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Abstract 
SSA form is becoming more popular in the context of JIT 

compilation since it allows the compiler to perform important 

optimizations like common sub-expression elimination or 

constant propagation without the drawbacks of keeping huge 

data structures in memory or requiring a lot of computing 

power. The recent approach of SSA-based register allocation 

performs SSA elimination after register allocation. F. Bouchez 

et al. proposed parallel copy motion to prevent the splitting of 

edges when going out of colored SSA by moving the code that 

should be assigned to the edges to a more convenient place. 

Duplications in parallel copies pose some problems when 

moving them. In this paper an approach has been developed to 

decompose parallel copies so that duplications can be handled 

separately and parallel copies can be easily moved away 

without duplication. A simple and elegant application is 

moving duplicated copies out of critical edges. This is often 

beneficial compared to the alternative splitting the edge. 

 

Keywords: Register Allocation, SSA form, Critical edge, 

Parallel copy. 

 

 

1. Introduction  
 

Register allocation is among the most important compiler 

optimizations affecting the performance of compiled 

code. It determines which of the program values 

(variables and temporaries) should be in machine 

registers (or memory) during the execution of a program. 

 

In a real machine, registers are usually few and fast to 

access, so the problem addressed here is how to 

minimize the traffic between registers and memory 

hierarchy. Therefore, the challenge is to relegate the least 

program values to memory. Data dependencies in most 

programming languages are implicit. Some compilers 

use an Intermediate Representation in Static Single 

Assignment (SSA) in which each variable is only defined 

once to simplify analysis of data dependencies. The 

properties of the underlying dominance tree [1] and the 

implied use-def chains make possible the use of efficient, 

simple and fast algorithms for various code optimizations 

in SSA.  

       

SSA-form contains 𝜙-functions to merge values based on 

control flow. Once optimizations on SSA-form are 

performed, it is not trivial to translate SSA-form back to 

normal form because the properties of 𝜙-functions  

 

cannot be translated directly to processor instructions and 

must be disposed off. Recently, solutions have been 

proposed to perform register assignment—assign 

variables to registers—while still under SSA and then try 

to go out of colored SSA. This is the case of Hack et al. 

[12], Hack and Goos [11] or Bouchez et al. [5] for 

instance.  There are some advantages of this practice: 

 

 copies are implicit: there is no need to add new 

copies and variables corresponding to a naїve 

out-of-SSA conversion. 

 the dominance property can be exploited to 

perform a greedy coloring algorithm (using a 

“tree-scan” on the dominance tree for instance). 

 SSA possesses nice properties avoiding use of 

an interference graph for coloring (liveness 

information is cheap, see Boissinot et al. [3]). 

 one might use the SSA to perform other 

optimizations after coloring, like code motion 

or scheduling. 

 

Performing the coloring of the variables under SSA i.e. 

doing register allocation before translating out of SSA, 

fit the scheme of register allocation in two separate steps, 

first spilling then splitting and finally coloring with 

coalescing [4]. The classical techniques to go out-of-SSA 

that insert copies at the beginning or end of basic blocks 

as do Sreedhar et al. [15] are too constrained in this case 

by the fact that variables cannot be created on demand. 

The alternative solution [5] is to place parallel copies 

corresponding to 𝜙-functions on the incoming edges. 

The solution is then to convert parallel copies into 

permutations that are easier to move.  

 

In light of previous work, the goal of this paper is to 

propose a general framework for moving around parallel 

copies with duplications in a register-allocated code. The 

remainder of the paper is organized as follows: Section 2 

summarizes parallel copy motion inside a basic block 

and out of a control-flow edge. Section 3 illustrates the 

concept of compensation code with the notion of critical 

edges i.e. edges going from a block with multiple 

successors to a block with multiple predecessors. Section 

4 describes our approach for moving a parallel copy 

away from critical edge with duplications and Section 5 

concludes the results and future work. 
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2. Parallel Copies 

 

As explained earlier, special care should be taken when 

going out of colored SSA. A correct way to do it is to 

replace the 𝜙-functions by parallel copies on the 

incoming edges. Parallel copies are virtual instructions 

that perform as many move instructions as required, all 

at the same time. Parallel copy is a fundamental 

instruction when dealing with program splitting. To split 

all variables at one program point, one needs to duplicate 

all variables alive at this point and insert a parallel copy 

between all the variables and their duplicates. Trying to 

split by inserting normal i.e. sequentialized copies would 

create interferences between some variables and the 

duplicates of others. Parallel copies can be seen as a way 

to “reorganize” values in variables and are sometimes 

referred to as “shuffle code.” However, there is no such 

hardware instruction. At best, one can find instructions to 

swap values in registers or perform up to a fixed number 

of copies in parallel. 

       

In this paper, we deal with colored variables and use the 

notation x
< Ri > 

to state that variable x is assigned to 

register Ri. In our case, the 𝜙-functions represent a flow 

of values between registers instead of a flow of values 

between variables. Moreover, there is no way of creating 

“temporary variables” as only registers are available. 

Still, some registers might be free if the register pressure 

is lower than R. They can be temporarily used to keep 

some values.   

       

When dealing with colored variables, it is handy to 

implement parallel copies as arrays. Let  //c be a parallel 

copy, then for each register Ri (1 ≤ i ≤ R), the i-th 

element of the array (indexed from 1 to R) indicates the 

register from which new value of Ri will be copied i.e. if  

//c(Ri) = Rj, the value of register Rj is copied into Ri 

during the parallel copy. A register that simply holds its 

value is represented as //c(Ri) = Ri  and one that does not 

receive any live value is represented as  //c(Ri) = ⊥ . Note 

that it is important to differentiate in the parallel copy 

representation, registers that are not modified ( //c(Ri) = 

Ri ) from register that do not receive any value (//c(Ri) = 

⊥), since the latter are “free” registers and the former 

hold the value of live variables. In this paper a graphical 

representation of parallel copies is used in which 

registers are nodes and directed edges represent the flow 

of the values. These are called “register transfer graphs”, 

Hack [10].  

      

In general, Ri holds the value of a live variable before the 

parallel copy iff there exists 1 ≤ i ≤ R such that //c(Ri) = 

Rj i.e. an edge leaving the node j in the graph 

representation. Register Ri holds the value of a live 

variable after the parallel copy iff //c(Ri) ≠ ⊥ i.e. there 

exists an edge entering the node i in the graph 

representation. If j = i the value stays in the same 

register, which is represented by a self edge. Moreover, 

we have considered that two registers containing the 

values of live variables at one point interfere at this 

point, even if the values are the same. Hence it is 

forbidden that a parallel copy defines a register more 

than once: two different registers cannot put their values 

into same i.e. there should not be two entering edges in a 

node of the graph representation of the parallel copy.  

 

When performing SSA-based register allocation: 𝜙-

functions are removed after the register assignment 

phase, which leads, due to the semantics of these 

functions to the introduction of register-to-register 

parallel copies on the edges leading to the 𝜙-functions. 

Fig. 1 illustrates an example where R1 is copied to R2 and 

R3 on the left edge from Bs to Bd, because the left 

arguments of the 𝜙-functions are in different registers 

than the variables defined. On the contrary, variables b 

and c is assigned to R2 and R3 on the right edge from Bs’ 

to Bd, so the values of R2 and R3 should remain there. 

                                                     

 
 
Fig. 1 Example of parallel copies where a must be duplicated because d 

and e interfere. 
 

If a parallel copy is injective i.e. there is no two i ≠ j such 

that //c(Ri) = //c(Rj), it is reversible in the mathematical 

sense. A reversible parallel copy //c is a one-to-one 

mapping from its live-in set {si} to its live-out set {di}. 

We use the notation //c : (d1,…., dn) ← (s1,…., sn) where 

//c(si) = di and //c 
-1

(di) = si . However, the ⊥ value makes 

it difficult for parallel copies to be reversible. Indeed, it 

means that //c is not injective whenever more than one 

register does not receive the value of another register.  

       

The live-in and live-out sets are subsets of the register 

set. Note that these two sets are not necessarily disjoint. 

Hence, care must be taken to implement the mapping 

with sequential instructions (possibly with swaps). For Ri 

∉ live-in, we abusively write //c(Ri) = ⊥ and, for Ri ∉ 

live-out, //c
-1

(Ri) =⊥. Since parallel copies contain 

liveness information, it is not possible to replace //c
-1

 ○ 

//c by //c ○ //c
-1

 in the general case. Indeed, live-out of //c 

is the same as live-in of //c
-1

 but is in general different 
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than the live-in of //c (which in turn is the same as live-

out of //c
-1

). In terms of graph representation, a parallel 

copy is a set of disjoint sub-graphs, where each sub-

graph is a chain or a simple cycle [14]. 

 

3. Compensation 
 

When trying to move a parallel copy away from an edge 

E from source basic block Bs to destination basic block 

Bd, there are two possibilities: either move it up i.e. to the 

bottom of Bs, or move it down, i.e., to the top of Bd. 

Indeed, the code of the parallel copy needs to be 

performed whenever the execution path goes through the 

edge E. This works fine whenever E is the only edge 

leaving Bs or the only one entering Bd. However if E is a 

critical edge, it is in general false to move the parallel 

copy either on Bs or on Bd. Indeed, the code of the 

parallel copy should not be executed if an edge other 

than E is chosen. A well-known example of the problem 

of critical edges is the “lost copy problem”. In fact, in the 

case of a colored SSA code, simpler examples exist: it is 

sufficient that a parallel copy overwrite a register 

containing another live variable on the predecessor 

block. However, it is possible to compensate its effects 

on the other edges leaving Bs (resp. entering Bd) by 

placing some code on them. 

 

 

 
(a) Moving the parallel copy //c down 

 

 

 

(b) Moving the parallel copy //c up 
 

Fig. 2 The differences from moving down or up come from the 

asymmetry of liveness between the source and the destination of edges. 

 

 

When moving a parallel copy //c down, one needs to pre-

compensate the copy on other incoming edges. The idea 

is to “prepare” the registers so that, when arriving on Bd, 

//c will move the values into their right registers. This is 

correct because the sets of variables alive are the same at 

the beginning of Bd and on every edge arriving in Bd. The 

fact that live-out(//c) = live-in(//c
-1

) and live-in(//c) = live 

out(//c
-1

) shows that, in the end, the effect is that: if the 

flow comes from another edge than E, //c
-1

 is followed 

by //c, i.e., the identity is done on the registers alive.  

 

On the contrary, moving //c up is more difficult. On (b), 

//c needs to be modified to take the liveness at the end of 

Bs into account. Indeed, //c was created with the liveness 

of E in mind, which is a subset of live-out(Bs). That is 

why, in the examples of Fig. 2, the parallel copy was 

modified when moved up and not when moved down. 

On (b), both R1 and R2 contain a live value on Bs. R2 

must be saved so registers are swapped. Then, R2 must 

be restored with its original value on the left edge.  

 

As explained, this forces to be careful in order not to 

erase any value of a live variable and not to add useless 

copies during compensation, while it is possible to 

augment or project parallel copies when required, a more 

elegant solution [5] in which parallel copies are 

converted to permutations: //c is made a bijection by 

replacing the every ⊥ by a well-chosen register in the 

array representation.  

 

In fact, permutation motion can be viewed in [5], more 

generally, as region recoloring, a technique that allows 

permutation to be moved not only from control-flow 

edges but also inside basic blocks. In the presence of 

non-splittable critical edges, the permutation motion can 

sometimes fail: if the number of duplications exceeds the 

register pressure and in the presence of multiplexing 

regions, in this case classical graph coloring techniques 

are used to recolor the multiplexing regions, possibly 

requiring additional spills. Nevertheless, in practice, the 

compiler hardly generates such regions, thus it does not 

appear to be an issue for performance.  

 

4. Duplications in parallel copies 
 

Parallel copies can contain duplications, i.e., the value in 

one register is copied into two registers (or more), as R1 

indicates duplication in the Fig.1. More formally, there is 

a duplication if for a register Rk every time there is two 

registers Ri and Rj ( i ≠ j) such that  //c(Ri) = Rk and  

//c(Rj) = Rk. The value contained in register Rk is 

duplicated. This happens for instance if, at the beginning 

of a basic block, the same variable is used twice as 

argument, as in [d ← (a,….); e ← 𝜙(a,….)] or if two 
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arguments have been coalesced and renamed into one 

variable. 

 

One particularity of duplications is that the register 

pressure (minimal number of registers necessary to 

allocate all the variables live at that program point) is 

higher after a parallel copy that contains duplications 

than it was before. This is one of the reasons why special 

care must be taken when dealing with them. In a parallel 

copy with duplication, the flow edges of values between 

register cannot be “reversed” to obtain a parallel copy 

that has an effect opposite to that of the first one (else, 

there would be two edges pointing to the same 

register).They cannot be ignored as they are mandatory 

in many actual cases. In practice, the duplications can be 

extracted from the parallel copies and placed in the 

predecessor basic block but this task may lead to 

additional spilling. For these reasons, we will try to get 

rid of duplications, which is being done as follows:  

 

KEY POINTS OF MOVING A PARALLEL COPY 

AWAY FROM CRITICAL EDGE WITH DUP-

LICATIONS 

 

An overview of the general process is given before 

detailing each individual step. Conceptually, our 

approach comprises four successive phases: 

 

 Identify the duplications in Register Flow 

Graph (RFG). 

 Decomposition of a parallel copy containing 

duplications. 

 Moving parallel copies away from an edge.  

 Insert compensation code. 

 

A parallel copy //c is considered on an edge E that cannot 

be split, or we do not want to split. First, it has been 

calculated that how many times a register is used to 

define another one in //c. If it is used more than twice, 

register contains duplication. For simplicity, it has been 

considered that any register in the graph representation 

of the parallel copy has at most two leaving edges. 

Decomposition of a parallel copy containing duplications 

would be easier if the RFG contains “free” registers: they 

do not contain the value of any live variable at the end of 

Bs (so they also do not on the edge of //c) and do not 

receive any value in //c or that receive a value but whose 

value is not used. If duplication consists of a self edge, it 

does not need to be copied (but then, every other 

duplication involving that register does). Taking all live 

registers at the end of Bs, it is possible to decompose the 

RFG by considering one leaving edge of each duplicated 

register in edge-disjoint sub-graphs: RFG equals the 

union of the flows of registers of sub-graphs. Moving  

parallel copies //c while inserting the compensation code 

on adjacent edges are described in Section 3. 

 

As illustrated by this example (Fig. 3), when trying to 

move a reversible parallel copy away from a critical edge 

E: Bs → Bd with duplications R1, R2 and R3. First 

decompose the RFG into sub-graphs, directed the flows 

of registers: R4 ←R2 ←R1, R6 ←R3, R5 ←R5, R7 ←R7 and 

R7 ←R3 ←R1, R5 ←R2, R4 ←R4, R6 ←R6. Moving the 

latter parallel copies to the top of Bd and pre-

compensated the copy on other incoming edges and 

another to the bottom of Bs and post-compensated the 

copy on other out going edges. 

 

 

 
 

(a) Parallel copies with duplications 

 
 

 
 

(b) Decomposition of a parallel copy containing duplications 

 

 

 
 

(c) Moving parallel copies with compensation 
 

Fig. 3 Example of moving a parallel copy away from a critical edge 

with duplication. First, //c is decomposed and then the decomposed 
copies can be moved with compensation code. 
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5. Conclusion and Future Work 

 

The goal of this paper is to present an approach to 

prevent the splitting of edges when going out of colored 

SSA by moving the duplicated code that should be on 

edges to a more convenient place. Our solution is based 

on an idea that, to our knowledge, is known in the 

literature: parallel copies can be moved away from edges 

provided that compensation code is inserted on other 

edges. Duplications just make copies of registers. So, as 

long as there are enough free registers, it is possible to 

move duplications. It is indeed not a problem to change 

the value of a register that will not be used on the other 

successor blocks. The only restriction is that duplications 

should not erase any live value, so an approach has been 

developed to decompose parallel copies so that 

duplications can be handled separately.  

 

Better approach could be devised for the decomposition, 

using for instance information on the place where //c will 

be sequentialized. This is not our purpose here. Our 

purpose is just to show that it is not a problem to place 

parallel copies with duplications on edges as these can be 

moved away from edges that cannot be split or that one 

does not want to split, not to provide the best way to do 

it, if there is one. 

 

Our plan for future research includes design and 

implementation of an algorithm that uses the approach 

presented in this paper. Implementation of different 

heuristics to improve the precision of this algorithm 

without sacrificing the compilation time will also be 

done. 
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