
A new Replica Placement Algorithm in Data Grid

Summary ‐ Replica placement is one of the
important factors to improve performance in data
grid systems. A good replica placement algorithm
can result in good performance gains. It should be
mentioned that, these algorithms or strategies are
dependent on architecture of the data grid. By
considering different kinds of architecture in data
grid systems, a true representation of a grid is a
general graph. So we propose a new algorithm for
suitable placement of replicas on graph-based data
grids. The performance of the proposed algorithm
is improved by minimizing the data access time,
avoiding unnecessary replications and nice
performance in balancing the load of replica
servers. The algorithm will be simulated using a
data grid simulator Optorsim, developed by
European Data Grid projects.

Keywords: Grid, Data Grid, graph-based topology,
Replica Placement, Data Replication.

1. Introduction

Grid

In 2002 Kesselman and Foster introduced us to a
definition of a grid as follow: "A system that
coordinates resources that are not subject to
centralized control, using standard, open, general
purpose protocols and interfaces to deliver non-
trivial qualities of services” [1]. Nowadays, data
grids can be seen as frameworks responding to the
needs of large scale applications by affording so
many resources. These are distributed on different
geographically locations, but are organized to
provide an integrated service. When we have to
perform some complex computational experiments
which require high computational resources, we do
not need to install that computing infrastructure.
Rather we can simply become the part of a grid
with high computational powers. The idea of
sharing the computing powers of the available
resources across the grid environment to perform
some experiment, without having to install
additional computational resources is called the
Computational Grid.

Data Grid

On the other hand, data grid is a type of grid
which provides services and infrastructure to assist
the widely distributed data intensive applications
which require the access of huge amounts of data.
The basic services provided by data grid
architecture are storage systems, data access, and
metadata services [2]. In a data grid system the
computers are distributed across several
geographical locations. The issue is to provide
maximum availability of data to the users which are
normally scientists from different universities and
research laboratories. The size of data that needs to
be accessed is in terabytes and it will soon be
measured in total petabytes. The efficient access of
such a huge data, which is widely distributed, is
slowed down due to network latencies and
bandwidth problems. With the growing size of the
grid, the complexity of this infrastructure is
increasing. High availability of data is a major
challenge in the grid environment.

Data Replication

To meet the challenge of high availability, data
replication is considered to be the major technique.
It promotes high data availability, low bandwidth
consumption, increased fault tolerance and
improved scalability and response time [3-9].
When data is replicated, copies of data files are
created at many different places in the data grid.
Replication can save storage resources as compared
to the storage occupancy of data present at each
site. It also saves a large amount of bandwidth as
compared to the storage occupancy of data present
at each site. Hence, for the provision of speedy data
access all the time, data replication is an excellent
tradeoff between storage availability and network
bandwidth availability [10]. The data replication
algorithm has to answer critical questions such as:
1.how to balance the number of replicas in grid
sites. Indeed, increasing number of replicas lead to
increase data availability and reliability, however
the storage space will be increased as well.
Therefore, a good balancing of number of replicas
is required; 2.where the replica must be placed.
Placing the new replicas in the appropriate location
site can promote reducing the network bandwidth

Zeinab Fadaie1, Amir Masoud Rahmani2

1Department of Computer Engineering, Faculty of Engineering,

Science and Research Branch, Islamic Azad University,Tehran, Iran

2Department of Computer Engineering, Faculty of Engineering,

Science and Research Branch, Islamic Azad University,Tehran, Iran

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 491

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

consumption and reduce the turnaround job time.
The main idea is to keep the data close to the user
in order to make the access efficient and fast. But
the dynamic behavior of grid users makes it
difficult to make decisions regarding the data
replications to attain the target of maximum
availability [11-12]. To maximize the potential gain
from file replication, a replica placement strategy is
so important. A replica placement service is a
component of the data grid architecture that decides
where a file replica should be placed in the system.
In recent years, more and more works focused on
the replica management in parallel and distributed
systems [13]. But most of them concerned on
replica location, replica placement or building
infrastructures for replica management [14-15]. In
fact, replica placement is one of the important
challenges to improve performance and good
placement strategies can result in significant
performance gains [16-18].

The data grid architecture

 The replication technique is highly dependent
upon architecture of the grid. A data grid can be
supported by different architectures. It can be a
multi-tier architecture; a tree like structure in which
the nodes are arranged in a tree like hierarchy. For
example, the data grid of the GriPhyN project [19]
in which tier 0 is the main data source (CERN), tier
1 contains the national centers, tier 2 the regional
centers, tier 3 the workgroups and finally, the nodes
at tier 4 are desktops. Alternatively, it can be graph
like topology, in which any node can be connected
to any other node without any restrictions of tree
topology. It can be peer to peer topology, or it can
be any hybrid model. A replication technique is
designed according to the architecture in question.
It should be noted that, every node in this structure
as a grid site has at least two basic elements: the
Storage Element (SE) and the Computing Element
(CE). According to these elements, other important
issues are considered: storage load and access load.
Most of the time, the replicas placed at the parent
node of a client that generates the maximum
request. So the access load of each node is
calculated and ranked according to file access
frequency, e.g. the access load of a node p is
equivalent to the workload of node p incurred due
the number of requests contributed by its children.
For instance, if the node p has three children, then
access load of p will be the cumulative access loads
of all three children. On the other hand, the storage
load of each node should exceed its capacity [20].
Therefore, in this paper, we address the replica
placement problem in graph-based data grid to
meet the load balancing of replicas with the
objective of minimizing communication cost and
responding to user’s requirements as fast as
possible. Load balancing is managed by workload
constraint of replicas, and the main idea is to keep
the data close to the user in order to make the
access efficient and fast. At the first step, we
propose a new architecture to show the
communication between our main components
which will be used in our proposed algorithm. Then
a new replica placement algorithm is proposed to
solve our replica placement problem. This
algorithm contains three phases: at the first phase,

the graph based data grid structure is traversed by
the Breadth First Search (BFS) algorithm to
determine the level of each node. Additionally, the
Depth First Search (DFS) algorithm is used to label
the nodes in the depth-first order they are
encountered. The result of this phase is a tree
structure. The level and depth-first order of each
node on the yielded structure is maintained to use
in the next phase. At the second phase, replica
selection and replica placement is performed on the
tree structure that is obtained from previous phase.
It should be noted that, this tree structure is used to
better managing of replicas; actually in the real
environment the nodes are located in graph-based
topology. The algorithm considers this graph-based
topology to balance the load on the replica servers.
This goal is achieved by considering the sibling
nodes of replica servers on this topology, and the
concept of storage load and access load on them. At
the third phase, the storage space on each replica
server is considered. In this phase the replacement
strategy is performed. The rest of the paper is
organized as follows:

Section 2 gives a brief introduction of previous
works on data replication and placement. Section 3
defines the architecture that is being used. Section
4 introduces our replica placement algorithm. In
section 5 the simulation results will be described.
Finally in section 6 we will present our conclusion
and future works.

2. Related Works

 Tang et al. [21] in 2005 have presented two
dynamic replication algorithms, Simple Bottom up
(SBU) and Aggregate Bottom up (ABU) to reduce
the average response time of data access. The job
of SBU is to create a replica as close as possible to
the client which requests for a certain file. It only
processes the records individually in the access
history and does not know its relationship to other
nodes. While the ABU's job is to aggregate the
history records to the next upper tiers one by one
till it reaches the root node. The results of
simulation show that these two algorithms reduce
the data access time significantly when compared
to the static replication strategies. Tang's model is
tree structure. Their assumption is that all requests
travel up towards the root to find the desired
replica. So this assumption may cause bottleneck
problem.

 In 2007 Yuan et al. [22] proposed a dynamic data
replication strategy based on the local optimization
principle. They considered the bottleneck of data
grid storage capacity of different nodes and
bandwidth available between these nodes. The
proposed data replication strategy is based upon
two important factors (1) the storage capacity
available at different nodes and (2) the bandwidth
available between different nodes. The idea is to
achieve the global data access optimization, first by
achieving the local data access optimization.
Yuan's model is again a tree structure because of its
simplicity. Tree structures are not very suitable in
real grid environments because their infrastructures
are very dynamic in nature, and nodes in grid can
be added and deleted any time.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 492

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Abdullah [23] presented a P2P model in 2008 for
higher availability, reliability, and scalability. Then
have developed their own data grid simulator to test
the proposed replication strategy, taking response
time, number of hops and average bandwidth
consumption as basic parameters for evaluation. In
this research they are studying four replication
strategies, out of which two are existing strategies:
"requester node placement strategy" and "path node
placement strategy", and two are newly proposed in
this research: "path and requester node placement
strategy", and "N-hop distance node placement". In
the "requester node placement strategy", when a
required file is found then it is only replicated to
the requester node. In the "Path node placement
strategy" the file is replicated to all the nodes on the
path from the requester node to provider node. The
newly proposed strategy "Path and requester node
placement strategy" is a combination of the first
two strategies. In "N-hop distance node placement"
a file is replicated to all neighbors' of provider
nodes within an n hop distance. The results of their
simulation show that new strategies have shown
better performance than existing ones in terms of
performance, success rates and response time.
However, the proposed strategies use more
bandwidth than the existing strategies. The
drawback of the research is that the storage loads of
replica servers are not considered in their strategies,
because the file is replicated to all the nodes on the
path from the requester node to provider node.

 Ding et al. proposed Data Placement algorithm
and self tuning data replication algorithm in 2009
for general grid topology in [24] for improved load
balancing, reduced response time and conserved
network bandwidth. In proposed model, grid is
composed of clusters, with each cluster having
different storage and computational capabilities. As
the resources in the cluster sites and data access
patterns keeps on changing. So a self tuning data
replication algorithm is proposed to automatically
adjust such changes. The new replication algorithm
outperforms the general threshold based algorithms
in terms of efficiency and load balancing.

In 2007 Nehra et al. [25] presented architecture
for load balancing with parallel resource allocation.
Performance measures such as the average queue
length at each server and the average throughput
are used for the evaluation. The experimental
results show that execution time is reduced in
parallel algorithm compared to serial one.
Throughput is also measured with and without load
balancing. Load is balanced using mobile agent
(MA) approach which provides a new solution to
support load balancing with resource management.
In the preliminary simulation, for simplicity,
workload at a server is defined as the length of the
job queue, which represents the number of jobs in
the queue. The storage load is another factor that
should be concerned in balancing the load of
servers. This factor was not considered in Nehra’s
experimental results.

In 2008 Horri et al. [26] proposed a three level
hierarchical structure for dynamic replicating file in
data grids. In contrast to Bandwidth Hierarchy
Replication (BHR) algorithm [27] which considers

2-level, the 3-level proposed performs better and it
is more realistic (BHR was presented in 2004 by
park et al.). From job scheduling point of view, the
proposed algorithm, first selects the appropriate
region (i.e. available maximum requested files),
next selects the appropriate LAN in that region and
finally selects the appropriate site in that LAN,
therefore job execution time Decreases since we
have minimum data transfer time.

 In 2011 Sashi et al. [28] presented a modified
form of BHR to overcome its limitations. In the
modified BHR model a network region is defined
as a network topological space where sites are
located closely. Whenever the required replica is
present in the same region, the job completion will
be fast. Again, the Modified BHR model is based
on tree structure which is not very suitable in real
data grid environment.

 In 2009 Rasool et al. [29] proposed a two way
replication strategy. The multi-tier sibling tree
architecture is used which a mixture of the
architectures is presented by Ranghatan and Lin.
It's a hierarchical model in which all the siblings
are connected to each other as well. In this two way
replication (TWR) scheme the most popular data is
identified and placed to its proper host in a bottom
up manner in this they are closer to the clients. In
top down manner the less popular files are
identified and are placed to one tier below the root
node, in this way they are close to the roots. In this
approach, replica selection is done by using the
closest policy which tries to provide the data from
the nearest site. The drawback of the research is
that it only considers the homogeneous data grid
nodes and cannot be applied to heterogeneous
nodes while the nodes in a data grid are normally
heterogeneous.

 In 2008 Lin et al. [30] have addressed the
problem of placement of a new replica in a proper
place by considering a priority list. The proposed
replica placement algorithm finds out the minimum
number of replicas when the maximum workload
capacity of each replica is given. The hierarchal
model is different from other related works that
done, because in this model they assume a logical
connection between all siblings of a parent and a
request can be served from a node present in
sibling ring. If requested data is not present in
sibling ring then parent ring is searched. This
architecture is called a Sibling Tree model, which
is an extension of a normal tree structure. The
presented hierarchal model assumes a logical
connection between the siblings and actually all
connections from on sibling to another physically
involves the parent i.e. at most two hops. This
means the actual time taken to serve a request is
infected more than it is presented, as this logical
connection is assumed physical and already the
time complexity is too high. The problem of
network congestion or bandwidth consumption is
not mentioned in proposed model.

 By considering different kinds of architecture in
data grid, a true representation of a grid is a general
graph in which there is no central node designated
as a root node, and each node can be connected

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 493

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

with any number of nodes. In literature we can see
the work done on a graph as the grid architecture is
much less. Most researchers have worked on
hierarchical structure and have mentioned
extending their work to general graphs in the
future. Therefore in this paper, we consider a grid
with graph-based topology. The main idea is to
keep the data close to the user in order to make the
efficient and fast accesses. As mentioned before,
replica placement is one of the important
challenges to improve performance and good
placement strategies can result in significant
performance gains. This goal is achieved, when
every replica server in the data grid is aware of the
location of its related nodes. Thus, at the first step,
the graph structure is converted to tree structure
due to better managing of replica servers and their
related nodes. Then, their sibling nodes in real
topology as graph topology are considered to
balance the load on our structure. So our proposed
algorithm which has not been used in other existing
placement strategies not only considers access load
of replica servers but also reduces the mean job
execution time.

1. RPGBA: A new Architecture for
Replica Placement

 In this section we will describe our proposed
architecture, Replica Placement on Graph-Based
data grid Architecture. As mentioned before, a true
representation of a grid is a general graph in which
there is no central node designated as a root node,
and each node can be connected to any number of
nodes. Therefore in this paper, we consider a grid
with graph-based topology. At the first step of our
proposed algorithm, this structure is converted to
hierarchal structure due to better managing of
replica servers and their related nodes. The multi
tier data grid as shown in Fig.1 has many
advantages: First, it allows hundreds or even
thousands of scientists everywhere to access the
resources in a common and efficient way. Second,
the datasets can be distributed to appropriate
resources and accessed by multiple sites. The
network bandwidth will be used efficiently because
most of the data transfers only use local network
resources. Furthermore, the multi tier structure
enables the flexible and scalable management for
datasets and users. In this figure, the data grid is
modeled to have three tiers: The machine of Tier 0
is connected to machines of Tier1. The Tier0
machines provide abundant storage capacity. The
Tier1 machines provide computing and storage
resources, each Tier1 machine that we called the
Regional Server has a number of related Tier 2
machine each of which has the computing
resources as well as the storage capabilities.

Figure 1: The multi tier data grid

The Tier2 machines called Local Servers. Tier3
machines are workstations and they are implicit in
this model. According to the modified BHR
proposed model [28] which is based on network
level locality, the enhanced algorithm tries to
replicate files within a region. A network region is
a network topological space where sites are closely
located. If the required replica is found within the
region the job completion will be fast. Regional
Servers should have huge storage capacity because
they play the role of intermediate replica servers
and interact with two important components:
Replica Manager (RM) and Replica Catalog (RC)
which will be explained later. In order to facilitate
dynamic file replication in the multi-tier data grid,
following services are available in the system [31]:
Local Replica Catalog (LRC), Local Replica
Manager (LRM), Replica Catalog (RC) and
Replica Manager (RM). The LRC and LRM are
local services which are distributed on every
machine in the system, where RC and RM are
centralized services, these two services located at
the Region Servers. The RM and RC at the
Regional Server manage LRM and LRC of sites
which are connected to them. In addition to these
file services, some more services are assumed to be
running in the data grid [32]. As shown in Fig. 2,
RC and RM are two main components and in our
model consist of some more detailed services
which will be described. File replication is the
process of storing multiple copies of the same file
at different physical locations. The gained
redundancy improves reliability, fault tolerance and
accessibility. The copies are called replicas. A URL
pointing to a physical copy of the file is called a
physical file name (PFN) of the file. The set of
PFNs are mapped to a system-wide unique
identifier, called the logical file names (LFN), so in
order to relate the LFNs and PFNs another
component which called RC is introduced.

1) Replica Catalog (RC): Through the Replica
Catalog, the physical locations of data files are
recognized. The replica catalog consists of some
detailed services such as:

 Database which stores mapping between LFN
and PFN: This database is a registry that keeps
track of where the files are stored in the grid. It
stores mapping between LFN and PFN of each
file. All files that have been placed in the grid

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 494

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

using data placement service are registered in
this database.

 Database which stores level and depth-first
order of each node: As it we will be discussed
in the next section, all of the entire nodes in
data grid environment are labeled by our
proposed algorithm. As a result of this
algorithm, each node can be aware of the nodes
which are located at its subtree. Additionally,
the "level" indicates the distance of studied
node from the root node.

 Replica Location Service (RLS): The RLS
invokes two above databases to store mapping
between LFN and PFN or the information that
were mentioned before like the order and level
of each node.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 495

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 2: the RPGBA components

2) Replica Manager (RM): Its major duty is to
perform replication and creating replicas. This
component consists of following components:

 Reservation Manager: validates the reservation
requests in terms of the resource usage policies
and performs the admission control for the
resource availability.

 Allocation Manager: Communicates with the
resource manager of the computing, networking
and storage systems for the allocation of these
resources with respect to the reservations.

 Replica Selector: The replica selector selects the
replica with the minimum communication cost.
The communication cost is denoted as follows:

Communication cost =
ࢋࢠࡿ

࢈ࢇࢎ࢚ࢊࢃࢊࢇ
 (1)

Size୧= size of replica ‘i’

 = available bandwidth between݄ݐܹ݀݅݀݊ܽܤ
grid site ‘a’ and grid site ‘b’

 Catalog Service: When the optimizer invokes the
Catalog Service, it interacts with RLS to get the
information from Database that saves mapping
between LFNs and PFNs. This database connects
to another database that stores the order and the
level of each node.

 Replicator: The replicator replicates the selected
replica on the best place which will be found by
our proposed algorithm.

 Replica Selection component: This component is
composed of some more detailed services such
as:

 ABWE [33]

The ABWE monitoring tool can be used to
estimate RTT and available bandwidth

between host pairs. ABWE is a low network
intrusive monitoring application, based on
packet pair techniques and designed to work
in continuous mode. The source node
(requester node) in grid is configured to use
ABWE for sending continuously probe
packets to all other target nodes (contained
desired replica), and reporting some
information. The information like delay and
available bandwidth are returned back to the
source node. The source node collects this
kind of end to end metrics for source and
target nodes pair and performs some process
to select the target node with minimum
communication cost.

 Replica Placement Management

Our proposed algorithm uses this component
to find the minimum distance between source
and destination. Some important factors are
considered to achieve this goal. These factors
will be discussed later in next section.
Additionally, this component considers the
access rate of each replica server and finds the
replica server with minimum access load. It
should be noted that every time the access
load of target nodes is compared with the
threshold value. The target nodes which their
access rates are lesser than the threshold value
are selected for replication.

 Threshold Controller [34]

This controller checks the access request rate
and available server capacity to determine the
threshold value. The threshold value is set
based on the average aggregated access counts
at the replica servers. The value of the average
aggregated access counts is calculated by
dividing the total number of aggregated access
counts for a file at the replica servers at each

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 496

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

level to the number of the replica servers at
that level. A high access request rate
corresponds to frequent accesses by the users.
A file with frequent access is called most
“Popular” file whose access count exceeds the
threshold. Increasing the threshold value
lessens the number of replicas created. On the
other hand, when the request rate drops, the
fewer replicas are created, Even though the
system might be capable (in terms of
bandwidth and storage) of supporting more
replicas to improve access latency.

If Reservation manager succeed in making
reservations, RM calls for allocation manager. Once
Allocation Manager Finishes allocating the reserved
resources, RM starts the file transfer from a source
machine to the destination machine. It should be
noted that, every request passes three parameters to
Catalog Service, F: indicates the file which requested,
M: indicates the machine that requests the file, D:
indicates the request deadline .

In Fig. 3 the message passing structure between the
components that were discussed above is illustrated.
As it can be seen in this figure, first of all the grid site
sends its request to the RM. Every request contains
the information like: F: indicates the file which
requested, M: the machine that requests the file, D:
indicates the request deadline. The catalog service at
the RM passes user's request to the RC to find the
grid sites which contain the desired file F. The
Replica Location Service at the RC invokes two
databases:

1. A database which stores (File ID , Site ID)
2. A database which stores (Level , Order , Site ID)

The RLS searches in DBs to find the information
like: The exact physical location of target sites and
their level. This information is returned to RM for
further investigations. The replica selector at the RM
plays a key role in data placement. So through replica
placement component, the minimum distance
between Machine M and the target sites is computed.
The sites with minimum hope are chosen for next
step. The ABWE component estimates RTT between
source and target sites, then chooses those nodes
which can answer to our requests before their
deadlines d. The ABWE checks the available space
on the storage element of grid sites, through storage
management component. In the next step the replica
placement component contacts with the Threshold
Controller to find the site with minimum access load
among the remaining sites. As mentioned before, we
know the level of each site in our structure.
Additionally, the threshold value of each level is
stored in threshold controller. So the access load of
selected sites at each level is compared to the
threshold value of that level.

Finally the site which its access load is lesser than
the threshold is chosen as a destination site. The
request is sent to replicator to perform the replication

process and submit jobs. This component contacts to
the storage management and allocation manager
component. If Reservation manager succeeds in
making reservations, RM calls allocation manager.
Once Allocation Manager Finishes allocating the
reserved resources, RM starts the file transfer from a
source machine to the destination machine.

4. RPGB: A new algorithm for Replica Placement

In this section we will describe our proposed
Replication algorithm, Replica Placement on Graph-
Based data grid. Our proposed algorithm consists of
three phases:

Phase1, traversing the data grid structure: in this
phase, the data grid structure is traversed by the
Breadth First Search (BFS) algorithm to determine
the level of each node. Additionally, the Depth First
Search (DFS) algorithm is used to label the nodes in
the depth-first order they are encountered.

Phase 2, requesting a file and performing the replica
selection and replica placement

Phase 3, Replacement, if there was enough space in
storage element for storing a new replica, it will be
stored; otherwise an existing file should be selected
for replacement.

Phase1: Traversing the hierarchical structure

In this phase, our graph structure is traversed by the
BFS algorithm. The BFS begins at the root node and
explores all the neighbor nodes. By this algorithm the
level of each node is determined. In the first stage of
this algorithm, the “Level 0” is assigned to the root
node. In the second stage, the vertices adjacent to the
root node are visited. These vertices placed into the
“Level 1”. In the third stage, the new vertices that are
at the distance of two edges away from the root node
are reached. These nodes are placed into the “Level
2” and so on. The BFS traversal terminates when
every node has been visited. As a result of this
algorithm, we assume that, the Regional Servers are
located at “Level 1” and the Local Servers are located
at “Level 2”. Consider the graph structure which is
shown in Fig.4. This structure is traversed by the BFS
algorithm. It should be noted that, every node in this
graph structure is a site in real data grid structure, and
every edge demonstrates the relations between sites.
In the traversal tree the adjacent of each node should
be maintained (Fig. 5).

In addition to the BFS algorithm, another traversal
algorithm that is called the DFS is used to find the
nodes in the depth-first order they are encountered.
Our proposed algorithm is constructed on the bases
of following assumptions:

 Let ‘T’ denotes a tree that is obtained after
traversing our graph structure by the BFS
algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 497

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 3: The message passing between components

Figure 4: The graph structure

 Let lca(u,v) denotes the lowest common
ancestor of nodes u and v in tree ‘T’.

As shown in Fig. 6, first, the depth-first traversal
is executed on tree ‘T’ to label the nodes in the
depth-first order they are encountered. Then, in
that same traversal we maintain a list ‘L’. The
list ‘L’ demonstrates the order of nodes of ‘T’.
These nodes were visited by DFS algorithm. It
should be mentioned that the number given to
any node is smaller than the number which had
given to any of its descendents.

Figure 5: The Tree ‘T’ structure is obtained, after traversing
the graph by the BFS algorithm

It is assumed that these numbers which are assigned
to the nodes of the tree T are the grid sites IDs.

Figure 6: The tree ‘T’ that is traversed by the DFS algorithm

Now if we want to find lca (u,v), we find the first
occurrence of the two nodes in L, this defines an
interval I in L. Suppose u occurs in L before v. Now, I
describes the part of the traversal, from the point we
first discovered u to the point we first discovered v.
Lca (u,v) can be retrieved by finding the minimum
number in I. This is due to the following two simple
facts:

 If u is an ancestor of v then all those nodes
visited between u and v are in u’s subtree,
and thus the depth-number assigned to u is
minimal in I.

 If I is not an ancestor of v, then all those
nodes visited between u and v are in lca
(u,v)’s subtree, and the traversal must visit
lca (u,v). Thus the minimum of I is the
depth-number assigned to lca(u,v).

Therefore, the BFS algorithm determines the level of
each node in tree structure, and by the DFS algorithm
the depth-first order of labeled nodes will be
obtained. The proposed algorithm stores this

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 498

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

information in databases that are located in Replica
catalog which is described at previous section. As
shown in Fig. 7, the depth-first traversal creates these
depth numbers and the following list L7:
{7,9,7,10,11,10,12,0,7}. Now if we want to find lca
(9,12), we find the first occurrences of the two nodes
(9,12) in L, this defines an interval I in L. The lca can
be retrieved by finding the minimum number in I.
Here the minimum number in interval I is 7.

L7: {7,9,7,10,11,10,12,0,7}

Interval I

Lca (9,12) = 7

Figure 7: The Lowest Common Ancestor (LCA (u,v))

As mentioned before the numbers which are assigned
to the nodes of the tree 'T' are the grid sites IDs. After
traversing the tree by the BFS and the DFS
algorithms, the triple (SiteID, level, depth order)
could be registered into target database. According to
our proposed architecture that is illustrated in
previous section, the Local Server and the Regional
Servers which are located at upper level in our
structure can be aware of the location and the level of
their children and descendent nodes. So every
Regional server is aware of the grid sites which are
placed on its subtree. This phase is illustrated in
Fig.8.

Phase 2: Replica Selection and Replica Placement

In the first step, the Replica Manager nodes which
contain our proposed algorithm aggregate the access
records of each file from lower to upper level to
determine the threshold value. A high access request
rate corresponds to frequent accesses by clients
which results in more “popular” files whose access
count exceed the threshold. The initial threshold
value is set based on the average aggregated access
count at the replica servers in each level. The value of
the average aggregated access cost is calculated by
dividing the total number of aggregated access count
for a file at the replica servers in the second to lowest

tier of the hierarchy by the number of replica servers
at that tier.

Figure 8: Traversing the hierarchical structure (Phase 1)

The initial value is the adjusted dynamically based on
available storage and user request arrival rates. (Fig.
9). Whenever a grid site needs a popular file that is
not stored locally, the request will be sent to the
Local Server.

Figure 9: The threshold value is calculated in each level

The Local Server queries it's Replica Catalog through
its Replica Manager for determining which grid sites
have the requested replica. Note that every time the

Phase 1

T: Tree , ST: SubTree

1. Run the BFS algorithm to traverse the graph
structure

2. Let T denotes a tree which traversed by the
Step 1.

3. Maintain the adjacent of each node on the
tree T.

4. Run DFS algorithm to traverse the tree T.
5. Maintain the List L of nodes in the same

order that they are visited.
6. Keep the subtree of every node.

This step is based on the number of occurrences
of each node in list L
The interval ST of node ‘s’ describes the part of
the traversal from the point we first discovered
node ‘s’ to the point we discovered the ‘s’ for the
(adjacent(s) + 1) time.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 499

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Local Server receives a file request, it stores "LFN of
that file, PFN of the requester site". So each request
will be stored as follows in Replica Catalog: (File ID,
Site ID). As mentioned before, another database is
introduced which registered the information like
"Level ID "and "Depth-first order" of each node. By
the depth-first order, each node is aware of all of its
descendents which are located at its subtree. So the
Local Server is aware of all nodes that are located at
its subtree.

Figure 10: The requester site and the target sites

Figure 11: The request is sent to the Local Server

Among the grid sites which are selected as the
candidate sites, the sites which have minimum
distance from the requester site are chosen. Note that
the grid sites that contain the desired replica are
called the target sites. As shown in Fig. 10, assume
that the grid sites with Site ID=8 and Site ID =9
contain the requested replica. First the proposed
algorithm maintains the depth-first order of the Local
Server. If the target site is involved in this order then

they are selected for next step considerations.
Otherwise, the proposed algorithm maintains the
order of the Regional servers for further
investigation. As shown in Fig. 11, the paths between
the requester site and the target sites are
demonstrated by dashed lines. The request that came
from Site 12 at the second hop through its path, meets
grid site 7 as local server at its region. So the grid site
7 checks its depth-first order and finds the target site
in its area. As mentioned before, if the required
replica is found within the region the job completion
will be fast. Therefore, the proposed algorithm selects
Site 9 as the target site. In the next step of our
algorithm the Replica Selector is called by the RM to
compute the Round Trip Time (RTT) and
communication cost between the requester site and
the target site. As mentioned before each request has
specific deadline, so our proposed algorithm
estimates the ability of responding the job before its
deadline. If (request's deadline > RTT) then the user
can access the file remotely. Otherwise the
replication will be performed. Now the RM invokes
Reservation Manager. If it doesn’t succeed in making
reservations on requester site, the proposed algorithm
finds lca of the requester and the target site. As
shown in Fig. 12, by considering the depth-first order
of grid site 7, the lca (9,12) is the grid site with
SiteID =7.

Figure 12: The LCA (the requester site, the target site)

The access load of the target node which is located
on LCA is maintained. This access load is compared
with the level’s threshold value. If its access load
exceeds the threshold, then one of its sibling nodes
whose load is lesser than the threshold value is
selected as the best candidate. (Fig. 13)
It should be considered that, if none of the grid sites,
which are located at Local Server and Regional
Server’s zone do not have the desired replica, the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 500

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

request will be sent upward the tree. The proposed
algorithm is shown in Fig. 15.

Figure 13: The sibling node is selected

Phase 3: Replacement

As mentioned before the threshold controller
component controls the threshold value at each level
of our structure. The threshold value is decreased or
increased by the difference between the current and
previous average aggregated access costs of replica
servers. Once the threshold value is updated, the
available storage capacities of the replica servers are
checked. Further adjustment of the threshold value is
done based on the available capacities at the replica
servers. Every time the threshold controller checks
the available free space of replica servers. Every node
is located in specific level. If the storage load of each
node exceeds the threshold value of its level, then the
threshold controller invokes the proposed algorithm
to evacuate that node according to Least Recently
Used (LRU) replacement policy. Furthermore,
replacement is performed, when a remote replicas has
been selected for replication to the target site's
storage element. The storage element might not have
sufficient spare capacity. In this case, one or more
replicas must be deleted by LRU algorithm. (Fig 14.)

5. Performance Evaluation

1) Simulation tool

OptorSim is used as the simulator tool to evaluate
the performance of our proposed algorithm.
OptorSim [35] is a simulation package written in
Java. It was developed to study the effectiveness of
replica optimization algorithms within a Data Grid
environment [36] and to represent the structure of a
real European Data Grid [37]. The structure [38] of
OptorSim is illustrated in Fig. 16. The simulation was
constructed assuming that the Grid contains several

sites; each consists of zero or more Computing
Elements (CEs) and zero or more Storage Elements
(SEs). CEs run jobs by processing data files, which
are stored in the SEs. A Resource Broker (RB)
controls the scheduling of jobs to Grid Sites, and
schedules jobs to CEs according to scheduling
algorithm. Each site handles its file content with
Replica Manager (RM), within which a Replica
Optimizer (RO) contains the replication algorithm
which drives automatic creation and deletion of
replicas [33].

Each job has a set of files it may request. The order in
which those files are requested is determined by the
access pattern. The following access patterns were
considered in OptorSim [36]:

Sequential: the set is ordered, forming a list of
successive requests.

Random: files are selected randomly from a set with
a flat distribution.

Unitary random walk: set is ordered and successive
files are exactly one element away from the previous
file, direction is random.

Gaussian random walk: similar to unitary random
walk, but files are selected from a Gaussian
distribution centered on the previous file.

Phase 3

sl is defined as : (the desired percentage of storage use / the
actual percentage of storage used) at each replica server

T: Threshold value

1. The threshold controller controls the threshold value
at each level i

2. foreach (node j in level i)
checks the sl(j)

3. The threshold value on level i is updated

T =
∑ ௦	ሺሻ
ೕసభ

 (where n is number of node at level i)

4. foreach (node j in level i)
if (sl (j) > T) Then Do Replacement

5. If (target site doesn't have enough free space)
Then Do Replacement

6. Replacement:
Sort Files in SE using LRU
Foreach (file ݂in SE)
{if (file duplicated in other site within Region)

 Then Delete ݂

 If (Enough Space to share new Replica) Break}

Figure 14: Replacement (Phase 3)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 501

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

RPGB Algorithm

Inputs: Grid Topology, Coding this topology with Graph traversal algorithms, Bandwidth and Storage
Space, d as file’s deadline)

Outputs: Find Best Candidate for replication, Load Balancing, Job execution time, number of replica,
Remote file access, local file access.

Method:

1. Submit jobs to grid
2. Every request Sends to Replica Manager of Masters : Master of Site, Regional servers
3. Replica manager query Replica Catalog to determine which grid site contains the desired replica
4. If the file not found in lower level its Manager Send Request to upper level
5. When we want to replicate, according to Site Storage Space use Replication or Remote access.
6. Determining the path between source and destination
7. Compute the Lowest Common Ancestor between source and destination.
8. Considering the target site's access load to balance the load on grid environment. If the access load

exceeds from threshold then compare the access load of sibling nodes
9. Replicate on the node with minimum access load
10. Execute the jobs

Replica Optimizer

1. Compute the threshold value on each level:

 The initial threshold value is set based on the average aggregated access count at the replica servers in each
level

Threshold =
்௧	௨		௧ௗ	௦௦	௨௧		௩		

௨			௦௩௦	௧	௩

2. for each file ݂

{if (Freq(݂ሻሻ >= Threshold of node’s level {

Mark the file ݂ 	 as to be replicated } FileID = ݂ }

3. The information like (FileID,SiteID) & (SiteID,level,depth-first order) is retrieved from the Replica Catalog

4. Each Master node searches for the target nodes in its subtree

5. The sites which have minimum distance from the requester site are chosen.

6. Foreach (grid site 's' in list of target sites)

 Replica Selector compute the RTT through ABWE

7. If (request's deadline > RTT) then access remotely & terminate optimizer

8. If (Req file size > SE of storage site) then lca = LCA (source,target site)

9 . Compare the access load of lca with the threshold value

 if (al (lca) > threshold then (if al (lca's sibling node) < threshold then select lca's sibling as the Best
 Candidate)

 else select lca as the Best Candidate

10. Perform replication

Figure 15: The proposed RPGB algorithm (Phase 2)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 502

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

There are two types of algorithms in OptorSim: the
scheduling algorithm used by the RB to schedule jobs
to CEs and the replication algorithm used by RM at
each site to manage replication. Each scheduling and
replication algorithm is implemented as a separate
Resource Broker and Replica Optimizer class
respectively. We have made changes only in Replica
Optimizer Class and the default Resource Broker
class is used.

There are three options for Replication Algorithms
in OptorSim. First, one can choose No Replication
which never replicates a file and all replicas are taken
from the master site where the data were produced at
the beginning of the simulation and the distribution
of files does not change during simulation. Second,
one can use LRU or LFU algorithm that always tries
to replicate and, if necessary, deletes Least Recently
Used files or Least Frequently Used files. Third, one
can use an economic model in which algorithm only
deletes files if they are less valuable than a new file.
There are currently two types of the economic model:
the binomial economic model, where file values are
predicted by ranking the files in a binomial
distribution according to their popularity in the recent
past, and the Zipf economic model, where a Zipf-like
distribution is used instead [38].We have compared
our proposed algorithm with all of these algorithms.

2) Configuration Files
There are four configuration files used to control

various inputs to OptorSim. These are as follows [38,
39]:

2.1 Simulation parameter file
 It contains various simulation parameters which the
user can modify like the names of the grid
configuration file and the job configuration, number
of jobs, the scheduling strategy for the RB, the
optimization algorithm, the files access pattern, a
GUI and statistics parameters, and some other
important parameters.

2.2) Grid configuration file
 It describes the Grid topology and the content of
each site; that is, the resource available and the
network connections to other sites.

 The grid configuration that we have used in our
simulation is the CMS Data Challenge 2002 test bed
[40] (Fig. 17). For the CMS test bed, CERN and
FNAL were given SEs of 100 GB and no CEs. All
master files were stored at one of these sites. Every
other site was given 70 GB and 50 GB of storage and
a CE with one worker node.

2.3)Job configuration file
 It contains information on the simulated files like
size of each file and its identifier, information on jobs
like list of files needed for each job, the probability
each job runs and the site policies for each site. In our
simulation there are six job types.

2.4) Bandwidth configuration file
 The bandwidth configuration file is used to describe
the background network traffic. It is a site by site
matrix which gives, for each pair of sites, the name of
the data file containing the relevant bandwidth
information and also the time difference between the
reference time zone and the source site.

Figure 17. CMS Data Challenge 2002 grid topology [40]

3) Simulation results

 The RPGB algorithm was compared with No
Replication, LRU, LFU, and Modified BHR
algorithms. We have introduced these algorithms in
the last section.

3.1) Final results and discussion
 As mentioned before the CMS Data Challenge 2002
test bed has been used in our simulation. The
simulated grid used in our experiments has 20 sites,
18 of them have Storage Element (SE) and
Computing Element (CE) and 2 of them have only
SE. The capacity of sites 14 (CERN) and 19 (FNAL)
that only have SE’s are 100 GB (all master files are
stored in these two sites at the beginning of
simulation) and the other ones are 70 GB and 50 GB.
The SE’s of Regional Server are 70 GB. Also there
are 8 routers that do not have SEs and CEs. The
general simulation parameters are shown in Table 1.
We have compared our proposed algorithm with 4 of
existing algorithms: No replication, LRU, LFU, and
Modified BHR [28]. The first three algorithms are
implemented in optorsim. The Modified BHR [28]
and RPGB algorithms are implemented by us. The
simulation results for the different access patterns are
shown in Figures 18, 19 and 20.We ran six jobs
totally 100 times and evaluated the impacts of file
access pattern. We tested RPGB and the other
algorithms in 2 types of access pattern: 1.Random
Access, 2.Random Zipf Access. The performance
evaluation metrics that we used in our simulation are:
Mean Job Execution Time, Effective Network Usage
(ENU) and Average Storage Usage.

Table 1.General Simulation Parameters

Parameter Value

Number of sites 20

Number of Storage Elements (SEs) 20

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 503

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Number of Computing Elements (CEs) 18

Number of routers 8

Storage capacity at each site (GB) 50, 70, 100

Number of jobs 100

Number of jobs types 6

Number of experiments 10

Job delay (ms)a 2500

Size of single file (GB) 1

Total size of files (GB) 97

Access history length (ms)b 10

Minimum bandwidth between sites (Mbit/s) 45

Maximum bandwidth between sites (Mbit/s) 10000
a. The job delay is the interval in ms between the RB submitting each job.

b. Determines the time period over which the past file access history is considered.

 3.1.1)Mean Job Time of all Jobs on Grid

 The mean job time of all jobs on grid is defined as
the combined total time in milliseconds of all the jobs
run divided by the number of jobs completed. (Eq. 2)

MJET =
∑ 	௩	்ି	௧௨	்
సభ

ே௨		௦	௧ௗ
 (2)

Note that for all the components, total job time is
defined as the sum of the entire individual job times,
including their queuing times [39]. We have
compared Mean Job Time of our proposed algorithm
with other existing ones. The comparison results are
shown in fig 18. The simulation results show that
RPGB has the lowest value of Mean Job Execution
Time in both Random and zipf access patterns. The
reason is because of the nodes at upper level like: the
Local Server and the Regional Servers can be aware
of the location and the level of their children and
descendent nodes. So every Regional server aware of
the grid sites which are placed in its Region.
According to phase 2 of our proposed algorithm, the
most popular file is chosen to replicate. On the other
hand the minimum distance between the requester
site and target sites is computed. Then the proposed
algorithm computes the RTT between these sites, and
estimates the ability of responding the job before its
deadline. By considering these factors, the algorithm
tries to replicate the desired file on site which is
located nearby the client, and could respond the job
before its deadline. So at the time of execution, jobs
will have their required files locally. One of the
important factors that decrease the grid site’s job
execution time is having their required files locally
stored on their storage element. It should be noted
that, according to zipf access pattern, a few files are
requested many times. So, as mentioned before, in
our proposed architecture the physical location of
studied sites and the files that requested by them are
registered in specific databases. Additionally, the
proposed algorithm selects the most popular file. By
this features the proposed algorithm has the lowest
value of Mean Job Execution Time in comparison
with LFU, LRU, No replication and Modified BHR.
If Random zipf access pattern is used, the Modified

BHR works better than LFU, LRU and No
Replication. But when Random access pattern is
used, LFU and LRU have shorter mean job time and
work better than Modified BHR. The Modified BHR
stores access history of files, so if files are selected
randomly, mean job execution time will not be
improved. As Mean Job Execution Time is the most
important evaluation metric, RPGB can be
considered as the superior strategy.

 3.1.2)Effective Network Usage (ENU)
 This is effectively the ratio of files transferred to
files requested, so a low value indicates that the
optimization strategy used is better at putting files in
the right places [39]. It ranges from 0 to 1. It can be
measured by using equation (3).

ENU=
ேೝ		ೌೞೞೞశ	ಿ	ೝೌೞ

ேೝ		ೌೞೞೞ	ା	ேೌ		ೌೞೞೞ
 (3)

Through the graph search algorithms like: BFS and
DFS, which traverse our graph structure (Phase 1),
every node knows its location among its sibling and
child nodes, so the required file could be replicated
from the sites which are nearest to it. By this
assumption the bandwidth consumption is minimized
and used effectively. The No Replication strategy
performs the worst because it always accesses files
remotely. LRU and LFU are better than Modified
BHR because the replica is present in the entire site if
there is free storage space. (Fig. 19)
 3.1.3) Average storage Usage

As shown in Fig. 20, the average storage usage in
modified BHR is lesser than RPGB because in
Modified BHR files can be stored in a particular site
instead of storing them in several sites. Therefore the
storage usage can be reduced.The Modified BHR
checks access history of files before replicating them
and find the storage element which has accessed the
files at most. In our proposed algoritm files can be
stored in several sites. It should be considered that, if
files are selected randomly then the Modified BHR
would not be the best solution. If we use zip-f
distribution, the Modified BHR performs better than
the others, because few files being requested many
times by this algorithm. On the other hand, our
proposed algorithm checks the storage load of replica
servers and every time compares their load with
threshold value to evacuate servers from least
recently used files. So it uses the storage elements
lesser than other three replication algorithm.

6. Conclusion and Future works

 In this paper we described our proposed
architecture, Replica Placement on Graph-Based data
grid Architecture. As a true representation of a grid is
a general graph in which there is no central node
designated as a root node, and each node can be
connected with any number of nodes. Therefore in
this paper, we consider a grid with graph-based
topology. But at the first step of our proposed
algorithm, this structure is converted to hierarchal

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 504

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fi

0

0.5

1

Fi

1
2
3
4
5

M
ea

n
Jo

b
E

xe
cu

ti
on

 T
im

e
(M

S)

E
ff

ec
ti

ve
 N

et
w

or
k

U
sa

ge

tree struct
servers and
we determ
replicas on
algorithm t
the storag
sibling no
workload
availability
replication
comparison
Modified B
better perf
effective n
Modified B
when zipf
important
problem is
way that s
requests, w
work.

Acknowle

The aut
Telecomm
financial su

igure 18: Access P

0

5

1

Random
Access

Access Patt

A

igure 19: Access P

0
000
000
000
000
000

Rando
Acces

Access Pat

ture due to b
d their related

mine a suitable
n this hierarch
takes into acco

ge load of the
odes before pl
among these

y is increased.
n and improv
n of our algo
BHR demonst
formance in a
network usage
BHR acts bett
f access patt

challenge f
s how can we
service quality
which will be

dgement:

thor would
munication Rese

upport.

Patterns VS. Mea

m Random Z
Access

terns VS. Eff

Access Patterns

Patterns VS. Effe

om
ss

Random
Zipf Acc

tterns VS. Me

Access Patterns

better managi
nodes. In the

e selection and
hical structure.
ount both the a
e replica serv
lacing the rep
nodes is balan
It also reduce

ves our perfo
orithm with LR
trates that our
average mean
e but on the o
ter in average
tern is used.

for the repli
place the repl

y can be guar
e considered

like to
earch Center (I

an Job Execution

Zipf
s

fective Netwo

ctive Network Us

m
ess

No

LR

LF

M

RP

ean Job Execu

ing of replica
second phase

d placement of
The proposed

access load and
vers and their
plicas. So the
nced and data
es unnecessary
ormance. The
RU, LFU and
algorithm has
job time and

other hand the
storage usage

 Finally, the
ca placement
licas in such a
ranteed for all
in our future

thank Iran
ITRC) for their

Time

No Replication

LRU

LFU

Modified BHR

RPGB

ork

sage

o Replication

RU

FU

Modified BHR

PGB

ution Time

a
,
f
d
d
r
e
a
y
e
d
s
d
e
e
e
t
a
l
e

n
r

Refe

[

[

[

[

[

[

[

[

[

n

R

0
2
4
6
8

10

A

A
ve

ra
ge

 S
to

ra
ge

 U
sa

ge
 (

M
B

)

erences

[1] I. Foster,
anatomy o

[2] J. Zhang,
model to p
the hierarc
Computer

[3] I. Foster, T
21st centu

[4] K. Ranga
evaluation
for a hi
Internation
High Ener

[5] H. Lame
replication
in: ICA3P

[6] K. Ranga
Improving
model-driv
peer com
376.

[7] R.M. Rahm
placement
and risk, (

[8] S. Vazhku
selection i
(2001), p.

[9] H. Stocki
Allcock,
object rep
Computin

Figure 20: Ac

Random
Access

A

Access Patter

C. Kesselma
of the grid, (200

B.S. Lee, X.
predict the opt
chical data grid
Systems 26 (2

The grid: A ne
ury science, (20

anathan, I. F
n of dynamic r
gh performan
nal Conferenc
rgy and Nuclea

ehamedi, B.
n strategies in
PP, (2002), p. 0

anathan, A. Ia
g data availabil
ven replicatio

mmunities, in:C

man, K. Barke
t in data grid:
2005).

udai, S. Tueck
in the globus d
106.

nger, A. Sam
I. Foster, B.
plication in
g 5 (3) (2002),

ccess Patterns VS.

Random Zi
Access

Access Patterns

rns VS. Avera

an, S. Tuecke
01).

Tang, C.K. Y
timal performa
d, Future Gene
2010), pp. 1–11

ew infrastructu
002).

Foster, Design
replication stra
nce data grid
ce on Comput
ar Physics, (200

Szymanski,
n grid environm
0378.

amnitchi, I. F
lity through dy
n in large pe
CCGrid, (200

er, R. Alhajj, R
 Considering

ke, I. Foster, R
ata grid, in: CC

mar, K. Holtma
Tierney, Fil

data grids, C
, pp. 305–314.

. Average Storage

ipf

N

L

L

M

R

age Storage U

e, The

Yeo, A
ance of
eration
1.

ure for

n and
ategies
d, in:
ing in
01).

Data
ments,

Foster,
ynamic
eer-to-
2), p.

Replica
utility

Replica
CGrid,

an, B.
e and

Cluster

e Usage

No Replication

LRU

LFU

Modified BHR

RPGB

Usage

n

R

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 505

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[10] Y. Yuan, Y. Wu, G. Yang, F. Yu, Dynamic
data replication based on local optimization
principlein data grid, (2007).

[11] F. Schintke, A. Reinefeld, Modeling replica
availability in large data grids, Journal of
Grid Computing 1 (2) (2003), pp. 219–227.

[12] H. E. Al Mistarihi1, C. H. Yong, Replica
Management in Data Grid, IJCSNS
International Journal of Computer Science
and Network Security, June (2008), pp. 22-
32.

[13] A. Benoit, V. Rehn-Sonigo, and Y.
Robert, Replica placement and access
policies in tree networks, IEEE
Transactions On Parallel and Distributed
Systems, 12(19), (2008), pp.1614–1627.

[14] T. Hara, Data replication issues in
mobile ad hoc networks, In Proceedings
of the 16th International Workshop on
Database and Expert Systems Applications
(DEXA’05), IEEE Computer Society,
(2005).

[15] A. Litke, D. Skoutas, and T. Varvarigou,
Mobile grid computing: Changes and
challenges of resource management in
a mobile grid environment, In
Proceedings of PAKM 2004, Lecture Notes
in Computer Science(LNCS), Vol.3336,
Vienna, Austria, Springer-Verlag,
(2004).

[16] A. Benoit, V. Rehn-Sonigo, and Y.
Robert, Replica placement and access
policies in tree networks, IEEE
Transactions on Parallel and Distributed
Systems, 12(19), 2008, pp. 1614–1627.

[17] M. Rashedur, B. Ken, and A. Reda,
Replica placement strategies in data
grid, Journal of Grid Computing, (2008),
pp. 103–123.

[18] X. Tang and J. Xu, Qos-aware replica
placement for content distribution, IEEE
Transactions on Parallel and distributed
Systems, 10(16), October (2005), pp.
921-932.

[19] GriPhyN project,
http://www.usatlas.bnl.gov/computing/grid/
griphyn/

[20] Q. rasool, J. Li, G. S. Oreku, Sh. Zhang, D.
Yang, “A Load Balancing Replica
Placement Strategy in Data Grid”, Digital
Information Management, ICDIM 2008.
Third International Conference, Nov.
(2008), pp. 751-756

[21] M. Tang, B.S. Lee, C.K. Yeo, X. Tang,
Dynamic replication algorithms for the
multi-tier data grid, Future Generation
Computer Systems 21 (5) (2005), pp. 775–
790.

[22] Y. Yuan, Y. Wu, G. Yang, F. Yu, Dynamic
data replication based on local optimization
principle in data grid, (2007).

[23] A. Abdullah, M. Othman, H. Ibrahim, M.N.
Sulaiman, A.T. Othman, Decentralized
replication strategies for P2P based
scientific data grid, in: Information
Technology, ITSim, International
Symposium on, (2008), pp. 1–8.

[24] Y. Ding, Y. Lu, Automatic data placement
and replication in grids, in: High
Performance Computing, HiPC,
International Conference on, (2009), pp. 30–
39.

[25] Neeraj Nehra, R.B.Patel, V.K.Bhat,
Distributed Parallel Resource Co-Allocation
with Load Balancing in Grid Computing,
IJCSNS International Journal of Computer
Science and Network Security, January
(2007), pp. 282-291.

[26] A. Horri, R. Sepahvand, Gh.
Dastghaibyfard, A Hierarchical Scheduling
and Replication Strategy, IJCSNS
International Journal of Computer Science
and Network 30 Security, August (2008),
pp. 30-35.

[27] S. M. Park, J. H. Kim, Y. B. Ko, W. S.
Yoon, “Dynamic Data Replication
Strategy Based on Internet Hierarchy
BHR”, in: Lecture notes in Computer
Science Publisher, 2004, pp. 838-846.

[28] K. Sashi, A.S. Thanamani, Dynamic
replication in a data grid using a modified
BHR region based algorithm, Future
Generation Computer Systems 27 (2),
(2011), pp. 202–210.

[29] Q. Rasool, J. Li, S. Zhang, Replica
placement in multi-tier data grid, in: 2009
Eighth IEEE International Conference on
Dependable, Autonomic and Secure
Computing, (2009), pp. 103–108.

[30] Y.F. Lin, J.J. Wu, P. Liu, A list-based
strategy for optimal replica placement in
data grid systems, in: 37th International
Conference on Parallel Processing, (2008),
pp. 198–205.

[31] A. Dogan, “A study on performance of
dynamic file replication algorithms for real-
time file access in Data Grids”, Future

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 506

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Generation Computer Systems, September
(2009), pp. 829-839.

[32] M. Hofling, On Data Placement Issues in
Grid Computing Environments, Master’s
Thesis in Computing Science, November
(2008).

[33] R. M. Vozmediano, Application Layer
Multicast for Efficient Grid File transfer,
International Journal of Computer Science
and Applications, Technomathematics
Research Foundation, (2009), pp.70-84.

[34] M. Shorfuzzaman, P. Graham, R.
Eskicioglu, Adaptive Replica Placement in
Hierarchical Data Grids, Journal of
Physics: Conference Series 256 (2010).

[35] OptorSim – A Replica Optimiser
Simulation, http://grid-data-
management.web.cern.ch/grid-data-
management/optimization/optor.

[36] W.H. Bell, D.G. Cameron, L. Capozza, A.P.
Millar, K. Stockinger, F. Zini, Simulation of
Dynamic Grid Replication Strategies in
OptorSim, Int. Journal of High performance
Computing Applications, 17(4), (2003).

[37] The European DataGrid Project,
http://www.edg.org.

[38] D.G. Cameron, A.P. Millar, C. Nicholson,
OptorSim: a simulation tool for scheduling
and replica optimization in data grids, Proc.
Computing in High Energy and Nuclear
Physics (CHEP), (2004).

[39] D.G. Cameron, R. Schiaffino, J. Ferguson,
A.P. Millar, C. Nicholson, K. Stockinger, F.
Zini, OptorSim v2.1 Installation and User
Guide, October (2006).

[40] CMS Data Challenge, (2004),
http://www.uscms.org/s&c/dc04.

Zeinab Fadaie1 received her B.S. in computer
engineering from center branch of IAU University,

1 Corresponding author

Tehran, in 2008; she is currently pursuing her M.S.
degree in the Department of Computer and
Mechatronics Engineering at the IAU University. Her
area of interests includes distributed computing,
computer networks and communications,
heterogeneous system and grid computing.

Amir Masoud RAHMANI received his B.S. in
computer engineering from Amir Kabir University,
Tehran, in 1996, the M.S. in computer engineering
from Sharif University of technology, Tehran, in
1998 and the PhD degree in computer engineering
from IAU University, Tehran, in 2005. He is assistant
professor in the Department of Computer and
Mechatronics Engineering at the IAU University. He
is the author/co-author of more than 80 publications
in technical journals and conferences. He served on
the program committees of several national and
international conferences. His research interests are
in the areas of distributed systems, scheduling
algorithms and evolutionary computing.

 Science and Research University, Simon Blvd., Ashrafi
Esfahani Ave., Tehran, Iran, phone number: +98 (21)
44869730, fax number: +98 (21) 44869744.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 507

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

