

Presentation Presentation Presentation Presentation anananan Approach Approach Approach Approach forforforfor OptimizationOptimizationOptimizationOptimization ofofofof Semantic Semantic Semantic Semantic

Web Language Based Web Language Based Web Language Based Web Language Based onononon thethethethe Document StructureDocument StructureDocument StructureDocument Structure

Farzad Parseh1,Davood Karimzadgan Moghaddam2,Mir Mohsen Pedram3,

Rohollah Esmaeli Manesh4, Mohammad(behdad) Jamshidi5

 1,2Department of IT and Communication, Payam Noor University,Tehran, Iran.
3Engineering Department, Faculty of Engineering, Tarbiat Moallem University, Karaj/Tehran, Iran.

 4Young Researchers Club, Gilan Ghab Branch, Islamic Azad University, GilanGharb,kermanshah, Iran.
 5Young Researchers Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

ABSTRACT

Pattern tree are based on integrated rules which are equal to a

combination of some points connected to each other in a

hierarchical structure, called Enquiry Hierarchical (EH). The

main operation in pattern enquiry seeking is to locate the steps

that match the given EH in the dataset. A point of algorithms has

offered for EH matching; but the majority of this algorithms

seeks all of the enquiry steps to access all EHs in the dataset. A

few algorithms such as seek only steps that satisfy end points of

EH. All of above algorithms are trying to locate a way just for

investigating direct testing of steps and to locate the answer of

enquiry, directly via these points. In this paper, we describe a

novel algorithm to locate the answer of enquiry without access to

real point of the dataset blindly. In this algorithm, first, the

enquiry will be executed on enquiry schema and this leads to a

schema. Using this plan, it will be clear how to seek end steps

and how to achieve enquiry dataset, before seeking of the dataset

steps. Therefore, none of dataset steps will be seek blindly.

Keywords: Pattern, Branch Links, Query Indicators and

Evaluation.

1. INTRODUCTION

Enquiry seeking is an essential part of any point base. Both

XQuery and XEnquiry, the two most popular enquiry rules

in pattern domain, are based on integrated rules. A

integrated rule specifies patterns of predicates selection on

multiple points that has a tree schema named Enquiry

Hierarchical (EH). Consequently, in order to seek pattern

trees, all occurrences of EH in the pattern dataset should

be found. This is an expensive task when huge pattern

dataset are involved. Consider the following enquiry: Q1:

//book[.//title//xml]//author//jane; The schema of an

pattern enquiry could be shown in a EH, for example the

EH of enquiry Q1 is presented in Figure 1.

Figure 1. EH Pattern

The aim of all pattern enquiry seeking algorithms is to

locate all EH instances in the pattern dataset. A point of

algorithms are proposed to answer trees link. We classify

this algorithms into three parts:

part A: Algorithms in this part are based on a famous

algorithm named path Link [1]. In path Link, enquiry is

decomposed into some binary link operations. Thus, a

huge volume of intermediate dataset are produced in this

algorithms.

part B: Holistic branch link algorithms[2] does not

decompose the enquiry into its binary Parent-Child (P-C)

or Ancestor-Descendant (A-D) relationships but they need

to seek all of the enquiry steps in the dataset.

part C: It is better to seek only steps that satisfy ends

nodes of EH. [12] is such an a algorithm encoding. (see

figure 2)

Figure 2. Schema Encoding

Three parts above called Shcema Encoding. containment

link Containment link algorithms use an index named

Name indicators to quick access to points which have

same tag name. for example to answer Query, this index

makes it possible to access to all steps in the dataset; but

all of algorithms above, do not consider the place of

points. They are trying to locate a way just for

investigating direct testing of steps and to get the answer

of enquiry, directly via these tests where as many of these

test do not produce any part of the enquiry answer.

On the other hand, there are some query indicators link

Strong PointGuide, Fabric Index, ToXin, APEX, Index1,

A(k) Index, and F&B which are indexing the query of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 397

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

dataset’s steps to facilitate access to steps required in

pattern enquiry seeking Algorithms[3,6,7,10,13,14].

These query indicators are other kinds of enquiry seeking

algorithms which are against the A, B and C part

algorithms. query indicators usually have two parts:

• Path Guide (PG) that summarizes dataset schema

and describes relation between points. (see figure 3)

• Records that keeps real point of the dataset based on

Path Guide.

Figure 3. PG Structure

All of algorithms in this part behave as follows: At first,

path relationship (A-D or P-C) between enquiry points are

tested with Path Guide. As Data, Records of steps that

match with enquiry is returned. For example in Match

Seeking of enquiry, step point 8 matches with enquiry.

Therefore, all of its Records will be returned as Dataset.

This algorithm is considerable because it apply enquiry on

a small set named PG and to execute the enquiry it doesn't

need to access to real point of the dataset; But always trees

are not such simple. For example to answer the trees such

as a//b[c] or a[.//b]/c they need to access real point of the

dataset. Therefore, this algorithm has not enough

performance.

None of the Shcema Encoding algorithms uses full

potential of query indicators or path summaries, while

these have great potential to guide us to sigh seeking.

In this paper, we propose a compound algorithm that uses

schema summary as enquiry schema. In this algorithm,

enquiry will be executed on schema summary that has very

small size in test is on with the dataset. For this purpose,

there is no need to access to real point of the dataset. Data

of this execution is generation of a schema called

DataTable (DT). DT shows end steps of the enquiry and

the way of their seeking in the dataset. This save us from

direct and blind seeking in the dataset.

2. OVERVIEW OF OUR ALGORITHM

Our algorithm is similar to both Schema Encoding and

Query Indicators. In this algorithm, we apply the enquiry

on Path Guide of the dataset. PG is similar to schema of a

dataset and has not close relation with size of the dataset.

Its size and schema are usually stable or with a few

variation. (see figure 4)

Figure 4. Data Model

Step1: link Query Index algorithms, first, enquiry is

applied on PG; but here the enquiry is not executed in its

complicated form. It will be split in several single-branch

trees that will be easily answered in all algorithms of query

indicators[3] [6] [7] [9] [10] [13] [14].

Step2: all single-branch trees execute on PG separately. A

schema that called Data Table is build from execution

Data of single-branch trees. DT as seek schema shows the

end steps that are to seek and the way of seeking them in

the dataset.

Step3: The dataset is numbered base on Hierarchical

encoding.

Definition : In Hierarchical labeling algorithm if step U is

the n
th

 child of step V, the Hierarchical code of step U is

the Hierarchical code of step V as its prefix continue with

n, Hierarchical (U)= Hierarchical (V)+'.'+'n'. For example

suppose that Hierarchical (V)=<1.3> and step U1 is the 7
th

child of step V, then Hierarchical (U1)=<1.3.7>

Based on Hierarchical numbers, all steps corresponding to

each step of PG are sorted in Records. Third step is similar

to Containment links algorithms. Based on DT, end steps

of enquiry that are placed in Records will be tested and

final Data will be generated.

2.1 ENQUIRY SPLITTING AND EXECUTION OF

SINGLE-BRANCH TREES ON PATH

SUMMARY

Trees are usually complicated and several-branch. Before

splitting a enquiry in several single-branch trees, we

should be familiar with link point concept.

Definition-JP: Link Point is a step in EH which links more

than one branch to each other.

Example: suppose A and B are two branches of a enquiry

that have traversed query from enquiry root

a1/a2/…/aj/ax1/…/an and a1/a2/…/aj/ax2/…/am and ax1 ≠

ax2 then J is link point of two branches with a1/a2/…/aj as

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 398

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

its query. We do not mean parent-child relation by /

between enquiry points and it can be interpreted as /, //, *.

To answer the several-branch trees, we need to locate link

points of branches that called JP. Complexity of several-

branch trees is because of JPs. We can easily locate place

of these steps on PG; but we cannot definitely answer to

this kind of enquiry without access to the dataset. Enquiry

condition is as follow: a JP in a dataset is part of answer if

it has all of enquiry branches under itself, in other words,

several enquiry branches in the dataset can be part of

answer if they are link in same JP. This JP cannot be found

just with access to PG and without testing of branches in

the dataset; because it is possible that one JP in the dataset

has not one of enquiry branches under itself.

Example: A is link point of two branches, A//B and

A//C//D. A steps in dataset are part of answer if have both

of A//B and A//C//D branches.

Splitting Enquiry: suppose Q is a several-branch enquiry

with n JPs and m branches (ends nodes). Q split in single-

branch trees SQ1, …., SQm so that each SQi is a branch

from root to end of one of branches and every two of SQi

and SQj have same prefix from root to one of the JPs.

Total point of these different JPs is n.

Here our goal is description of algorithm functionality. For

this reason, we explain our algorithm on simple enquiry

and then we show how DT can answer to complicated

trees.

The procedure: As mentioned above, at first, we must split

enquiry. Enquiry split into single-branch trees. Then each

single-branch enquiry will be executed on PG separately.

Fortunately, in most of query index algorithms single-

branch trees can be answered easily with PG and without

access to the dataset point. Data of this execution will be a

list of steps in PG for each single-branch enquiry. Query of

these steps will be absolute (from root to step in PG).

Example: suppose we want to execute enquiry on PG. at

first, enquiry split into two single-branch trees: A//B and

A//C//D. we only need to keep and access to ends nodes of

enquiry for each branch because the dataset labeled with

Hierarchal numbers and lower steps have some

information about upper steps (query traversed from root)

in themselves.

2.2 GENERATION OF DT

Primary Definition: DT is a table with three columns. First

two columns are end steps of two enquiry branches in PG

and its third column is step of JP between two these

branches. End steps in DT have absolute query. Therefore,

each record of this table shows an operation called

Matching Seek.

Definition: Matching Seek is seek of testing two or more

steps in the dataset to achieve part of answer.

The procedure: after splitting enquiry into several single-

branch trees and gaining corresponding steps to ends

nodes of single-branch trees in PG, now we have to

achieve JP of these steps. In Hierarchal encoding manner,

each end indicate a branch. Data of single-branch trees

execution on PG is a list of steps for each single-branch

enquiry. The Query of these steps are absolute (i.e, query

of each step is completely specified from root to step).

Now, to achieve JP of these steps, we select a step from

each list and test their absolute querys with each other. If

querys of selected steps were same from root to step of

enquiry JP, we add those two steps and step of JP to DT.

FINAL DATA

Final Data is constructed based on the DataTable. Each

record in the DataTable guides enquiry seek to produce a

part of the final Data. Therefore, final Data is the union of

partial Datas produced for each record of DataTable.

The procedure: Consider a given record in a DataTable

and its fields. Two first fields are two steps in a Schema

Summary. As mentioned in introduction, each step in

Schema Summary has an ordered list of related steps'

Hierarchical point in the pattern dataset that called

Records. Points of these two lists should be tested with

each other to produce part of the final Data. This seek is

called Matching Seek. The matching seek starts with

testing current step labels of lists (first ones at the

beginning). If testing steps have same prefix up to JP step

(third field), those are part of Data.

Example: Consider record B1, D1 of the previous

DataTable (the JP value of the record is assumed 2).

Suppose their related step labels form the below lists:

Step of W is assumed ε.

The three bolded Lines give us steps that have same prefix

up to JP step and are part of Matching Seek Datas. For

steps such as 1/2/2/1 which have not successful matching

seek, we should jump to next first step that is just greater

in this step (look at jump(L)). For example in step 2, if step

1/2/2/1 is current step, then next step will be 1/3/3/1.

For each jp1 in an, jp2 in bn do

If an.prefix(jp1)=bn.prefix(jp2) then

DT.addREC(an, bn, jp1.Level)

For each a in L1 ,b in L2 do

a.prefix(L)=b.prefix(L) then

(a,b) add to output
node1.prefix(L)>node2.prefix(L) then

node2=L2.Jump(L)

node1=L1.Jump(L)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 399

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. DT AND COMPLICATED TREES

In previous sections, overall procedure of algorithm to

answer a two-branch enquiry is shown; but there are trees

that are more complicated in pointbase' world. In this

section, we show DT flexibility and applicability in these

trees so that we can answer these trees with seeking of end

steps just once.

3.1 JPS WITH MORE THAN TWO BRANCHES

As mentioned in primary definition, DT is a table with

three columns that first two columns are steps of each

branch and its third column is common step between two

branches; but in the world, it is possible that several

branches were linked together in one JP. For example,

assume Q2: //A[./C][./D]/B;

Here it is enough that we change primary definition of DT

as follows:

Secondary Definition of DT: DT is a table with

M+1columns for a JP with M sub-branch so that its 1
st
 to

M
th

 columns are end nodes of branches and last column is

common step of JP between all steps.

3.2 TREES WITH SEVERAL DIFFERENTS JPS

In a enquiry, each DT will be used for one JP. Therefore,

for trees with M JPs we need M DTs; but these DTs

cannot be used independently and there is relationship

between them. Therefore, we need two changes: first, we

use DT_Schema instead of DT.

Definition: DT_Schema shows a set of n DT for a enquiry

with n JP along with their relations.

Example: suppose that we want to build an DT_Schema

for enquiry. This EH has three branches

(author1,author2,author3). The first link point is B which

links two first branches A//B/C and A//B/D. A is another JP

between two first and third branch. Therefore, output of

DT will be used as a field. (see figure5)

Second change must be in sequence of steps seeking to

generation of Final Data. This change illustrated in figure.

This means that at first it seek those JPs that are in lower

position in EH tree. The procedure is as follows: when

there are orders of seek between several JP, it begins with

first JP. A recursive procedure called Match_Proc is used

that consider orders of seek. If matching seek was

successful for a DT. This procedure tests next DT. This

seek continues while matching seek is successful for all

DT. If matching seek was not successful for one DT, we

must do jump from either that or previous DT and

matching seek begin from previous DT.

Figure 5. Three type of match process

3.3 TREES WITH *, ?, // AND /

DT algorithm is similar to both Query Index and

Containment link algorithms. For single-branch trees,

query indicators undertake the responsibility of enquiry

conversion to absolute query. Fortunately, some of them

such as YAPI[19] have acceptable performance on various

operators (*, ?, // and /) in single-branch trees and don’t

need to access to real point of the dataset and just with

access to PG can answer to various kind of single-branch

trees.

4. EXPERIMENTAL DATA

In this section we present the Data of our experiments. As

discussed above, we categorize the existing pattern

enquiry seeking algorithm into three parts. We tested our

DT algorithms with Apriori and Sax. Apriori is selected

as the representative of holistic branch link algorithms of

Part B and Sax as the representative of Part C, the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 400

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 1. Queries used to compare DT with Sax

DataBase Query Query Name

XMARK /site/people/person/gender XQ1

TreeBank /S[.//VP/IN]//NP XQ2

TreeBank /S/VP/PP[IN]/NP/VBN XQ3

DBLP //article[.//sup]//title//sub XQ4

DBLP //inproceedings//title[.//i]//sup XQ5

Table 2. Queries used to compare DT with Apriori

Dataset Query Query Name

DBLP //dblp/artcle[author]/[.//title]

//year

XQ1

XMark //people//person[.//address/z

ipcode]/profile/education

XQ2

TreeBank //S//VP/PP[IN]/NP/VBN XQ3

algorithms which only access end steps of EH in the

Pattern dataset. As mentioned above our DT algorithms

are classified into the Part C too.

Our query index: In second step our algorithm needs to

one of query indicators to convert single-branch trees to

absolute query of Data steps in PG. There are many query

index algorithm to choose; but each algorithm tries to

answer to complicated trees by itself. Therefore, for many

of trees they need to access to real point of the dataset and

thus they have not enough performance whereas in our

algorithm a query index is used just on PG and to answer

to single-branch trees. Therefore, it must have only two

below properties:

1. Its PG is small and it answers to single-branch trees

quickly.

2. It is applicable for all single-branch trees with all

possible operators (*, ?, //)

Among all query index algorithms, the best option that

provides two above properties is YAPI [19]. It is quickest

and cheapest algorithm to answer to single-branch trees.

Pointsets: We use four pointsets TreeBank[15],

XMark[17] and DBLP[11] and a Unknown pointset in our

experiments. DBLP is a famous pointset which is a

shallow and wide dataset. Against DBLP, we use well-

known TreeBank pointset which is a deep dataset.

Unknown pointset: We build unknown pointset with the

depth of 12 and width of step – maximum point of

children of a step – 10. The points tags of this pointset are

only A, B, C, D, E and F. In this way, one point could have

one or some homonymous steps as children. As a Data, the

path Guide of the dataset could be complex and nested.

Here, the numbers, types and orders of children of steps

are chosen accidentally.

Original Hierarchical: In our experiments, the extended

Hierarchical labels are not stored by the dotted-decimal

strings displayed (e.g.\1.2.3.4"), but rather a compressed

binary representation. In particular, we used UTF-8

encoding as an efficient way to present the integer value,

which was proposed by Tatarinov et al. [8].

Trees: In order to test our DT algorithm with Sax, we use

trees that are listed in the Table1. Each enquiry has its

distinguished property. The enquiry XQ1 is a single

enquiry with P-C relationships. For this kind of trees we

do not need to generate DT. The trees XQ4 and XQ5 are

several-branch trees with A-D relationships. The enquiry

XQ3 is also a several-branch enquiry but with P-C

relationships and XQ2 is combination of A-D and P-C

relationships.

We choose three parameters to test our DT algorithm with

Sax : i) point of points read, ii) Size of disk files scanned

and iii) execution time.

Point of points read: In both algorithms, just Ends Nodes

of EH will be seeked; but there are two fundamental

differences: 1) in Sax at first, each step will be checked

whether it has single-branch condition or not; but in our

algorithm, we only access those steps, which are member

of one enquiry branch. 2) Sax try to answer the enquiry by

direct testing of each branch end nodes in dataset and it

testes many ends nodes that have not any path relation

with each other; but in our algorithm with considering DT,

only those end nodes will be tested that have path relation

with each other and many steps don’t need to be accessed

because they have no counterpart in other branch. This

difference is more obvious in parent and child trees.

Size of disk files scanned: In Sax method when we do test,

we need to save some steps because it is possible that they

can produce part of answer in test with another step in the

future. This is because Sax try to answer the enquiry by

direct testing of steps blindly; but in our algorithm, we do

not need to save any intermediate point because the way of

step seeking and answering the enquiry are specified in

DT.

Execution time: the execution time of Sax seems to be

more than DT. Sax needs to decode the labels to their

querys and then test them but in our algorithm, there is no

need to decode step labels. Figure 6 confirms the

discussion. Our experiments run on a PC with 2.2 GHz

Intel Pentium IV seek running Red Hat Linux 8.0 with 2

GB of main memory.

Apriori :In this section, we test our algorithm with Apriori

algorithm as representative of B part algorithm. We test

our algorithm with Apriori in two criteria of i) point of

points read and ii) execution time. Trees are in table2,

Apriori link all of algorithm in its part will access to all

EH steps to answer the enquiry. Therefore, it will have

more step access than Sax method to answer the enquiry;

but it does not need to convert Hierarchical numbers to

query point's name, as a Data, in some cases it operates

better than Sax in execution time factor. Figure 7 confirms

the discussion.

Unknown Pointset: Here we execute our trees on unknown

Pointset that is described before. This pointset has many

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 401

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

namesake points and a non-uniform schema. Therefore, it

shows efficiency of algorithms clear.

Single-branch trees: Both DT and Apriori, execute 8

single-branch trees A1, A2, …, A8 with 2, 3 , …, 9 length

respectively. All trees are Partial, i.e, they begin with //, As

shown in figure 8, as many as point of single-branch trees

steps increase, point of points to be accessed in the dataset

in DT decrease.

 Several-branch trees: Both DT and Sax, execute A1, A2,

A3 and A4 trees which have 2, 3, 4, 5 branches

respectively. As shown in figure 8 in both algorithms

when number of branches increases, point of step accesses

will increase whereas growth rate of DT is very less than

growth rate of Sax.

Figure 6. DT(Guide) in Comparison with Sax

Figure 7. DT (Guide) in Comparison with Apriori

Figure 8. DT and Unknown Pointset

REFERENCES
[1]. S.Abiteboul, R,Hull, V.vianu, Foundations of

Databases. Addison Wesley, 1995.

[2]. Richard Bird, Introduection to Functional

Programming using Haskell. Prentice Hall, 1998.

[3]. P.Buneman, M.Fernandez, D.Suciu. UnQl: A Query

language and algebra for semistructured data based on

structural recursion. VLDB Journal, to appear.

[4]. Catriel Beeri and Yoram Komatzky. Algebraic

Optimization of Object-oriented Query Languages.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 402

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Theoretical Computer Science 116(1&2):59{94,

August 1993.

[5]. Francois Bancihon, Paris Kanellakis, CDelobel.

Building an Object-Oriented Database System. Morgan

Kaufmann, 1990.

[6]. Peter Buneman,Leonid, Dan Suciu, Vam Tannen, and

Limsoon Wong. Comprehension Syntax. SIGMOD

Record, 23: 87{96, 1994.

[7]. David Beech, Ashok Malhotra, Michael Rys. A Formal

Data Schema and Algebra For XML. W3C XML

Query working group note, Septenber 1999.

[8]. Peter Buneman Shamim Naqvi, Val Tannen, Limsoon

Wong. Principles of programming with complex abject

and collection types. Theoretical Computer Scince

1995.

[9]. Catriel Beeri and Tariv Tzaban, SAL :An Algebra for

Semistructures Data and XML. International Workshop

on the Web and Databases(WebDB'99). Philadelphia,

Pennsylvania, June 1999.

[10]. R.G.Cattell, The Object Database Standard: ODMG

2.0. Morgan Kaufmann, 1997.

[11]. Don Chamberlin, Jonathan Robie, and Daniela

Florescu. Quilt: An XML Query Languages for

Heterogeneous Data Sources. Intemational Workshop

on the Web and Databases(WebDB'2000), Dallas,

Texas, May 2000.

[12]. Vassilis Christophides and Sophie Clluet and J_er^ome

Sim_eon. On Wrapping Query languages and E_cient

XML Integration. Proceedings of ACM SIGMOD

Conference on Management of Data, Dallas, Texas,

May 2000.

[13]. S.Cluet and G.Moerkotte, Nested queries in object

bases,Workshop on Database Programming Languages

Pages 226{242,New York,August 1993.

[14]. S.Cluet, S.Jacqmin and J.Sim_eon The New YATL:

Design and Speci_cations. Technical Technical Report,

INRIA, 1999.

[15]. L.S.Colby, A recursive algebra for nested relations.

Information Systems 15(5):567{582, 1990.

[16]. Hugh Darwen(Contributor) and Chris Data. Guide to

the SQL Standard: A User's Guide to the Standard

Database Language SQL Addison-Wesley, 1997.

[17]. A.Deutsch.M.Fernandez, D.Florescu. A.Levy, and

D.Sueiu. A query language for xml. In International

World Wide Web Conference, 1999 ,

http://www.research.att.com/-mff/files/final.html

[18]. J.A.Goguen, J.W.Thatcher, E.G.Wagner, An initial

algebra approach to the speci_cation, correctness, and

implementation of abstract data types. In Current

Trends in Programming Methodology, pages 80{149,

1978.

[19]. Haruio Hosoya, Benjamin Picrce, XDuce: A Typed

XML Prossing language (Preliminary Report) WebDB

Workshop 2000.

[20]. M.Kifer, W.Kim, and Y.Sagiv, Querying object-

oriented databases. Proccedings of ACM SIGMOD

Conference on Management of Data, pages 393{402,

San Diego, California, June 1992.

[21]. Leonid Libkin and Limsoon Wong, Query languages

for bags and aggregate functions. Journal of Computer

and Systems Sciences, 55(2):241{272, October 1997.

[22]. Leonid Libkin, Rona Machlim , and Limsoon Wong, A

Query language for multidimensional arrays: Design

implementation, and optimization techniques.

SIGMOD 1996.

[23]. Al-Khalifa.S., Jagadish. H.V., Koudas.N., Patel. J.M.,

Srivastava. D., Wu. Y. Structural Joins: A Primitive for

Efficient XML Query Pattern Matching. In Proc.

ICDE: 141-152(2008)

[24]. Chien. Et. Efficient Structural Joins on Indexed XML,

In Proc. VLDB Conference(2009)

[25]. Jiang, H., Wang, W., Lu, H., and Xu Yu, J, an Chin. B,

XR-Tree: Indexing XML Data for Efficient Structural

Joins. In Proc. ICDE Conference :253—264(2008).

[26]. Mathis. C., Härder. T, Haustein. M. Locking-Aware

Structural Join Operators for XML Query Processing

In Proc SIGMOD Conference: 467 - 478 (2008).

[27]. Jiaheng Lu , Xiaofeng Meng, Tok Wang Ling .

Indexing and querying XML using extended Dewey

labeling scheme.DATAK-01284;No of pages25(2010).

[28]. Jun Liu.OTwig :An Optimised Twig Pattern Matching

Approach for XML Databases. (2010).

[29]. Wu. Y., Patel. M. J., and Jagadish. H. V. Structural

join order selection for XML query optimization, In

Proc. VLDB Conference,(2008).

[30]. Bruno. N., Koudas. N, Srivastava.D. Holistic Twig

Joins: Optimal XML Pattern Matching, In Proc.

SIGMOD Conference: 310–321(2007).

[31]. Jiang, H., Wang, W., Lu, H., and Xu Yu, J. Holistic

Twig Joins on Indexed XML, In Proc. VLDB

Conference :273-284 (2009).

[32]. Sayyed Kamyar Izadi, Mostafa S. Haghjoo. Evaluation

of tree-pattern XML queries supported by structural

summaries. DATAK 1139 No. of Pages 20, Model 3G.

(2008).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 403

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

