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Abstract 

 
Microstructured optical fibers (MOFs) are one of the most 
exciting recent developments in fiber optics. A MOF usually 
consists of a hexagonal arrangement of air holes running down 
the length of a silica fiber surrounding a central core of solid 
silica or, in some cases air. 
MOFs can exhibit a number of unique properties, including zero 
dispersion at visible wavelengths and low or high effective 
nonlinearity [3]–[17], By varying the size of the holes and their 
number and position, one can also design MOFs with carefully 
controlled dispersive and modal properties. 
In this paper, we analyze and modeling the behavior of the 
photonic crystal fiber (PCF) by using in the first step a 
propagator method based on the BPM method.  
With our BPM software, the electric field contour of the 
fundamental mode of PCF was demonstrated. We also used it to 
see the variation of the effective index; an effective index model 
confirms that such a fiber can be single mode for any 
wavelength.  
It would make a study of photonic crystal fibers, and a study of 
the numerical simulation methods allow the simulation of optical 
properties and has modeled the propagation of light in this fiber 
type. 
After that we use the V-parameter because it offers a simple way 
to design a photonic crystal fiber (PCF), by basing in a recent 
formulation of this parameter of a PCF, we provide numerically 
based empirical expression for this quantity only dependent on 
the two structural parameters, the air hole diameter and the hole-
to-hole center spacing. 
 
Keywords: Optical Telecommunication, V-Parameter, BPM 
Method, Photonic crystals fibers, nanotechnologies. 

1. Introduction 

Photonic Crystal Fibers (PCFs) [1]–[2], have been under 
intensive study for the past several years as they offer a 
number of unique and useful properties not achievable in 
standard silica glass fibers. PCFs fall into two basic 
categories.  

 
 
 
The first one, an index-guiding PCF [3], [4], is usually 
formed by a central solid defect region surrounded by 
multiple air holes in a regular triangular lattice and 
confines light by total internal reflection like standard 
fibers.  
The second one uses a perfect periodic structure exhibiting 
a photonic band-gap (PBG) effect at the operating 
wavelength to guide light in a low index core region, 
which is also called PBG fiber (PBGF) [5], [6]. 
 
 

 
Fig. 1 : Structure of a Photonic Crystal Fiber with an air cladding. 

 
A typical cross section of an index guided PCF is shown in 
Fig.1, The PCF consists of a triangular lattice of air holes 
where the core is defined by a “missing” air hole. The 
pitch is labeled Λ, and measures the period of the hole 
structure (the distance between the centers of neighboring 
air holes). The hole size is labeled d, and measures the 
diameter of the holes. 

2. Beam Propagation Method (BPM) 

The Beam Propagation Method (BPM) is a numerical 
modeling method to simulate the propagation of a wave in 
a guide of arbitrary geometry. It can predict from an 
incident field distribution within a structure. The main idea 
of this method is to divide a structure into "slices“ 
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elementary, spacing with ΔZ and then determine the scope 
of a given slice from the one before. However, the 
equations to solve are complex, which leads us to adopt 
certain approximations. [7] 

3. Mode Solving via BPM 

The earliest of these is referred to here as the correlation 
method, and was used to calculate modes and dispersion 
characteristics of multimode fibers.[8] More recently, a 
technique referred to as the imaginary distance BPM has 
been developed which is generally significantly 
faster.[9,10] It should be noted that the imaginary distance 
BPM technique is formally equivalent to many other 
iterative mode solving techniques;[11,12] 
 
The results in [12], which can be duplicated via imaginary 
distance BPM, have shown excellent agreement with other 
published data. 
 
Considering 2D propagation of a scalar field for 
simplicity, the incident field, ∅୧୬ሺx, can be expanded in the 
modes of the structure as 
 

∅௜௡ሺݔሻ ൌ෍ܿ௠
௠

∅௠ሺݔሻ (1) 

 
The summation should of course consist of a true 
summation over guided modes and integration over 
radiation modes, but for brevity the latter is not explicitly 
shown. Propagation through the structure can then be 
expressed as 
 

∅ሺݔ, ሻݖ ൌ෍ܿ௠
௠

∅௠ሺݔሻ݁௜஻೘௓ (2) 

 
In each BPM-based mode-solving technique, the 
propagating field obtained via BPM is conceptually 
equated with the above expression to determine how to 
extract mode information from the BPM results. 
As the name implies, in the imaginary distance BPM the 
longitudinal coordinate z is replaced by z'=iz, so that 
propagation along this imaginary axis should follow 

∅ሺݔ, ሻ′ݖ ൌ෍ܿ௠
௠

∅௠ሺݔሻ݁஻೘௓
ᇲ
 (3) 

 
The propagation implied by the exponential term in Eq. 2 
has become exponential growth in Eq. 3, with the growth 
rate of each mode being equal to its real propagation 
constant. The essential idea of the method is to launch an 
arbitrary field, say a Gaussian, and propagate the field 
through the structure along the imaginary axis. Since the 
fundamental mode (m=0) has by definition the highest 

propagation constant, its contribution to the field will have 
the highest growth rate and will dominate all other modes 
after a certain distance, leaving only the field pattern 
∅଴ሺxሻ, The propagation constant can then be obtained by 
the following variational type expression: 
 

ଶߚ ൌ
∗∅׬ ൬

߲ଶ∅
ଶݔ߲ ൅ ݇ଶ∅൰݀ݔ

∗∅׬ ݔ݀	∅	
 (4) 

 
Higher order modes can be obtained by using an 
orthogonalization procedure to subtract contributions from 
lower order modes while performing the propagation.[13] 
Issues such as optimal choice of launch field, reference 
wave number, and step size are discussed in [10,12]. Also, 
an additional correction is added which removes the error 
due to the fact that we have solved for the eigenvalues of 
the paraxial It is important to note that the imaginary 
distance BPM is not the same as the common technique of 
performing a standard propagation and waiting for the 
solution to reach steady state. The latter will only obtain 
the fundamental mode if the structure is single mode, and 
generally takes longer to converge. The imaginary distance 
BPM is closely related to the shifted inverse power method 
for finding eigenvalues and eigenvectors of a matrix. 
 
In the correlation method, an arbitrary field is launched 
into the structure and propagated via normal BPM. During 
the propagation the following correlation function between 
the input field and the propagating field is computed: 
 

ሻݖሺ݌ ൌ න∅∗௜௡ሺݔሻ 	∅ሺݔ,  (5) ݔ݀	ሻݕ

 
Using Eq. 1 and Eq. 2, the correlation function can also be 
expressed as: 
 

ሻݖሺ݌ ൌ෍|ܿ௠|ଶ

௠

	݁௜஻೘௓ (6) 

 
From this expression one can see that a Fourier transform 
of the computed correlation function should have a 
spectrum with peaks at the modal propagation constants.  
The corresponding modal fields can be obtained with a 
second propagation by beating the propagating field 
against the known propagation constants via: 
 

∅௠ሺݔሻ ൌ
1
ܮ
න ∅ሺݔ, ݁ି௜ఉ೘௓	ሻݖ
௅

଴
 (7) 
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Several corrections to the propagation constants can be 
made: 
 
 A correction is made which accounts for the error 

introduced by solving the paraxial equation, and not the 

exact Helmholtz equation. Further details on the technique 

are found in [8]. 

 

 Second, the imaginary part of the propagation constant 

can be found by substituting the mode profile in the wave 

equation and solving for the propagation constant. This not 

only results in an imaginary value, but a corrected real 

value as well. 

 

While the correlation method is generally slower than the 
imaginary distance BPM, it has the advantage that it is 
sometimes applicable to problems that are difficult or 
impossible for imaginary distance BPM, such as leaky or 
radiating modes. 

4. Exploring the Single-Mode Condition 

In order to explore the single-mode condition, we need to 
solve for the fundamental mode over a wide range of 
wavelengths. In a conventional fiber, the number of bound 
modes is governed by the V number, which increases 
without limit as the wavelength decreases. The reference 
above shows that it is possible to define an effective V 
number for a PCF that indicates reasonably accurately 
whether or not a fiber is single-mode: 
 

ܸ ൌ
ߨ2
ߣ
ܽට݊௖௢ଶ െ ݊௖௟

ଶ ൌ ඥܷଶ ൅ܹଶ (8) 

with 

ܷ ൌ
ߨ2
ߣ
ܽට݊௖௢ଶ െ ݊௘௙௙

ଶ  (9) 

ܹ ൌ
ߨ2
ߣ
ܽට݊௘௙௙

ଶ െ ݊௖௟
ଶ  (10) 

	:ߣ The wavelength 

ܽ:	 is the core radius. 

݊௖௢:	 is the core index. 

݊௖௟:	 is the cladding index. 

݊௘௙௙:	 is the effective index of fundamental guided 
mode. 

ܷ: Normalized transversal phase constant. 

ܹ: Normalized transversal attenuation constant. 

 

V parameter determines the number of waveguide modes. 
That means the fiber is monomode only for the values of V 
(V<2.405) and if the value of V > 2.405, the fiber support 
more modes. An effective V value such as eq. (8) can be 
defined for the photonic crystal fiber eq. (11), for more 
detail see ref [4]: 
 

௘ܸ௙௙ ൌ
ߨ2
ߣ
Λට݊଴

ଶ െ ݊௘௙௙
ଶ  (11) 

 
Here we use the pitch (center-to-center spacing) of the 
holes Λ. 
 
The parameters defining ௘ܸ௙௙  are all straightforward 
except for the effective cladding index  ݊௘௙௙.  
 
We need a numerical method for obtaining the effective 
cladding index ݊௘௙௙.  
 
There are various software packages that can be used. 
 

 
Fig. 2: Variation of Veff from Eq. 4 with d/Λ for various relative hole 

diameters:  d/Λ= 0.15, d/Λ= 0.30 and d/Λ= 0.45, the dashed line indicate   
Veff = 2.405. 

In Fig. 2, ௘ܸ௙௙  is plotted as function of normalized 
frequency Λ/λ for values of d/Λ ranging from 0.15 to 0.45 
in steps of 0.15. 
The horizontal dashed line in plot indicates ௘ܸ௙௙ = 2.405 
the condition for the fiber to be single-mode. 
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5. Dispersion features of the modes 

The propagation in a PCF structure described in ref [8] has 
been simulated, the structure consists of an air-hole silica 
(n=1.45) index-guiding PCF characterized by a hexagonal 
distribution of air holes of radius (d = 0.6 μm) and pitch (Λ 
= 2.3 μm).  
 
The mesh for the finite-difference computation has been 
generated using a spatial sampling step (Δx = Δy = Δz = 
0.1 μm). 
 
We used in our simulation both of the two structural, the 
first with a cylindrical hole, and the second with a square 
hole, as mention in fig 3.  
 

 

 

Fig. 3: the hexagonal structure of PCF with cylindrical air holes (a) and 
square air holes (b). 

 
We tried to modeling the phonic crystal fiber for the three 
(03) first modes, by using a BPM soft for a hexagonal 
structure of PCF with cylindrical air holes, and we 
calculate the Neff for these modes and we find as it 
mention in table 1. 
 
After that the modal effective index of the modes has been 
computed by the BPM method, and the three electric filed 
components for both of the fundamental mode distribution 
and the three first modes are displayed in fig. 4 for λ=2.3.   
 

Table 1: Nୣ୤୤ of the three (03) first modes for hexagonal structure with 
cylindrical air holes 

Mode Neff

0 (fundamental mode) 1.442815 
1 1.448882 
2 1.448851 
3 1.446602 

 
 
We did the same computing but this time with a hexagonal 
structure of PCF with square air holes, and we calculate 
the Neff for the fundamental and the three first modes, 
table 2. 

Table 2: Nୣ୤୤ of the three (03) first modes for hexagonal structure with 
square air holes 

Mode Neff

0 (fundamental mode) 1.443218 
1 1.448919 
2 1.448882 
3 1.446693 

 
The three electric filed components for both of the 
fundamental mode distribution and the three first modes 
are displayed in fig. 5 for Λ=2.3.   
 
 
 
 
 
 
  

a 

b 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 601

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 
  

  
 

   

   

Fig. 4: x, y and z components of the electric field of the fundamental mode and three first modes of a PCF with cylindrical air holes for Λ=2.3. 
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Figure 5: x, y and z components of the electric field of the fundamental mode and three first modes of a PCF with square air hoels for Λ =2.3. 
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6. The analytical Method 

Nielsen and Mortensen are proved as [15] that V 
parameter can approximate with a function of type Eq. 5 
depending on the wavelength λ, and the structural 
parameters d and Λ. 
 

ܸ ൬
ߣ
Λ
,
݀
Λ
൰ ൌ

ܣ ቀ
݀
Λቁ

ܤ ቀ
݀
Λቁ ൈ ݌ݔ݁ ቂܥ ቀ

݀
Λቁ ൈ

ߣ
Λቃ ൅ 1

 (12) 

 
In Fig. 6 we show V as function of λ/Λ for d/Λ ranging 
from 0.20 to 0.80 in steps of 0.05. 
 
The parameter A, B and C are depend on d/λ only, and are 
describing by the following expressions:  
 

ܣ ൬
݀
Λ
൰ ൌ

݀
ߣ
൅ 0.457 ൅

3.405 ൈ
݀
Λ

0.904 െ
݀
Λ

 (13) 

 

ܤ ൬
݀
Λ
൰ ൌ 0.200 ൈ

݀
ߣ
൅ 0.100 ൅ 0.027

ൈ ൬1.045 െ
݀
Λ
൰
ିଶ.଼

 
(14) 

 

ܥ ൬
݀
Λ
൰ ൌ 0.630 ൈ ቌ݌ݔ݁

0.755

0.171 ൅
݀
Λ

ቍ (15) 

 
The Eq. 12 constitutes the empirical expression for the V 
parameter in a PCF with λ/Λ and d/Λ being the only input 
parameter. For λ/Λ<2 and V>0.5 the expression gives 
values of V which deviates less than 3% from the correct 
values obtained from Eq.8 [14]. 
 

 

Fig. 6: V as a function of relative wavelength λ/Λ for d/Λ ranging from 
0.20 to 0.80 in steps of 0.05. 

7. Discussion and conclusion 

Holey fiber technology is an attractive alternative to 
conventional technology, since it is possible to create 
extremely large mode area fibers that are single-mode over 
a broad wavelength range. 
 
PCF with effective areas have been demonstrated that are 
effectively endlessly single-mode [16]. However, as with 
any fiber, the macro-bending losses place a fundamental 
upper limit on the mode sizes that are practical to use and 
are therefore an important consideration in the design of 
large mode area fibers. 
 
Through this study we found that the normalized pitch Λ/λ 
and d/Λ are two factors that affect the effective index and 
the normalized frequency. Thanks to the simulation tool, 
we modeling and optimize the parameters of the 
microstructured fibers in order to design new components 
for optical telecommunications.  
 
There are several issues to consider when designing a 
microstructured fiber; we have shown that the properties 
can be quantified via the V–parameter.  
 
After that based on an extensive numeric calculation, we 
have established an empirical expression, which facilitates 
an easy evaluation of the V-parameter with the normalized 
wavelength and hole-size as the only input parameters for 
this experiment.  
 
Photonic crystal fibers combine properties of 2D photonic 
crystals and classical fibers. Research on photonic crystal 
fibers is still very young and we may expect many new 
developments, more accurate and efficient methods for 
designing and optimization.  
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