
Decomposition of Parallel Copies with Duplication

G. N. Purohit1, Venuka Sandhir1

1Centre for Mathematical Sciences, Banasthali University,

Banasthali, Rajasthan, India

Abstract
SSA form is becoming more popular in the context of JIT

compilation since it allows the compiler to perform important

optimizations like common sub-expression elimination or

constant propagation without the drawbacks of keeping huge

data structures in memory or requiring a lot of computing

power. The recent approach of SSA-based register allocation

performs SSA elimination after register allocation. F. Bouchez

et al. proposed parallel copy motion to prevent the splitting of

edges when going out of colored SSA by moving the code that

should be assigned to the edges to a more convenient place.

Duplications in parallel copies pose some problems when

moving them. In this paper an approach has been developed to

decompose parallel copies so that duplications can be handled

separately and parallel copies can be easily moved away

without duplication. A simple and elegant application is

moving duplicated copies out of critical edges. This is often

beneficial compared to the alternative splitting the edge.

Keywords: Register Allocation, SSA form, Critical edge,

Parallel copy.

1. Introduction

Register allocation is among the most important compiler

optimizations affecting the performance of compiled

code. It determines which of the program values

(variables and temporaries) should be in machine

registers (or memory) during the execution of a program.

In a real machine, registers are usually few and fast to

access, so the problem addressed here is how to

minimize the traffic between registers and memory

hierarchy. Therefore, the challenge is to relegate the least

program values to memory. Data dependencies in most

programming languages are implicit. Some compilers

use an Intermediate Representation in Static Single

Assignment (SSA) in which each variable is only defined

once to simplify analysis of data dependencies. The

properties of the underlying dominance tree [1] and the

implied use-def chains make possible the use of efficient,

simple and fast algorithms for various code optimizations

in SSA.

SSA-form contains 𝜙-functions to merge values based on

control flow. Once optimizations on SSA-form are

performed, it is not trivial to translate SSA-form back to

normal form because the properties of 𝜙-functions

cannot be translated directly to processor instructions and

must be disposed off. Recently, solutions have been

proposed to perform register assignment—assign

variables to registers—while still under SSA and then try

to go out of colored SSA. This is the case of Hack et al.

[12], Hack and Goos [11] or Bouchez et al. [5] for

instance. There are some advantages of this practice:

 copies are implicit: there is no need to add new

copies and variables corresponding to a naїve

out-of-SSA conversion.

 the dominance property can be exploited to

perform a greedy coloring algorithm (using a

“tree-scan” on the dominance tree for instance).

 SSA possesses nice properties avoiding use of

an interference graph for coloring (liveness

information is cheap, see Boissinot et al. [3]).

 one might use the SSA to perform other

optimizations after coloring, like code motion

or scheduling.

Performing the coloring of the variables under SSA i.e.

doing register allocation before translating out of SSA,

fit the scheme of register allocation in two separate steps,

first spilling then splitting and finally coloring with

coalescing [4]. The classical techniques to go out-of-SSA

that insert copies at the beginning or end of basic blocks

as do Sreedhar et al. [15] are too constrained in this case

by the fact that variables cannot be created on demand.

The alternative solution [5] is to place parallel copies

corresponding to 𝜙-functions on the incoming edges.

The solution is then to convert parallel copies into

permutations that are easier to move.

In light of previous work, the goal of this paper is to

propose a general framework for moving around parallel

copies with duplications in a register-allocated code. The

remainder of the paper is organized as follows: Section 2

summarizes parallel copy motion inside a basic block

and out of a control-flow edge. Section 3 illustrates the

concept of compensation code with the notion of critical

edges i.e. edges going from a block with multiple

successors to a block with multiple predecessors. Section

4 describes our approach for moving a parallel copy

away from critical edge with duplications and Section 5

concludes the results and future work.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 352

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2. Parallel Copies

As explained earlier, special care should be taken when

going out of colored SSA. A correct way to do it is to

replace the 𝜙-functions by parallel copies on the

incoming edges. Parallel copies are virtual instructions

that perform as many move instructions as required, all

at the same time. Parallel copy is a fundamental

instruction when dealing with program splitting. To split

all variables at one program point, one needs to duplicate

all variables alive at this point and insert a parallel copy

between all the variables and their duplicates. Trying to

split by inserting normal i.e. sequentialized copies would

create interferences between some variables and the

duplicates of others. Parallel copies can be seen as a way

to “reorganize” values in variables and are sometimes

referred to as “shuffle code.” However, there is no such

hardware instruction. At best, one can find instructions to

swap values in registers or perform up to a fixed number

of copies in parallel.

In this paper, we deal with colored variables and use the

notation x
< Ri >

to state that variable x is assigned to

register Ri. In our case, the 𝜙-functions represent a flow

of values between registers instead of a flow of values

between variables. Moreover, there is no way of creating

“temporary variables” as only registers are available.

Still, some registers might be free if the register pressure

is lower than R. They can be temporarily used to keep

some values.

When dealing with colored variables, it is handy to

implement parallel copies as arrays. Let //c be a parallel

copy, then for each register Ri (1 ≤ i ≤ R), the i-th

element of the array (indexed from 1 to R) indicates the

register from which new value of Ri will be copied i.e. if

//c(Ri) = Rj, the value of register Rj is copied into Ri

during the parallel copy. A register that simply holds its

value is represented as //c(Ri) = Ri and one that does not

receive any live value is represented as //c(Ri) = ⊥ . Note

that it is important to differentiate in the parallel copy

representation, registers that are not modified (//c(Ri) =

Ri) from register that do not receive any value (//c(Ri) =

⊥), since the latter are “free” registers and the former

hold the value of live variables. In this paper a graphical

representation of parallel copies is used in which

registers are nodes and directed edges represent the flow

of the values. These are called “register transfer graphs”,

Hack [10].

In general, Ri holds the value of a live variable before the

parallel copy iff there exists 1 ≤ i ≤ R such that //c(Ri) =

Rj i.e. an edge leaving the node j in the graph

representation. Register Ri holds the value of a live

variable after the parallel copy iff //c(Ri) ≠ ⊥ i.e. there

exists an edge entering the node i in the graph

representation. If j = i the value stays in the same

register, which is represented by a self edge. Moreover,

we have considered that two registers containing the

values of live variables at one point interfere at this

point, even if the values are the same. Hence it is

forbidden that a parallel copy defines a register more

than once: two different registers cannot put their values

into same i.e. there should not be two entering edges in a

node of the graph representation of the parallel copy.

When performing SSA-based register allocation: 𝜙-

functions are removed after the register assignment

phase, which leads, due to the semantics of these

functions to the introduction of register-to-register

parallel copies on the edges leading to the 𝜙-functions.

Fig. 1 illustrates an example where R1 is copied to R2 and

R3 on the left edge from Bs to Bd, because the left

arguments of the 𝜙-functions are in different registers

than the variables defined. On the contrary, variables b

and c is assigned to R2 and R3 on the right edge from Bs’

to Bd, so the values of R2 and R3 should remain there.

Fig. 1 Example of parallel copies where a must be duplicated because d

and e interfere.

If a parallel copy is injective i.e. there is no two i ≠ j such

that //c(Ri) = //c(Rj), it is reversible in the mathematical

sense. A reversible parallel copy //c is a one-to-one

mapping from its live-in set {si} to its live-out set {di}.

We use the notation //c : (d1,…., dn) ← (s1,…., sn) where

//c(si) = di and //c
-1

(di) = si . However, the ⊥ value makes

it difficult for parallel copies to be reversible. Indeed, it

means that //c is not injective whenever more than one

register does not receive the value of another register.

The live-in and live-out sets are subsets of the register

set. Note that these two sets are not necessarily disjoint.

Hence, care must be taken to implement the mapping

with sequential instructions (possibly with swaps). For Ri

∉ live-in, we abusively write //c(Ri) = ⊥ and, for Ri ∉

live-out, //c
-1

(Ri) =⊥. Since parallel copies contain

liveness information, it is not possible to replace //c
-1

 ○

//c by //c ○ //c
-1

 in the general case. Indeed, live-out of //c

is the same as live-in of //c
-1

 but is in general different

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 353

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

than the live-in of //c (which in turn is the same as live-

out of //c
-1

). In terms of graph representation, a parallel

copy is a set of disjoint sub-graphs, where each sub-

graph is a chain or a simple cycle [14].

3. Compensation

When trying to move a parallel copy away from an edge

E from source basic block Bs to destination basic block

Bd, there are two possibilities: either move it up i.e. to the

bottom of Bs, or move it down, i.e., to the top of Bd.

Indeed, the code of the parallel copy needs to be

performed whenever the execution path goes through the

edge E. This works fine whenever E is the only edge

leaving Bs or the only one entering Bd. However if E is a

critical edge, it is in general false to move the parallel

copy either on Bs or on Bd. Indeed, the code of the

parallel copy should not be executed if an edge other

than E is chosen. A well-known example of the problem

of critical edges is the “lost copy problem”. In fact, in the

case of a colored SSA code, simpler examples exist: it is

sufficient that a parallel copy overwrite a register

containing another live variable on the predecessor

block. However, it is possible to compensate its effects

on the other edges leaving Bs (resp. entering Bd) by

placing some code on them.

(a) Moving the parallel copy //c down

(b) Moving the parallel copy //c up

Fig. 2 The differences from moving down or up come from the

asymmetry of liveness between the source and the destination of edges.

When moving a parallel copy //c down, one needs to pre-

compensate the copy on other incoming edges. The idea

is to “prepare” the registers so that, when arriving on Bd,

//c will move the values into their right registers. This is

correct because the sets of variables alive are the same at

the beginning of Bd and on every edge arriving in Bd. The

fact that live-out(//c) = live-in(//c
-1

) and live-in(//c) = live

out(//c
-1

) shows that, in the end, the effect is that: if the

flow comes from another edge than E, //c
-1

 is followed

by //c, i.e., the identity is done on the registers alive.

On the contrary, moving //c up is more difficult. On (b),

//c needs to be modified to take the liveness at the end of

Bs into account. Indeed, //c was created with the liveness

of E in mind, which is a subset of live-out(Bs). That is

why, in the examples of Fig. 2, the parallel copy was

modified when moved up and not when moved down.

On (b), both R1 and R2 contain a live value on Bs. R2

must be saved so registers are swapped. Then, R2 must

be restored with its original value on the left edge.

As explained, this forces to be careful in order not to

erase any value of a live variable and not to add useless

copies during compensation, while it is possible to

augment or project parallel copies when required, a more

elegant solution [5] in which parallel copies are

converted to permutations: //c is made a bijection by

replacing the every ⊥ by a well-chosen register in the

array representation.

In fact, permutation motion can be viewed in [5], more

generally, as region recoloring, a technique that allows

permutation to be moved not only from control-flow

edges but also inside basic blocks. In the presence of

non-splittable critical edges, the permutation motion can

sometimes fail: if the number of duplications exceeds the

register pressure and in the presence of multiplexing

regions, in this case classical graph coloring techniques

are used to recolor the multiplexing regions, possibly

requiring additional spills. Nevertheless, in practice, the

compiler hardly generates such regions, thus it does not

appear to be an issue for performance.

4. Duplications in parallel copies

Parallel copies can contain duplications, i.e., the value in

one register is copied into two registers (or more), as R1

indicates duplication in the Fig.1. More formally, there is

a duplication if for a register Rk every time there is two

registers Ri and Rj (i ≠ j) such that //c(Ri) = Rk and

//c(Rj) = Rk. The value contained in register Rk is

duplicated. This happens for instance if, at the beginning

of a basic block, the same variable is used twice as

argument, as in [d ← (a,….); e ← 𝜙(a,….)] or if two

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 354

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

arguments have been coalesced and renamed into one

variable.

One particularity of duplications is that the register

pressure (minimal number of registers necessary to

allocate all the variables live at that program point) is

higher after a parallel copy that contains duplications

than it was before. This is one of the reasons why special

care must be taken when dealing with them. In a parallel

copy with duplication, the flow edges of values between

register cannot be “reversed” to obtain a parallel copy

that has an effect opposite to that of the first one (else,

there would be two edges pointing to the same

register).They cannot be ignored as they are mandatory

in many actual cases. In practice, the duplications can be

extracted from the parallel copies and placed in the

predecessor basic block but this task may lead to

additional spilling. For these reasons, we will try to get

rid of duplications, which is being done as follows:

KEY POINTS OF MOVING A PARALLEL COPY

AWAY FROM CRITICAL EDGE WITH DUP-

LICATIONS

An overview of the general process is given before

detailing each individual step. Conceptually, our

approach comprises four successive phases:

 Identify the duplications in Register Flow

Graph (RFG).

 Decomposition of a parallel copy containing

duplications.

 Moving parallel copies away from an edge.

 Insert compensation code.

A parallel copy //c is considered on an edge E that cannot

be split, or we do not want to split. First, it has been

calculated that how many times a register is used to

define another one in //c. If it is used more than twice,

register contains duplication. For simplicity, it has been

considered that any register in the graph representation

of the parallel copy has at most two leaving edges.

Decomposition of a parallel copy containing duplications

would be easier if the RFG contains “free” registers: they

do not contain the value of any live variable at the end of

Bs (so they also do not on the edge of //c) and do not

receive any value in //c or that receive a value but whose

value is not used. If duplication consists of a self edge, it

does not need to be copied (but then, every other

duplication involving that register does). Taking all live

registers at the end of Bs, it is possible to decompose the

RFG by considering one leaving edge of each duplicated

register in edge-disjoint sub-graphs: RFG equals the

union of the flows of registers of sub-graphs. Moving

parallel copies //c while inserting the compensation code

on adjacent edges are described in Section 3.

As illustrated by this example (Fig. 3), when trying to

move a reversible parallel copy away from a critical edge

E: Bs → Bd with duplications R1, R2 and R3. First

decompose the RFG into sub-graphs, directed the flows

of registers: R4 ←R2 ←R1, R6 ←R3, R5 ←R5, R7 ←R7 and

R7 ←R3 ←R1, R5 ←R2, R4 ←R4, R6 ←R6. Moving the

latter parallel copies to the top of Bd and pre-

compensated the copy on other incoming edges and

another to the bottom of Bs and post-compensated the

copy on other out going edges.

(a) Parallel copies with duplications

(b) Decomposition of a parallel copy containing duplications

(c) Moving parallel copies with compensation

Fig. 3 Example of moving a parallel copy away from a critical edge

with duplication. First, //c is decomposed and then the decomposed
copies can be moved with compensation code.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 355

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. Conclusion and Future Work

The goal of this paper is to present an approach to

prevent the splitting of edges when going out of colored

SSA by moving the duplicated code that should be on

edges to a more convenient place. Our solution is based

on an idea that, to our knowledge, is known in the

literature: parallel copies can be moved away from edges

provided that compensation code is inserted on other

edges. Duplications just make copies of registers. So, as

long as there are enough free registers, it is possible to

move duplications. It is indeed not a problem to change

the value of a register that will not be used on the other

successor blocks. The only restriction is that duplications

should not erase any live value, so an approach has been

developed to decompose parallel copies so that

duplications can be handled separately.

Better approach could be devised for the decomposition,

using for instance information on the place where //c will

be sequentialized. This is not our purpose here. Our

purpose is just to show that it is not a problem to place

parallel copies with duplications on edges as these can be

moved away from edges that cannot be split or that one

does not want to split, not to provide the best way to do

it, if there is one.

Our plan for future research includes design and

implementation of an algorithm that uses the approach

presented in this paper. Implementation of different

heuristics to improve the precision of this algorithm

without sacrificing the compilation time will also be

done.

References
[1] A. W. Appel and J. Palsberg, “Modern Compiler

Implementation in Java”, 2nd edition, Cambridge

University Press, 2002.

[2] B. Boissinot, A. Darte, F. Rastello, B. D. de Dinechin

and C. Guillon, “Revisiting out-of-ssa translation for

correctness, code quality and efficiency”, In Proceed-

ings of the 7th annual IEEE/ACM International

Symposium on Code Generation and Optimization,

CGO ’09, Washington, DC, USA, 2009, pp. 114–

125.

[3] Boissinot, S. Hack, D. Grund, B. D. de Dinechin and

F. Rastello, “Fast liveness checking for SSA-form

programs”, In International Symposium on Code

Generation and Optimization (CGO’08). IEEE/ACM,

2008, pp. 35–44.

[4] F. Bouchez, “A Study of Spilling and Coalescing in

Register Allocation as Two Separate Phases” Ph.D.

Thesis. December 22, 2008.

[5] F. Bouchez, Q. Colombet, A. Darte, F. Rastello and

C. Guillon, “Parallel copy motion” In SCOPES,

ACM, 2010, pp. 1-10.

[6] P. Briggs, “Register allocation via graph coloring”

Ph.D. thesis, Rice University, Houston, TX, USA,

1992.

[7] P. Briggs, K. D. Cooper, T. J. Harvey and L. T.

Simpson, “Practical improvements to the construc-

tion and destruction of static single assignment

form”, Software – Practice and Experience, Vol. 28,

No. 8, Jul. 1998, pp. 859–881.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman

and F. K. Zadeck, “Efficiently com-puting static

single assignment form and the control dependence

graph”, ACM Transactions on Programming Lan-

guages and Systems, Vol. 13, No. 4, 1991, pp. 451 –

490.

[9] L. George and A. W. Appel, “Iterated register

coalescing”, ACM Transactions on Programming

Languages and Systems, Vol. 18, No. 3, May 1996.

[10] S. Hack, “Register Allocation for Programs in SSA

Form”, PhD thesis, Universität Karlsruhe, Oct. 2007.

[11] S. Hack and G. Goos, “Copy coalescing by graph

recoloring”, In ACM SIGPLAN Conf. on Program-

ming Language Design and Implementation

(PLDI’08), 2008, pp. 227–237.

[12] S. Hack, D. Grund and G. Goos, “ Register allocation

for programs in SSA form”, In International Con-

ference on Compiler Construction (CC’06), Volume

3923 of LNCS. Springer, 2006, pp. 247-262.

[13] F. M. Q. Pereira and J. Palsberg, “Register allocation

via coloring of chordal graphs”, In Proceedings of the

Asian Symposium on Programming Languages and

Systems (APLAS’05), Tsukuba, Japan, Nov. 2005,

pp. 315–329.

[14] F. M. Q. Pereira and J. Palsberg, “SSA elimination

after register allocation”, In CC, 2009, pp. 158 -173.

[15] V. C. Sreedhar, R. D.C. Ju, D. M. Gillies, and V.

Santhanam, “Translating out of static single assign-

ment form”, In Static Analysis Symposium (SAS),

1999, pp. 194 – 204.

Prof. G. N. Purohit is a Dean of Apaji Institute of Mathematics

and Applied Computer Technology at Banasthali University, Raj-

asthan. Before joining Banasthali University, he was Head of the

Department of Mathematics, University of Rajasthan, Jaipur. He

had been Chief-editor of a research journal and regular reviewer

of many journals. His present interest is in Operational

Research, Discrete Mathematics and Communication and

Sensor Networks. He has published around 40 research papers

in various journals.

Venuka Sandhir earned her B.Sc. and M.Sc. degree in Applied

Mathematics from University of Delhi. Currently she is doing her

M.Phil. in the Mathematical Sciences from Banasthali University

at the Centre for Mathematical Sciences. Her research interests

include Numerical Simulation, Graph Theory, Computer and

Communication.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 356

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

