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ABSTRACT 

Pattern tree are based on integrated rules which are equal to a 

combination of some points connected to each other in a 

hierarchical structure, called Enquiry Hierarchical (EH). The 

main operation in pattern enquiry seeking is to locate the steps 

that match the given EH in the dataset. A point of algorithms has 

offered for EH matching; but the majority of this algorithms 

seeks all of the enquiry steps to access all EHs in the dataset. A 

few algorithms such as seek only steps that satisfy end points of 

EH. All of above algorithms are trying to locate a way just for 

investigating direct testing of steps and to locate the answer of 

enquiry, directly via these points. In this paper, we describe a 

novel algorithm to locate the answer of enquiry without access to 

real point of the dataset blindly. In this algorithm, first, the 

enquiry will be executed on enquiry schema and this leads to a 

schema. Using this plan, it will be clear how to seek end steps 

and how to achieve enquiry dataset, before seeking of the dataset 

steps. Therefore, none of dataset steps will be seek blindly.  

Keywords: Pattern, Branch Links, Query Indicators and 

Evaluation. 

1. INTRODUCTION 

Enquiry seeking is an essential part of any point base. Both 

XQuery and XEnquiry, the two most popular enquiry rules 

in pattern domain, are based on integrated rules. A 

integrated rule specifies patterns of predicates selection on 

multiple points that has a tree schema named Enquiry 

Hierarchical (EH). Consequently, in order to seek pattern 

trees, all occurrences of EH in the pattern dataset should 

be found. This is an expensive task when huge pattern 

dataset are involved. Consider the following enquiry: Q1:   

//book[.//title//xml]//author//jane;  The schema of an 

pattern enquiry could be shown in a EH, for example the 

EH of enquiry Q1 is presented in Figure 1.  

 
Figure 1. EH Pattern 

The aim of all pattern enquiry seeking algorithms is to 

locate all EH instances in the pattern dataset. A point of 

algorithms are proposed to answer trees link. We classify 

this algorithms into three parts: 

part A: Algorithms in this part are based on a famous 

algorithm named path Link [1]. In path Link, enquiry is 

decomposed into some binary link operations. Thus, a 

huge volume of intermediate dataset are produced in this 

algorithms. 

part B: Holistic branch link algorithms[2] does not 

decompose the enquiry into its binary Parent-Child (P-C) 

or Ancestor-Descendant (A-D) relationships but they need 

to seek all of the enquiry steps in the dataset. 

part C: It is better to seek only steps that satisfy ends 

nodes of EH. [12] is such an a algorithm encoding. (see 

figure 2) 

 

 

Figure 2. Schema Encoding 

Three parts above called Shcema Encoding. containment 

link Containment link algorithms use an index named 

Name indicators to quick access to points which have 

same tag name. for example to answer Query, this index 

makes it possible to access to all steps in the dataset; but 

all of algorithms above, do not consider the place of 

points.  They are trying to locate a way just for 

investigating direct testing of steps and to get the answer 

of enquiry, directly via these tests where as many of these 

test do not produce any part of the enquiry answer. 

On the other hand, there are some query indicators link 

Strong PointGuide, Fabric Index, ToXin, APEX, Index1, 

A(k) Index, and F&B which are indexing the query of 
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dataset’s steps to facilitate access to steps required in 

pattern enquiry seeking Algorithms[3,6,7,10,13,14].  

These query indicators are other kinds of enquiry seeking 

algorithms which are against the A, B and C part 

algorithms. query indicators usually have two parts:  

• Path Guide (PG) that summarizes dataset schema 

and describes relation between points. (see figure 3) 

• Records that keeps real point of the dataset based on 

Path Guide.   

 

 
Figure 3. PG Structure 

All of algorithms in this part behave as follows: At first, 

path relationship (A-D or P-C) between enquiry points are 

tested with Path Guide. As Data, Records of steps that 

match with enquiry is returned. For example in Match 

Seeking of enquiry, step point 8 matches with enquiry. 

Therefore, all of its Records will be returned as Dataset. 

This algorithm is considerable because it apply enquiry on 

a small set named PG and to execute the enquiry it doesn't 

need to access to real point of the dataset; But always trees 

are not such simple. For example to answer the trees such 

as a//b[c] or a[.//b]/c they need to access real point of the 

dataset. Therefore, this algorithm has not enough 

performance. 

None of the Shcema Encoding algorithms uses full 

potential of query indicators or path summaries, while 

these have great potential to guide us to sigh seeking.  

In this paper, we propose a compound algorithm that uses 

schema summary as enquiry schema. In this algorithm, 

enquiry will be executed on schema summary that has very 

small size in test is on  with the dataset. For this purpose, 

there is no need to access to real point of the dataset. Data 

of this execution is generation of a schema called 

DataTable (DT). DT shows end steps of the enquiry and 

the way of their seeking in the dataset. This save us from 

direct and blind seeking in the dataset. 

2. OVERVIEW OF OUR ALGORITHM 

Our algorithm is similar to both Schema Encoding and 

Query Indicators. In this algorithm, we apply the enquiry 

on Path Guide of the dataset. PG is similar to schema of a 

dataset and has not close relation with size of the dataset. 

Its size and schema are usually stable or with a few 

variation. (see figure 4) 

 
Figure 4. Data Model 

Step1: link Query Index algorithms, first, enquiry is 

applied on PG; but here the enquiry is not executed in its 

complicated form. It will be split in several single-branch 

trees that will be easily answered in all algorithms of query 

indicators[3] [6] [7] [9] [10] [13] [14].  

Step2: all single-branch trees execute on PG separately. A 

schema that called Data Table is build from execution 

Data of single-branch trees. DT as seek schema shows the 

end steps that are to seek and the way of seeking them in 

the dataset.  

Step3: The dataset is numbered base on Hierarchical 

encoding.  

Definition :  In Hierarchical labeling algorithm if step U is 

the n
th

 child of step V, the Hierarchical code of step U is 

the Hierarchical code of step V as its prefix continue with 

n, Hierarchical (U)= Hierarchical (V)+'.'+'n'. For example 

suppose that Hierarchical (V)=<1.3> and step U1 is the 7
th
 

child of step V, then Hierarchical (U1)=<1.3.7> 

Based on Hierarchical numbers, all steps corresponding to 

each step of PG are sorted in Records. Third step is similar 

to Containment links algorithms. Based on DT, end steps 

of enquiry that are placed in Records will be tested and 

final Data will be generated.  

2.1 ENQUIRY SPLITTING AND EXECUTION OF 

SINGLE-BRANCH TREES ON PATH 

SUMMARY 

Trees are usually complicated and several-branch. Before 

splitting a enquiry in several single-branch trees, we 

should be familiar with link point concept. 

Definition-JP: Link Point is a step in EH which links more 

than one branch to each other. 

Example: suppose A and B are two branches of a enquiry 

that have traversed query from enquiry root 

a1/a2/…/aj/ax1/…/an and a1/a2/…/aj/ax2/…/am and ax1 ≠ 

ax2 then J is link point of two branches with a1/a2/…/aj as 
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its query. We do not mean parent-child relation by / 

between enquiry points and it can be interpreted as /, //, *.  

To answer the several-branch trees, we need to locate link 

points of branches that called JP. Complexity of several-

branch trees is because of JPs. We can easily locate place 

of these steps on PG; but we cannot definitely answer to 

this kind of enquiry without access to the dataset. Enquiry 

condition is as follow: a JP in a dataset is part of answer if 

it has all of enquiry branches under itself, in other words, 

several enquiry branches in the dataset can be part of 

answer if they are link in same JP. This JP cannot be found 

just with access to PG and without testing of branches in 

the dataset; because it is possible that one JP in the dataset 

has not one of enquiry branches under itself. 

Example: A is link point of two branches, A//B and 

A//C//D.  A steps in dataset are part of answer if have both 

of A//B and A//C//D branches.  

Splitting Enquiry: suppose Q is a several-branch enquiry 

with n JPs and m branches (ends nodes). Q split in single-

branch trees SQ1, …., SQm so that each SQi is a branch 

from root to end of one of branches and every two of  SQi  

and  SQj have same prefix from root to one of the JPs. 

Total point of these different JPs is n.  

Here our goal is description of algorithm functionality. For 

this reason, we explain our algorithm on simple enquiry 

and then we show how DT can answer to complicated 

trees. 

The procedure: As mentioned above, at first, we must split 

enquiry. Enquiry split into single-branch trees. Then each 

single-branch enquiry will be executed on PG separately. 

Fortunately, in most of query index algorithms single-

branch trees can be answered easily with PG and without 

access to the dataset point. Data of this execution will be a 

list of steps in PG for each single-branch enquiry. Query of 

these steps will be absolute (from root to step in PG). 

Example: suppose we want to execute enquiry on PG. at 

first, enquiry split into two single-branch trees: A//B and 

A//C//D. we only need to keep and access to ends nodes of 

enquiry for each branch because the dataset labeled with 

Hierarchal numbers and lower steps have some 

information about upper steps (query traversed from root) 

in themselves.   

2.2   GENERATION OF DT 

Primary Definition: DT is a table with three columns. First 

two columns are end steps of two enquiry branches in PG 

and its third column is step of JP between two these 

branches. End steps in DT have absolute query. Therefore, 

each record of this table shows an operation called 

Matching Seek. 

Definition: Matching Seek is seek of testing two or more 

steps in the dataset to achieve part of answer. 

The procedure: after splitting enquiry into several single-

branch trees and gaining corresponding steps to ends 

nodes of single-branch trees in PG, now we have to 

achieve JP of these steps. In Hierarchal encoding manner, 

each end indicate a branch. Data of single-branch trees 

execution on PG is a list of steps for each single-branch 

enquiry.  The Query of these steps are absolute (i.e, query 

of each step is completely specified from root to step). 

Now, to achieve JP of these steps, we select a step from 

each list and test their absolute querys with each other. If 

querys of selected steps were same from root to step of 

enquiry JP, we add those two steps and step of JP to DT. 

 

 

FINAL DATA 

Final Data is constructed based on the DataTable. Each 

record in the DataTable guides enquiry seek to produce a 

part of the final Data. Therefore, final Data is the union of 

partial Datas produced for each record of DataTable. 

The procedure: Consider a given record in a DataTable 

and its fields. Two first fields are two steps in a Schema 

Summary. As mentioned in introduction, each step in 

Schema Summary has an ordered list of related steps' 

Hierarchical  point in the pattern dataset that called 

Records. Points of these two lists should be tested with 

each other to produce part of the final Data. This seek is 

called Matching Seek. The matching seek starts with 

testing current step labels of lists (first ones at the 

beginning). If testing steps have same prefix up to JP step 

(third field), those are part of Data. 

Example: Consider record B1, D1 of the previous 

DataTable (the JP value of the record is assumed 2). 

Suppose their related step labels form the below lists: 

Step of W is assumed ε. 

The three bolded Lines give us steps that have same prefix 

up to JP step and are part of Matching Seek Datas. For 

steps such as 1/2/2/1 which have not successful matching 

seek, we should jump to next first step that is just greater 

in this step (look at jump(L)). For example in step 2, if step 

1/2/2/1 is current step, then next step will be 1/3/3/1.  

 

 

 

 

For each jp1 in an, jp2 in bn do 

If an.prefix(jp1)=bn.prefix(jp2) then 

DT.addREC(an, bn, jp1.Level) 

For each a in L1 ,b in L2 do 

a.prefix(L)=b.prefix(L) then 

(a,b) add to output 
node1.prefix(L)>node2.prefix(L) then 

node2=L2.Jump(L) 

node1=L1.Jump(L) 
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3. DT AND COMPLICATED TREES 

In previous sections, overall procedure of algorithm to 

answer a two-branch enquiry is shown; but there are trees 

that are more complicated in pointbase' world. In this 

section, we show DT flexibility and applicability in these 

trees so that we can answer these trees with seeking of end 

steps just once. 

3.1   JPS WITH MORE THAN TWO BRANCHES 

As mentioned in primary definition, DT is a table with 

three columns that first two columns are steps of each 

branch and its third column is common step between two 

branches; but in the world, it is possible that several 

branches were linked together in one JP. For example, 

assume Q2: //A[./C][./D]/B; 

Here it is enough that we change primary definition of DT 

as follows: 

Secondary Definition of DT: DT is a table with 

M+1columns for a JP with M sub-branch so that its 1
st
 to 

M
th

 columns are end nodes of branches and last column is 

common step of JP between all steps. 

3.2 TREES WITH SEVERAL DIFFERENTS JPS 

In a enquiry, each DT will be used for one JP. Therefore, 

for trees with M JPs we need M DTs; but these  DTs 

cannot be used independently and there is relationship 

between them. Therefore, we need two changes: first, we 

use DT_Schema  instead of DT. 

Definition: DT_Schema shows a set of n DT for a enquiry 

with n JP along with their relations. 

Example: suppose that we want to build an DT_Schema  

for enquiry. This EH has three branches 

(author1,author2,author3). The first link point is B which 

links two first branches A//B/C and A//B/D. A is another JP 

between two first and third branch. Therefore, output of 

DT will be used as a field. (see figure5)  

Second change must be in sequence of steps seeking to 

generation of Final Data. This change illustrated in figure. 

This means that at first it seek those JPs that are in lower 

position in EH tree. The procedure is as follows: when 

there are orders of seek between several JP, it begins with 

first JP. A recursive procedure called Match_Proc is used 

that consider orders of seek. If matching seek was 

successful for a DT. This procedure tests next DT. This 

seek continues while matching seek is successful for all 

DT. If matching seek was not successful for one DT, we 

must do jump from either that or previous DT and 

matching seek begin from previous DT. 

 

 

 

 
Figure 5. Three type of match process 

3.3 TREES WITH *, ?, // AND / 

DT algorithm is similar to both Query Index and 

Containment link algorithms. For single-branch trees, 

query indicators undertake the responsibility of enquiry 

conversion to absolute query. Fortunately, some of them 

such as YAPI[19] have acceptable performance on various 

operators (*, ?, // and /) in single-branch trees and don’t 

need to access to real point of the dataset and just with 

access to PG can answer to various kind of single-branch 

trees. 

4. EXPERIMENTAL DATA 

In this section we present the Data of our experiments. As 

discussed above, we categorize the existing pattern 

enquiry seeking algorithm into three parts. We tested our 

DT algorithms with Apriori and Sax. Apriori  is selected 

as the representative of holistic branch link algorithms of 

Part B and Sax as the representative of Part C, the 
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Table 1. Queries used to compare DT with Sax 

DataBase Query Query Name 

XMARK /site/people/person/gender XQ1 

TreeBank /S[.//VP/IN]//NP XQ2 

TreeBank /S/VP/PP[IN]/NP/VBN XQ3 

DBLP //article[.//sup]//title//sub XQ4 

DBLP //inproceedings//title[.//i]//sup XQ5 

 

Table 2. Queries used to compare DT with Apriori 

Dataset Query Query Name 

DBLP //dblp/artcle[author]/[.//title]

//year 

XQ1 

XMark //people//person[.//address/z

ipcode]/profile/education 

XQ2 

TreeBank //S//VP/PP[IN]/NP/VBN XQ3 

 

algorithms which only access end steps of EH in the 

Pattern dataset. As mentioned above our DT algorithms 

are classified into the Part C too.  

Our query index: In second step our algorithm needs to 

one of query indicators to convert single-branch trees to 

absolute query of Data steps in PG. There are many query 

index algorithm to choose; but each algorithm tries to 

answer to complicated trees by itself. Therefore, for many 

of trees they need to access to real point of the dataset and 

thus they have not enough performance whereas in our 

algorithm a query index is used just on PG and to answer 

to single-branch trees. Therefore, it must have only two 

below properties:  

1. Its PG is small and it answers to single-branch trees 

quickly. 

2. It is applicable for all single-branch trees with all 

possible operators (*, ?, //)  

Among all query index algorithms, the best option that 

provides two above properties is YAPI [19]. It is quickest 

and cheapest algorithm to answer to single-branch trees. 

Pointsets: We use four pointsets TreeBank[15], 

XMark[17] and DBLP[11] and a Unknown pointset in our 

experiments. DBLP is a famous pointset which is a 

shallow and wide dataset. Against DBLP, we use well-

known TreeBank pointset which is a deep dataset. 

Unknown pointset: We build unknown pointset with the 

depth of 12 and width of step – maximum point of 

children of a step – 10. The points tags of this pointset are 

only A, B, C, D, E and F. In this way, one point could have 

one or some homonymous steps as children. As a Data, the 

path Guide of the dataset could be complex and nested. 

Here, the numbers, types and orders of children of steps 

are chosen accidentally.  

Original Hierarchical: In our experiments, the extended 

Hierarchical  labels are not stored by the dotted-decimal 

strings displayed (e.g.\1.2.3.4"), but rather a compressed 

binary representation. In particular, we used UTF-8 

encoding as an efficient way to present the integer value, 

which was proposed by Tatarinov et al. [8].  

Trees: In order to test our DT algorithm with Sax, we use 

trees that are listed in the Table1. Each enquiry has its 

distinguished property. The enquiry XQ1 is a single 

enquiry with P-C relationships. For this kind of trees we 

do not need to generate DT. The trees XQ4 and XQ5 are 

several-branch trees with A-D relationships. The enquiry 

XQ3 is also a several-branch enquiry but with P-C 

relationships and XQ2 is combination of A-D and P-C 

relationships. 

We choose three parameters to test our DT algorithm with 

Sax : i) point of points read, ii) Size of disk files scanned 

and iii) execution time. 

Point of points read: In both algorithms, just Ends Nodes 

of EH will be seeked; but there are two fundamental 

differences: 1) in Sax at first, each step will be checked 

whether it has single-branch condition or not; but in our 

algorithm, we only access those steps, which are member 

of one enquiry branch. 2) Sax try to answer the enquiry by 

direct testing of each branch end nodes in dataset and it 

testes many ends nodes that have not any path relation 

with each other; but in our algorithm with considering DT, 

only those end nodes will be tested that have path relation 

with each other and many steps don’t need to be accessed 

because they have no counterpart in other branch. This 

difference is more obvious in parent and child trees. 

Size of disk files scanned: In Sax method when we do test, 

we need to save some steps because it is possible that they 

can produce part of answer in test with another step in the 

future. This is because Sax try to answer the enquiry by 

direct testing of steps blindly; but in our algorithm, we do 

not need to save any intermediate point because the way of 

step seeking and answering the enquiry are specified in 

DT. 

Execution time: the execution time of Sax seems to be 

more than DT. Sax needs to decode the labels to their 

querys and then test them but in our algorithm, there is no 

need to decode step labels. Figure 6 confirms the 

discussion. Our experiments run on a PC with 2.2 GHz 

Intel Pentium IV seek running Red Hat Linux 8.0 with 2 

GB of main memory. 

 
 

 

 

 

 

 

 

 

 

 

 

Apriori :In this section, we test our algorithm with Apriori 

algorithm as representative of B part algorithm. We test 

our algorithm with Apriori in two criteria of i) point of 

points read and ii) execution time. Trees are in table2, 

Apriori link all of algorithm in its part will access to all 

EH steps to answer the enquiry. Therefore, it will have 

more step access than Sax method to answer the enquiry; 

but it does not need to convert Hierarchical numbers to 

query point's name, as a Data, in some cases it operates 

better than Sax in execution time factor. Figure 7 confirms 

the discussion. 

Unknown Pointset: Here we execute our trees on unknown 

Pointset that is described before. This pointset has many 
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namesake points and a non-uniform schema. Therefore, it 

shows efficiency of algorithms clear. 

Single-branch trees: Both DT and Apriori, execute 8 

single-branch trees A1, A2, …, A8 with 2, 3 , …, 9 length 

respectively. All trees are Partial, i.e, they begin with //, As 

shown in figure 8, as many as point of single-branch trees 

steps increase, point of points to be accessed in the dataset 

in DT decrease. 

 Several-branch trees: Both DT and Sax, execute A1, A2, 

A3 and A4 trees which have 2, 3, 4, 5 branches 

respectively. As shown in figure 8  in both algorithms 

when number of branches increases, point of step accesses 

will increase whereas growth rate of DT is very less than 

growth rate of Sax. 

 

 
 

 

 
Figure 6.  DT(Guide) in Comparison  with Sax   

 

 

Figure 7.  DT (Guide) in Comparison  with Apriori 

 

 

Figure 8.  DT and Unknown Pointset 
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