
 CRACKING THE ENCRYPTION KEY FROM AUTO GENERATED CIPHER

J Senthil1, S Arumugam2, S Margret Anouncia3 Abhinav Kapoor4

 1 SCSE,VIT University, Vellore-14, India

2 Nandha College of Technology, Erode-52, India

3 SCSE, VIT University, Vellore-14, India

4 SCSE, VIT University, Vellore-14, India

ABSTRACT:

Generation of random strings from a random
generator has been going on since decades. But,
predicting the nature and pattern of strings
beforehand has been the issue under the realm of
Artificial Intelligence. We have come up with an
algorithm to predict the characters of the key used
in encrypting the plaintext by analysing the
previous set of random cipher texts. The result will
be truly exact if the algorithm is implemented on a
machine which has no other previous random
sequence generator implemented on its
background.

Keywords: Random Strings, Pseudo random
number, Prediction algorithm.

INTRODUCTION:

The algorithm ‘Pseudo Random Number
Generator’ generates random numbers from a seed.
A random number generator (often abbreviated
as RNG) is a computational or physical device
designed to generate a sequence of numbers or
symbols that lack any pattern, i.e. appear random.
A pseudorandom number generator (PRNG), also
known as a deterministic random bit
generator (DRBG), is an algorithm for generating a
sequence of numbers that approximates the
properties of random numbers. The sequence is not
truly random in that it is completely determined by
a relatively small set of initial values, called the
PRNG's state. Although sequences that are closer to
truly random can be generated using hardware
random number generators, pseudorandom
numbers are important in practice for simulations
(e.g., of physical systems with the Monte Carlo
method), and are central in the practice
of cryptography and procedural generation.
Common classes of these algorithms are linear
congruent generators, lagged Fibonacci
generators, linear feedback shift registers, feedback
with carry shift registers, and generalised feedback
shift registers. Recent instances of pseudorandom

algorithms include Blum Blum Shub, Fortuna, and
the Mersenne Twister.

Careful mathematical analysis is required to have
any confidence a PRNG generates numbers that are
sufficiently "random" to suit the intended
use. Robert R. Coveyou of Oak Ridge National
Laboratory once titled an article, "The generation
of random numbers is too important to be left to
chance." As John von Neumannjoked, "Anyone
who considers arithmetical methods of producing
random digits is, of course, in a state of sin."

In many applications randomness have led to the
development of several different methods for
generating random data. Because of the mechanical
nature of these techniques, generating large
amounts of sufficiently random numbers (important
in statistics) required a lot of work and/or time.

 The output random numbers acts as a seed and
hence, a long string of random numbers is
generated. Our suggested algorithm is based on the
concepts of set theory, logical reasoning and
conditional probability .We have used conditional
probability in context of making the best possible
choice by neglecting the least probable choices at a
particular instance of time.

NEW APPROACH:

Algorithm:

Consider a random string generator which
generates strings of length n. Obtain n number of
strings of length n through n trials.

1. Consider the characters at positions
1,n+1,2n+1,3n+1,4n+1,..n*n +1.

 Count the number of occurrences of each character
while analyzing the characters at above mentioned
positions.

2.Make a state consisting of a set of week states
and a set of strong states.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 480

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Weak states are the characters with the least count
and the strong states are the characters with the
highest count of occurrence.

State= ((Set of weak states),(Set of strong states))

3. Repeat steps 1 and 2 for characters at position i
to j where i=2 to n and j=2i+k where k=j and j
varies from 2,3,…,n.

4. A set consisting of n states will be obtained.

5. Analyze all the states in the set. If in a particular
state, there are highest number of weaker states,
then the corresponding set of stronger states are the
next most probable character /characters.

6. If there are more than one states in the set such
that the number of weaker states in two separate
states of set are same, then select the corresponding
stronger states from that particular states and
remove all other characters from the set.

7.Repeat steps 5 and 6 until any one of following
conditions satisfy:

(i)A state such as (λ,{x}) is obtained where x is
empty string and hence {x} will be next most
probable character.

(ii)If the (i) condition is not obtained but more
than one similar states are obtained, then
corresponding set of strong states in that particular
state will be the next probable character.

(iii)If the conditions (i) and (ii) do not satisfy, then
all the characters obtained at last will be equally
probable as these will belong to undistinguishable
states.

For instance:
Consider 4 strings of length 4.

Set1 Set2 Set3 Set4
3 4 3 1 ->string 1
1 1 2 1 ->string 2
4 2 3 2 ->string 3
1 4 3 1 ->string 4

Now for the set 1, the state is ((3,4),1) where (3,4)
is the set of weak states and 1 is the strong state.
For set 2, the state is ((1,2),4)
For set 3, the state is (2,3)
For set 4, the state is (2,1)
Now, consider set S such that
S={((3,4),1),((1,2),4),(2,3),(2,1)}
Applying step 5,
The states 1 and 4 are most probable stronger
states.
So, apply step 6.

Remove all the weaker states i.e., 2 and
3.Hence,the set S becomes:
S={(4,1),(1,4),(λ,1)}
Since condition (i) is satisfied by the state (λ,1)
where λ is empty string.
Hence 1 is the next most probable output character
which will be presented as a result of the algorithm
running on any machine which can be verified by
analyzing the previous patterns.

CONCLUSION AND FUTURE WORK:
 The above algorithm works for strings of
any length, but it requires n number of strings of
length n for its exact result. We see the future
design of a DFA and a NFA machine based on this
algorithm which can bring great advancements, in
fields of ‘Artificial Intelligence’ and ‘Network
Security’. This algorithm will make computer
intelligent enough to predict the next result.

APPENDIX
IMPLEMENTATION:
The Code to generate random strings has been
implemented in J2SE.

import java.util.*;
import java.awt.*;
public class str {
Random generator;
public dice(int sides)
{
generator=new Random();
faces=sides;
}
public int game(int faces)
{
return (1+ generator.nextInt(faces));
}
private int faces;
}
The mainclass is:
import java.util.*;
import java.awt.*;
public class mainclass {
public static void main(String[] args)
{
 int sides;
Scanner a=new Scanner(System.in);
System.out.println("Enter the number of sides");
sides=a.nextInt();
dice x=new dice (sides);
System.out.println("Enter your number of tries");
int tries=a.nextInt();
for(int i=1;i<=tries;i++)
{
System.out.println(x.game(sides));
}
}
}

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 481

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

REFERENCES:
Aiello, W., Rajagopalan, S., and Venkatesan, R. . Design
of practical and provably good random number
generators. Journal of Algorithms, 29(2):358–389.

Blum, L., Blum, M., and Schub, M. A simple
unpredictable pseudorandom number generator. SIAM
Journal on Computing, 15(2):364–383.

Bratley, P., Fox, B. L., and Schrage, L. E. (1987). A
Guide to Simulation. Springer-Verlag, New York, second
edition.

Brown, M. and Solomon, H. On combining
pseudorandom number generators. Annals of Statistics,
1:691–695.

Chen, H. C. and Asau, Y. On generating random variates
from an empirical distribution. AIEE Transactions,
6:163–166.

Cheng, R. C. H. Random variate generation. In Banks, J.,
editor, Handbook of Simulation, pages 139–172. Wiley.
chapter 5.

Collings, B. J. Compound random number generators.
Journal of the American Statistical Association,
82(398):525–527.

Conway, J. H. and Sloane, N. J. A. Sphere Packings,
Lattices and Groups. Grundlehren der Mathematischen
Wissenschaften 290. Springer- Verlag, New York, 3rd
edition.

Couture, R. and L’Ecuyer, P. On the lattice structure of
certain linear congruential sequences related to
AWC/SWB generators. Mathematics of Computation,
62(206):798–808.

Couture, R. and L’Ecuyer, P. Orbits and lattices for
linear random number generators with composite moduli.
Mathematics of Computation,65(213):189–201.

First Author: J.Senthil, obtained bachelors degree in
Computer Engineering from Kongu Engineering College
and Masters degree from Illinois Institute of Technology,
Chicago, USA in Computer Engineering with Honors.
Research interest is in Software Automation and in
Pervasive computing. Currently working in VIT, as
Assistant Professor Sr.

Second Author: Dr.S.Arumugam, CEO of Nandha
Educational Institution.

Third Author: Dr.S.Margret Anouncia, Director, SCSE,
VIT University, Vellore.

Forth Author: Abhinav Kapoor,SCSE,VIT University,
Vellore

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 482

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

