
AUTOMATIC CODE GENERATION FOR RECURRING CODE
PATTERNS IN WEB BASED APPLICATIONS AND INCREASING

EFFICIENCY OF DATA ACCESS CODE

J Senthil1, S Arumugam2, S Margret Anouncia3 Abhinav Kapoor4

 1 SCSE,VIT University, Vellore-14, India

2 Nandha College of Technology, Erode-52, India

3 SCSE, VIT University, Vellore-14, India

4 SCSE, VIT University, Vellore-14, India

ABSTRACT

Today, a lot of web applications and web sites are
data driven. These web applications have all the static
and dynamic data stored in relational databases. The
aim of this thesis is to generate automatic code for
data access located in relational databases in
minimum time.

Keywords: Automatic code generation, Recurring
code, Code generator

INTRODUCTION AND PREVIOUS WORK

The code generator made by Mr.Sergei Golitsinski
which is the basis of this study was implemented in
c# on the .Net platform. It generates SQL code for
the database-level part of the code, and c# or VB.Net
for the application level code.

There are two main approaches to code generation,
often referred to as passive and active. The passive
approach implies generating code only once (or re-
generating it each time a modification is required).
The active approach includes the option to
automatically update previously generated and
manually edited code. The code generator used is
combination of both the approaches.
The application-level code is generated using the
passive approach: the generator produces a set of
classes, which contain the default data access
methods.

The database-level code is generated using both
approaches. The stored procedures follow the pattern
similar to the application-level code: there are
automatically generated procedures, which are re-
generated each time the generator executes, and there
are custom procedures, which are not affected by the
generator. However, the tables and their structure are
automatically updated. The code generator accepts as

input a file with the description of the application and
processes it in the following steps:

1. A Parser object is responsible for parsing the input
and generating an parse tree. The parser is also
responsible for validating the syntax and structural
integrity of the schema in the input file. The objects
constituting the application’s abstract syntax contain
detailed validation rules for each part of the
application, such as checking that field lengths do not
exceed their maximum values, that the data types are
database-compatible, etc.

2. A SchemaValidator object is responsible for
checking the application schema as a whole, which
guards against duplicate class names, duplicate
primary keys.

3. A SchemaDatabaseLoader object creates a
Database object based on the schema file – which is
an abstract model of the database part of the
application.

4. An SqlDatabaseLoader connects to the
application’s database and does the same based on
the schema retrieved from the database. The two
abstract databases are compared by a
DatabaseComparer object, which insures that the
two schemas are compatible (for example, the data
type of an existing field cannot be changed to an
incompatible data type: a string cannot be converted
to an integer, for that might result in loss of data).
The DatabaseComparer object exposes several
collections, including tables to create, tables to
delete, tables to modify, constraints to create, etc.,
which are then accessed by objects responsible for
generating the actual code.

5. A DatabaseHelper object takes the
DatabaseComparer as input, generates all the
database-level code, connects to the database and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 473

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

updates it based on the data provided by the
DatabaseComparer.

6. An ApplicationLoader object takes the parse tree
as input and creates an abstract syntax tree, which is
an abstract model of the application. This object is
passed on to several objects, which generate the
actual code. The data intensive web applications
consist of three components:

1. Data Access Layer

2. Business Logic Layer

3. Presentation Layer

The application logic layer is unique for an
application and does not contain recurring code
patterns. Thus it is not suitable candidate for
automatic code generation. Presentation layer is the
user interface like desktop application. It does not
require automatic code generation.

But the data access layer requires automatic code
generation for producing recurring data access code
which is used by different modules of the web
application. Mr. Sergei Golitsinski had made a model
in XML and code generator made by him generates
data access code for Microsoft .NET/SQL server
platform. The code generator produces at least 50%
of data access code based on specifications provided
in the data model but only 20-35% of data access
code is used by the application.

OUR NEW APPROACH

Relational link is a pointer from one data unit to
another. There is a lot of code which is unused with
respect to application because code generator
generates automatic recurrent code used by all
applications in a website. Thus to increase the
efficiency of data access code, modifications need to
be made in data retrieval algorithms. Our proposal is
to introduce the concept of “Link Rank” between the
millions of link between data units in a huge
database. It is based on probability distribution.

The steps involved are:

1. The data links frequently used by web
application are given high ranks than the
links between unused data units. For
instance, if the database consist of data units
A,B,C,D with B and D data links mostly
used by the application.

LINKS Number of accesses

 A 2

 B 6

 C 1

 D 9

Since, the probability of access of the data
links B and D is very high as compared to
other data links A and C. Hence the data
links B and D are given high ranks as
compared to links A and C. The link rank
algorithm is implemented analogous to
Google Page Rank algorithm, but it does
concentrate only on inbound links and not
outbound links.

2. The data links connected by higher ranks
relational links are stored in separate servers
with the previous servers acting as back-up
store.

3. This will allow the code generator to
produce data access code for frequently
visited data units. Thus the efficiency of the
code generated will increase manifold.

4. This will also lessen the burden of
functioning on populated sites.

The java code to rank the links in java platform is
given below. This is modified version of the java
code generated for google page ranking by Nima
Goodarzi.

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import Jama.Matrix;

public class Ranking {

private final double DAMPING_FACTOR =0.85;

private List params = new ArrayList();

public static void main(String[] args) {

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 474

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Ranking ranking = new Ranking();

System.out.print(ranking.rank("C"));

}

 /* * * Solve the equation of ax=b, which : a
is the generated matrix based on * * the parameter
constants. x is the link ranks matrix. b is a n*1
matrix* * which all the values are equal to the
damping factor. * */

 public double rank(String linkId) {

 generateParamList(linkId);

Matrix a = new Matrix(generateMatrix());

double[][] arrB = new double[params.size()][1];

for (int i = 0; i < params.size(); i++) {

 arrB[i][0] = 1 - DAMPING_FACTOR;

}

Matrix b = new Matrix(arrB);

// Solve the equation and get the link ranks

Matrix x = a.solve(b);

int ind = 0;

int cnt = 0;

for (Iterator it = params.iterator(); it.hasNext();) {

String curlink = (String) it.next();

 if (curPage.equals(pageId))

ind = cnt;

cnt++;

}

return x.getArray()[ind][0];

}

/* This method generates the matrix of the linear
equations. The generated matrix is a n*n matrix
where n is number of the related pages. */

private double[][] generateMatrix() {

double[][] arr = new
double[params.size()][params.size()];

for (int i = 0; i < params.size(); i++) {

for (int j = 0; j < params.size(); j++) {

arr[i][j] = getMultiFactor((String) params.get(i),

(String) params.get(j));

}}

 return arr;}

/* This method returns the constant of the given
variable in the linear equation.*/

private double getMultiFactor(String sourceId, String
linkId) {

if (sourceId.equals(linkId))

return 1;

else {

String[] inc = getInboundLinks(sourceId);

for (int i = 0; i < inc.length; i++) {

if (inc[i].equals(linkId)) {

return -1;

}}

 /* This method returns list of the related
pages. This list is also the parameters in the linear
equation*/

private void generateParamList(String pageId) {

 // Add the starting page.

 if (!params.contains(pageId))

params.add(pageId);

 // Get list of the inbound pages

 String[] inc =
getInboundLinks(pageId);

 // Add the inbound links to the
params list and do same for inbound

 // links

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 475

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

for (int i = 0; i < inc.length; i++) {

if (!params.contains(inc[i]))

generateParamList(inc[i]);

 }
 }

 / * Return list of the inbound links to a given
page.*/

private String[] getInboundLinks(String pageId) {

// This simulates a simple page collection

Map map = new HashMap();

map.put("A", new String[] { "C" });

map.put("B", new String[] { "A" });

map.put("C", new String[] { "A", "B" });

return (String[]) map.get(pageId);

}

CONCLUSION AND FUTURE WORK

 The implementation of this system requires initial
high cost of installing extra servers for backup of the
least accessed data. But, the increase in the cost of
new servers will be less significant as compared to
higher efficiency in working of web sites and web
applications. It will also improve the user interface.

REFERENCES:

Bochicchio, M., & Fiore, N. (2004). WARP: Web
application rapid prototyping. Proceedings of the 2004
ACM Symposium on Applied Computing. (pp. 1670-
1676). Nicosia, Cyprus.

Ceri, S., Fratenali P., & Bongio, A. (2000). Web Modeling
Language (WebML): a modeling language for designing
web sites. Computer Networks: The International Journal
of Computer and Telecommunications Networking.
33(1),137-157.

Ceri, S., Fratenali P., & Matera, M. (2002). Conceptual
modeling of data intensive web applications. IEEE Internet
Computing. 6(4), 20-30. Chen, P. (1976). The entity-
relationship model - toward a unified view of data.ACM
Transactions on Database Systems. 1(1), 9-36.

Cleaveland, C. (n.d.). Program Generators with XML and
Java. Retrieved April 14, 2006
http://www.craigc.com/pg/chap1.htmlCodd, E. (1970). A

relational model of data for large shared data banks.
Communications of the ACM. 13(6), 377-387.

Fratenali, P., & Paolini, P. (2000). Model-driven
development of web applications: the Autoweb system.
ACM Transactions on Information Systems. 18(4), 323-
382. Glass, R. (1996). Some thoughts on automatic code
generation. ACM SIGMIS Database. 27(2), 16-18.

Hunt, A., & Thomas, D. (2000). The pragmatic
programmer. New York, NY: Addison-Wesley. Jacob, M.,
Schwarz, H., Kaiser, F., & Mitschang, B. (2006a).
Modeling and generating application logic for data-
intensive web applications. Proceedings of the Sixth
International Conference on Web Engineering. (pp. 77-84).
Palo Alto, CA, USA.

Jacob, M., Schwarz, H., Kaiser, F., & Mitschang, B.
(2006b). Towards an operation model for generated web
applications. Workshop Proceedings of the Sixth
International Conference on Web Engineering. Palo Alto,
CA, USA.

Java BluePrints (n.d.). Model-View-Controller design
pattern. Retrieved April 12, 2006 at
http://java.sun.com/blueprints/patterns/MVCdetailed.

Jensen T., Tolstrup T., & Hansen, M. (2004). Generating
web-based systems from specifications. Proceedings of the
2004 ACM Symposium on Applied Computing. (pp. 1647-
1653).

The Anatomy of a Large-Scale Hypertextual Web Search
Engine, Sergey Brin and Lawrence Page {sergey,
page}@cs.stanford.edu Computer Science Department,
Stanford University, Stanford, CA 94305

Page Rank algorithm implemented by Developed by Nima
Goodarzi

 * Website: http://www.javadev.org

First Author: J.Senthil, obtained bachelors degree in
Computer Engineering from Kongu Engineering
College and Masters degree from Illinois Institute of
Technology, Chicago, USA in Computer Science
with Honors. Research interest is in Software
Automation and in Pervasive computing. Currently
working in VIT, as Assistant Professor Senior.

Second Author: Dr.S.Arumugam, CEO of Nandha
Educational Institution.

Third Author: Dr.S.Margret Anouncia, Director,
SCSE, VIT University, Vellore.

Forth Author: Abhinav Kapoor,SCSE,VIT
University, Vellore.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 476

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

