
A A A A New Proposed Algorithm New Proposed Algorithm New Proposed Algorithm New Proposed Algorithm ffffor Bor Bor Bor BBBBBxxxx----Index StructureIndex StructureIndex StructureIndex Structure

K. Appathurai1 and Dr. S. Karthikeyan2

1Department of Information Technology, Karpagam University
Coimbatore, Tamil Nadu

Dr.S.Karthikeyan
Department of Information Technology, College of Applied Sciences,

Sultanate of Oman

Abstract

Even if major effort has been put into the development
of capable spatio-temporal indexing techniques for
moving objects, some more mind has been given to
the advance of techniques that professionally support
queries about the past, present, and future positions of
moving objects. The specification of such techniques
is difficult, by the nature of the data, which reflects
continuous movement, and because of the types of
queries to be supported. This paper proposes the new
index structure called OBBx (Optimized BBx) which
indexes the positions of moving objects, given as
linear functions of time, at any time. The index stores
linearized moving-object locations in a minimum of
B+-trees. The index supports queries that select
objects based on temporal and spatial constraints, such
as queries that retrieve all objects whose positions fall
within a spatial range during a set of time intervals.
The proposed work reduces lot of efforts done by the
existing method and minimized time complexity. The
simulation results shows that the proposed algorithm
provides better performance than BBx index structure.

Keywords: Moving Objects, BBx index, OBBx
index, Migration and B+-trees.

1. Introduction

Spatio-temporal databases deals with moving
objects that change their locations over time. In
common, moving objects account their locations
obtained via location-aware instrument to a
spatio-temporal database server. Spatiotemporal
access methods are secret into four categories:
(1) Indexing the past data (2) Indexing the
current data (3) Indexing the future data and (4)
Indexing data at all points of time. All the above
categories are having set of indexing structure
algorithms [1- 4, 10, 13]. The server store all

updates from the moving objects so that it is
capable of answering queries about the past [4, 5,
8, 9, 15]. Some applications need to know
current locations of moving objects only. This
case, the server may only store the current status
of the moving objects. To predict future
positions of moving objects, the spatio-temporal
database server may need to store additional
information, e.g., the objects’ velocities [7, 17].
Many query types are maintained by a spatio-
temporal database server, e.g., range queries
“Find all objects that intersect a certain spatial
range during a given time interval”, k-nearest
neighbor queries “Find k restaurants that are
closest to a given moving point”, or trajectory
queries “Find the trajectory of a given object for
the past hour”. These queries may execute on
past, current, or future time data. A large number
of spatio-temporal index structures have been
proposed to support spatio-temporal queries
efficiently [12, 13]. This paper is based on the
source paper [10].

2. Related work

Several recent reviews of moving-object
indexing techniques exist that focus on different
aspects [1, 6, 7]. The first variant of indices
include the TPRtree (Time-Parameterized R-
tree) family of indexes [2, 5]. One of the initial
works is the Historical R-tree (HR-tree) [18],
which logically constructs a “new” R-tree each
time an update occurs. Duplication of object is
the major drawback of R-tree. After R-tree
Pfoser et al. propose the Spatio-Temporal R-tree
(STR-tree) and the Trajectory-Bundle tree (TB-
tree). Yongquan Xia, Weili Li , and Shaohui
Ning, Moving Object Detection Algorithm
Based on Variance Analysis [16] is derived.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 287

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Yongquan%20Xia
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Weili%20Li
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shaohui%20Ning
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shaohui%20Ning

Besides Muiti-Version 3D R-tree (MV3R-tree)
[19] is proposed by Tao and Papadias. Then, B.
Liu. Querying about the Past, the Present, and
the Future in Spatio-Temporal Databases [20]. A
recent proposal by Dan Lin, Christian S. Jensen,
and Ooi [10] supports queries about the past,
present, and future. However, on approximate
aggregate query results can be computed. In
applications were accurate results are needed,
other proposals are needed

3. BBx INDEX Structure

The BBx-index consists of nodes that consist of
entries, each of which is of the form (x _rep; tstart;
tend; pointer.) For leaf nodes, pointer points to the
objects with the equivalent x_rep, where x_rep is
obtained from the space-filling curve; tstart
denotes the time when the object was inserted
into the database (matching to the tu in the
description of the Bx-tree), and tend denotes the
time that the position was deleted, updated, or
migrated (migration pass on to the update of a
position done by the system automatically). For
non-leaf nodes, pointer points to a (child) node at
the next level of the index: tstart and tend are the
minimum and maximum tstart and tend values of all
the entries in the child node, respectively. In
addition, each node contains a pointer to its right
sibling to facilitate query processing. Unlike the
Bx-tree, the BBx-index is a group of trees, with
each tree having an associated timestamp
signature tsg and a lifespan (see Figure 1). The
timestamp signature parallels the value tlab from
the Bx-tree and is obtained by partitioning the
time axis in the same way as for the Bx-tree. The
lifespan of each tree corresponds to the minimum
and maximum lifespan of objects indexed in the
tree. The roots of the trees are stored in an array,
and they can be accessed efficiently according to
their lifespan. This array is relatively small and
can usually be stored in main memory.

 Fig 1 The BBx index [10]

Objects inserted during the same phase will be
stored in the tree with the tag that is equal to the
end timestamp of that phase. In particular, an
update with timestamp tstart is assigned a
timestamp signature tsg = [tstart]t, where x[t]
returns the smallest timestamp signature that
does not precede x. Using space-filling curve the
position of an object is represented by a single-
dimensional value x rep. In order to retain the
proximity-preserving property of the space-
filling curve, we index objects within a time
interval by their positions as of the time given by
the timestamp signature of this interval. Hence,
we need to determine an object’s position at the
timestamp signature according to its moving
function [6].

An object’s linear movement O = is
given by a position and a velocity at the time of
update, tstart. The transformation from the current
position to the position that will be
indexed. We thus place the position x rep
computed by applying the space filling curve to

 in the tree with timestamp signature tsg.
Note that we do not concatenate the timestamp
signature and x rep as in the Bx-tree. There are
two reasons for this. First, our index aims to
handle moving objects from the past to the
future. Thus, the index must contend with
timestamps that keep growing in value. Inclusion
of such values in the key would poses an
efficiency problem since we must then allocate
substantial space for the key in order to cater to
its growth. In contrast, the Bx-tree only indexes
current positions of moving objects and hence is
able to fix the length of the key value (by using
the modulo function). Second, without
considering the timestamp, we obtain a shorter
key and a simpler mapping function. Imagining
that the index runs for one year, the accumulated
timestamp value (224 minutes) would require a
long key value representation, which will
significantly reduce the node capacity and
fanout, which increases index size and decreases
query performance. Let us illustrate the BBx -
index with an example. Figure 1 shows a BBx-
index with n equal to 2. Objects inserted
between timestamps 0 and 0:5tmu are stored in
tree T1 with their positions as of time 0:5tmu;
those inserted between timestamp 0:5tmu and
tmu are stored in tree T2 with their positions as
of time tmu; and so on. Each tree has a

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 288

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

maximum lifespan: T1’s lifespan is from 0 to
1:5tmu because objects are inserted starting at
timestamp 0 and because those inserted at
timestamp 0:5tmu may be alive throughout the
maximum update interval tmu, which is thus
until 1:5tmu; the same applies to the other trees
[10].

4. Statement of Problem

In BBx index structure the migration is one of the
major problems, even though the past
information also indexed unlike B+ tree indexing
structure. BBx take more effort and time for the
whole process of indexing. Due to this high
effort the memory space utilization, processor
utilization, execution time and cost increases
very high. Besides in tree the node insertion,
deletion also complex process when the number
of moving objects are high.

5. Proposed Algorithm

The main aim of the proposed algorithm is to
decreases the complexity of BBx index structure.
Besides the overall performance of the proposed
algorithm is good than BBx index about 40%.
The proposed algorithm is called OBBx-index
(Optimized Broad Bx). The scalability is
considered as twice for the better result. The
OBBx-index the nodes consist of the form (x
_rep; tstart; tend; pointer.) where x_rep is nothing
but one dimensional data obtained from the
space-filling curve; tstart denotes the time when
the object was inserted into the database and tend
denotes the time that the position was deleted,
updated, or migrated (migration refers to the
update of a location done by the system). tstart and
tend are the minimum and maximum tstart and
tend values of all the entries in the child node,
respectively. In addition, each node contains a
pointer to its right sibling to facilitate query
processing. The OBBx-index is a forest of trees,
with each tree having an associated timestamp
signature tsg and a lifespan. The timestamp
signature parallels the value tlab from the Bx-tree
and is obtained by partitioning the time axis in
the same way as for the Bx-tree. The lifespan of
each tree corresponds to the minimum and
maximum lifespan of objects indexed in the tree.
The roots of the trees are stored in an array, and
they can be accessed efficiently according to
their lifespan. This array is relatively small and
can usually be stored in main memory. Initially

the maximum update interval is found out among
all the moving objects.

The maximum interval value is making it as
twice for scalability. Figure 1 shows a BBx-
index with n = 2. Objects inserted between
timestamps 0 and 0:5tmu are stored in tree T1
with their positions as of time 0:5tmu; those
inserted between timestamp 0:5tmu and tmu are
stored in tree T2 with their positions as of time
tmu; and so on. Each tree has a maximum
lifespan: T1’s lifespan is from 0 to 1:5tmu
because objects are inserted starting at timestamp
0 and because those inserted at timestamp
0:5tmu may be alive throughout the maximum
update interval tmu, which is thus until 1:5tmu;
the same applies to the other trees.

Begin()
For each E do
Begin()
uie <-- update interval of E
if uie is greater than ui
Begin
ui <--uie
End
Else
Begin
ui <--ui
End
i ßi+1
End()
tmu = 2 * ui
ts1 ß timeaxis from 0 to tmu
ts2 ß timeaxis from tmu to 2tmu
ts3 ß timeaxis from 2tmu to 3tmu

T ßArray of n equal intervals of ts1, ts2, ts3,
etc
For each T do
Begin()
LE <--objects in the lifespan of T
Pos = 2
For each LE do
Begin()
create a new node N
C ß current node in the tree
Iterate ß true
While(Iterate) do
Begin()
If key of N lesser than key of C then
Begin
If C has left node then
Begin
C ßleft node of C

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 289

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

End
Else
Begin
Iterate ß false
Set N as left node of C
End
End
Else
Begin
If C has right node then
Begin
C ß right node of C
End
Else
Begin
Iterate ßfalse
Set N as right node of C
End
End
Initialize an Array variable Arr,
Arr = Store the time value of Node N
End()
Tot = Count(Arr)
End()
For each T of move from ts[Pos-1] to ts[Pos]
Begin
While Arr not equal to Null
Begin
If Node[i] is in ts[Pos]
Begin
Update Node[i] to ts[Pos]
End
Else
Begin
Migrate Node[i] to ts[Pos]
End
End
End
Initialize an Array variable Oit1,Oit2,Oit3,etc,.
Oitn ß Store the indexed objects in the timeslice
of ts/2
End()
End()

Fig 2: Algorithm to Tree Construction, Object Insertion,

Updation and Migration

Each tree has lifespan after that the tree values
are updated to next tree. So first check whether
all the objects are reached or not if it is reached
then update all the objects to next tree and then
the objects are removed or deleted from the
existing old tree because to avoid duplication of
index. The following algorithm shows how the
updation takes place in OBBx. In this algorithm

first identify the tree where the update object is
located and then find out the position of the
object in that tree and then the object is removed
and updated in new tree from old tree.

Update Node[i] to ts[Pos-1]

Algorithm Update(Eo; En)

Input: Eo and En are old and new objects
respectively
tindex ß time Eo is indexed in the tree
find tree Tx whose lifespan contain tindex
posindex ß position of Eo at tindex
keyo ß x-value of the posindex
locate Eo in Tx according to keyo
modify the end time of Eo’s lifespan to current
time
t’index ß time En will be indexed
pos’index ß position of En at t’index
keyn ß x-value of the pos’index
insert En into the latest tree according to keyn

Fig 3 Algorithm for Update

Each tree has lifespan after that the tree values
are updated to next tree. So first check whether
all the objects are reached or not if any object is
not reached then that object is identified and
then migrated to next tree. Next that objects are
removed or deleted from the existing old tree
because to avoid duplication of index. The
following algorithm shows how the migration
process takes place in OBBx. In this algorithm
first identify the tree where the migrate object is
located and then find out the position of the
object in that tree and then the object is removed
and migrated in new tree from old tree.
Migrate Node[i] to ts[Pos-1]

Algorithm Migrate(Eo; En)
Input: Eo and En are old and new objects
respectively
tindex ß time Eo is indexed in the tree
find tree Tx whose lifespan contain tindex
posindex ß position of Eo at tindex
keyo ß x-value of the posindex
locate Eo in Tx according to keyo
modify the end time of Eo’s lifespan to current
time

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 290

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 4 Algorithm for Migrate

6. Performance Studies

The below figure 5 shows how the objects
moving randomly in un specified path and it
describes the clear path of the every moving
objects. In this example 5 moving objects are
consider for indexing. The starting time is 45 ms
and the ending time is 205.98214875 ms, this is
clearly shown in the figure 5. In figure 5 the x
axis is time and y axis is points i.e. by Hilbert
curve the multidimensional data is converted as
points (single dimensional data).

Fig 5 This figure shows how the objects moving
randomly in un specified path. And It describes
the clear path of the every moving objects.

The below figure 6 shows the total indexing time
for both the methods like BBx index and OBBx
index. The total processing time for BBX
Indexing is 5.542051e+000 and the total
processing time for OBX Indexing is
2.815064e+000. so it clearly says the OBBx
method is much better than BBx method.

Fig 6 Comparison of BBX and OBX indexing in
terms of Processing Speed

The below figure 7 indicates the number of
migration hit occur in both the techniques. As
per this concern also the OBBx index techniques
is much better than BBx index techniques. The
migration hits for BBX Indexing is 44 and the
migration hits for OBBX Indexing is 22. This
reducing of migration hit improves the total
performance of OBBx index method, reducing
the processor utilization time and it deceases the
total cost also.

Fig 7 Comparison between BBX and OBBX in
terms of Migration hits

7. Results

Using MATLAB the following results are
produced.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 291

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 1 Time Analysis

8. Conclusion

This paper presents a new indexing technique,
the OBBx-index (Optimized BBx-index), which
can answer queries about the past, the present
and the future. The OBBx -index is based on the
concepts underlying the BBx-tree. Like the BBx-
index, the indexing of historical information, it
avoids duplicating objects and thus achieves
significant space saving and efficient query
processing. Moreover it reduces almost half of
the number of trees used in BBx-index. So the
energy efficiency is very good than BBx index
and hardly reduces time complexity. Extensive
performance studies were conducted that indicate
that the OBBx-index outperforms the existing
state of-the-art method, with respect of historical,
present and predictive queries. The Future work
is planed to further reducing of migration
problem without affecting the efficiency.

References

[1]. Long-Van Nguyen-Dinh, Walid G. Aref,
Mohamed F. Mokbel 2010. Spatio-Temporal
Access Methods: Part 2 (2003 - 2010). Bulletin of the
IEEE Computer SocietyTechnical Committee on Data
Engineering

[2]. M. Pelanis, S. ˇ Saltenis, and C. Jensen. Indexing
the past, present, and anticipated future positions of
moving objects.TODS, 31(1):255–298, 2006.

[3]. Z.-H. Liu, X.-L. Liu, J.-W. Ge, and H.-Y. Bae.
Indexing large moving objects from past to future with
PCFI+-index. In COMAD, pages 131–137, 2005.

[4]. V. Chakka, A. Everspaugh, and J. Patel. Indexing
large trajectory data sets with SETI. In CIDR, 2003

[5]. Y. Tao, D. Papadias, and J. Sun. The TPR*-tree:
An optimized spatio-temporal access method for
predictive queries. In VLDB, 2003.

[6]. C. Jensen, D. Lin, and B. Ooi. Query and update
efficient B+-tree based indexing of moving objects. In
VLDB, 2004.

[7]. M. Mokbel, T. Ghanem, andW. G. Aref. Spatio-
temporal access methods. IEEE Data Eng. Bull.,
26(2):40–49, 2003.

[8]. J. Ni and C. V. Ravishankar. PA-tree: A
parametric indexing scheme for spatio-temporal
trajectories. In SSTD, 2005.

[9]. P. Zhou, D. Zhang, B. Salzberg, G. Cooperman,
and G. Kollios. Close pair queries in moving object
databases. In GIS, pages 2–11, 2005.

[10]. Dan Lin, Christian S. Jensen, Beng Chin Ooi,
Simonas Sˇ altenis, BBx index :Efficient Indexing of
the Historical, Present, and Future Positions of
Moving Objects, MDM 2005 Ayia Napa Cyprus

[11]. P. K. Agarwal and C. M. Procopiuc. Advances in
Indexing for Mobile Objects. IEEE Data Eng. Bull.,
25(2): 25–34, 2002.

[12]. G. Kollios, D. Gunopulos, V. J. Tsotras. On
Indexing Mobile Objects. In Proc. PODS, pp. 261–
272, 1999.

[13]. K.Appathurai, Dr. S. Karthikeyan. A Survey on
Spatiotemporal Access Methods.International Journal
of Computer Appliations. Volume 18, No 4, 2011.

[14]. Mohamed F. Mokbel, Xiaopeng Xiong,
Moustafa A. Hammad, and Walid G. Aref, Continuous
Query Processing of Spatio-temporal Data Streams in
PLACE, 2004 Kluwer Academic Publishers. Printed
in the Netherlands

[15]. Su Chen · Beng Chin Ooi · Zhenjie Zhang, An
Adaptive Updating Protocol for Reducing Moving
Object Database Workload.

[16]. Yongquan Xia, Weili Li , and Shaohui Ning,
Moving Object Detection algorithm Based on
Variance Analysis, 2009, Second International
Workshop on Computer Science and Engineering
Qingdao, China

[17]. Arash Gholami Rad, Abbas Dehghani and
Mohamed Rehan Karim, Vehicle speed detection in
video image sequences using CVS method, 2010,
International Journal of the Physical Sciences Vol.
5(17), pp. 2555-2563.

S.No No of
Objects

Time (Milliseconds)

BBx OBBx

1 5

5.542051e+000

2.815064e+000

2 9 1.059695e+001 6.200636e+000

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 292

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Yongquan%20Xia
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Weili%20Li
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shaohui%20Ning

[18]. M. A. Nascimento and J. R. O. Silva. Towards
Historical R-trees. In Proc. ACM Symposium on
Applied Computing, pp. 235–240, 1998.

[19]. Y. Tao and D. Papadias. MV3R-Tree: A Spatio-
Temporal Access Method for Timestamp and Interval
Queries. In Proc. VLDB, pp. 431–440, 2001.

[20]. J. Sun, D. Papadias, Y. Tao, and B. Liu.
Querying about the Past, the Present, and the Future
in Spatio-Temporal Databases. In Proc. ICDE, pp.
202–213, 2004.

K. Appathurai was born on 12th
May 1974. He received his Master
degree in Computer Applications
from University of Bharathidasn in
1998. He completed his M.Phil
from Manonmaniam Sundaranar
University in 2003. He is working
as an Asst. Professor and Head of
the Department of Information

Technology at Karpagam University, Coimbatore.
Currently He is pursuing Ph.D. His fields of interest are
Spatial Database.

Dr. S. Karthikeyan received the
Ph.D. Degree in Computer Science
and Engineering from Alagappa
University, Karaikudi in 2008. He is
working as a Professor and
Director in School of Computer
Science and Applications,
Karpagam University, Coimbatore.
At present he is in deputation and

working as Assistant Professor in Information
Technology, College of Applied Sciences, Sohar,
Sulatanate of Oman. He has published more than 14
papers in Natrional/International Journals. His research
interests include Cryptography and Network Security.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 1, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 293

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

