of object oriented
heuristics H2.2, H2.3, H2.4, H4.1, H4.2, H4.3 and H4.4
from [2] and principles of [1], all relationships and
interfaces should be minimized for a robust object oriented
system. At best, there would be no direct relationships
among the modules and all modules just depend on
standard interfaces.
Therefore, two critical points arise from this issue. Firstly
the architecture can be designed in a way that modules do
not have direct relationships with each other. Secondly the
architecture can be designed in a way that modules do not
know about other modules’ functionalities. So, in order to
have pure modular systems, the following two principals
have been provided:
P2: There should be no direct relationship among the
modules.
P3: Modules are not aware of any other modules existence,
functionalities and data.
In order to minimize dependencies among modules and
considering P2 and P3 on the decomposition approaches of
methodologies, one may reach at guidelines or principles
that help the betterment of modular decomposition.
All new principles are shown in Table 2.

4. Case Studies

Using provided principles in software development
lifecycle, strongly affected on the architecture of software.
But the Core cannot be eliminated. In any way, modules
should communicate each other, but not directly and the
architect of system has to use architectures that support and
observe provided principles. For example, some type of
event-driven architectures [8] captures some aspects of
provided principles. In the reminder some case studies
have been provided to show the applications and
advantages of provided principles.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 63

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 2. New provided principles.
PrincipleStrategiesMain Goal

P1: All functionalities of each module have to be captured
with and within it.

- Decentralize Core complexity among modules.
- Decrease the dependency of modules to Core.
- Beware of the creation of God-Modules.To reach

maximum
modularity

P2: There should be no direct relationship among the
modules.

P3: Modules are not aware of any other modules’
existence, functionalities and data.

- Minimize relationships among modules
- Minimize dependency among modules
- Possibly help to have so modular decomposition.

4.1 Authorization

There are some patterns for performing the Authorization
[9]. Nowadays in most information systems, all
Authorization functionalities are performed by the Core
with the centralized approach and all Authorization
patterns and methods are gathered in the Core which in
turn increases the module dependencies to Core. Based on
P1 and the concepts of authorization [9], each module
authorization is a part of its tasks. Therefore the
complexity of Authorization in Core can be distributed
among modules.
However, Cristian and Gabriela showed that by
distributing the security functions, a more flexible
architecture can be designed that would lower the costs
associated with implementation, administration and
maintenance [10]. But in most software and Information
Systems Centralized thinking have been used.

4.2 Search-Module

Search-Module is responsible to collect search result from
whole system for any given title. In most software systems,

Search-Module implemented completely in the Core and
all functionalities of Search-Module such as reading
directly data from module’s data, search optimization,
authorization functionalities for requested user etc.,
perform into the Core.
However, based on P1, all functionalities of Search-
Module should be distributed. On the other hand, based on
P2 and P3, Search-Module should not aware other modules
existence.
For those reasons, the architecture of Search-Module
should change. Based on P1 and as regards that Search is
standard functionalities of each software system, all
modules should perform search functionalities within itself.
When a user wants to search a title in system, this request
can sent to the Core by the Search-Module. Then the Core
can send the getSearch request to all existing modules.
Each module is able to response to this request. So, the
Core deliver search results of each module to Search-
Module.
Finally, Search-Module can render all received search
result and display the final result to user. The overall
suggested architecture is shown in figure 1.

class Architecture

Core

System Modules

Core Modules

Themes Manager

MultiLanguage Manager

Search Manager

SiteMap Manager

Message Bus

User Interface

Admin

EndUser

Depo

Seller

Accounting

Other Modules

FrontEnd Interface

BackEnd Interface

Fig. 1 Suggested architecture for Core’s modules such as Search Module.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 64

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

By the observing provided principles, Search-Module is
not depending on system modules. Search module sent the
getSearch request via Message-Bus package. Therefore, if
any system module add or remove from the system,
Search-Module will not change anyway. In the other hand,
Search-Module should be an interface standard of a system
and any system module must know about that Search-
Module standard interface. So, system modules depend on
Search-Module just in standard interface.
Using this method, some other operations can be
performed with the same method. For example in Site Map
Module, similar search module, each module should
response the getSiteMap request that is sent from the Core
to all modules and Site Map-Module after receive all result
from the Core and render them, can display the Site Map.
Other examples can similarly be Language Manager-
Module, Themes Manager-Module etc.

5. Evaluation

Based on fully observing provided principles and as
establishing a new standard interface for Core and modules
communications, the modularity of each module and whole
system were increased to higher degree. Totally, by the
observing provided principles in architecture design steps
or existing architecture, all the mentioned quality attributes
of modularity will be improved. Table 3 shows that how
categorized requirements captured by provided principles.

Table 3. Requirement list is captured by provided principles.

Description Captured
Requirements

Modules are independent in selecting their
own patterns. They just have to consider
Core’s standard interface.

Req1.1,
Req1.2, Req1.3

Each module can access just its contents
and modules encapsulation and security are
increased.

Req2

Since modules are not dependent to Core,
unit test of each module can perform easily
far from the Core.

Req3

Modules are free to choose their patterns
and we don’t need to collect all patterns in
Core.

Req4

6. Conclusion

In this paper new software development principles have
been provided to increase the modularity of architectures.
To have maximum quality of modularity, maximum
amount of cohesion and minimum amount of coupling are
needed. Observing provided principles coupling among
modules minimized as possible and Core complexity

distribute between modules based on robust object
oriented thinking and dependency between modules
decrease saliently and turn existing systems to more
modular systems. So module development will take extra
effort than before. Although it could be a disadvantage in
comparison with centralized systems, this extra effort is
worth benefiting of being decentralized.
By the use of provided principles software architects can
improve some quality attributes of their architecture such
as modifiability, extensibility, portability etc. New
provided principles can be used in other scopes of
information systems such as Service Oriented Platforms
and any large-scale modular software.

References
[1] B. Meyer, Object Oriented Software Construction, Second

Edition, Prentice Hall International Series in Computer
Science, 1994.

[2] A. J. Riel, Object-Oriented Design Heuristics, Addison
Wesley, 1996.

[3] B. Boiko, Content Management Bible, 2nd Edition, Wiley
Publishing, Inc., Indianapolis, Indiana, 2005.

[4] The Content Management Comparision Tool, available at
http://www.cmsmatrix.org.

[5] Drupal, Open Source CMS, available at
http://Drupal.org/Project/Modules.

[6] Comparisions of Accounting Softwares, available at
http://en.wikipedia.org/wiki/Comparison_of_accounting_soft
ware.

[7] G. Booch, R. A. Maksimchuk, M. W. Engel, B. J. Young, J.
Conallen, K. A. Houston, Object-Oriented Analysis and
Design with Applications, 3rd Edition, Addison-Wesley
Professional , 2007.

[8] G. Mühl, L. Fiege, P. Pietzuch, Distributed Event-Based
Systems, Springer-Verlag Berlin Heidelberg, 2006.

[9] Microsoft Corporation, Building Secure Microsoft ASP.NET
Applications Authentication, Authorization, and Secure
Communication, Microsoft Press, 2003.

[10] C. Opincaru, G. Gheorghe, Service Oriented Security
Architecture, 2008.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 65

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

