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‘crime in India statistics-2010’, published by National 
Crime Records Bureau [13], the crime rate is higher for the 
age range of 18 to 44 and decreases after 44. The crime 
done by female is only 4-8% in comparison with the crime 
done by male.   
 

Wavelet transform is a popular tool in image 
processing and computer vision because of its complete 
theoretical framework, the great flexibility for choosing 
bases and the low computational complexity [14]. As 
wavelet features has been popularized by the research 
community for wide range of applications including 
fingerprint recognition, face recognition and gender 
identification using face, authors have confirmed the 
efficiency of the DWT approach for the gender 
identification using fingerprint.  

 
The SVD approach is selected for the gender 

discrimination because of its good information packing 
characteristics and potential strengths in demonstrating 
results. The SVD method is considered as an information-
oriented technique since it uses principal components 
analysis procedures (PCA), a form of factor analysis, to 
concentrate information before examining the primary 
analytic issues of interest [15]. K-nearest neighbors (KNN), 
gives very strong consistent results. It uses the database 
which was generated in the learning stage of the proposed 
system and it classifies genders of the fingerprints. 
 
The outline of this paper is as follows: we review the 
previous approaches for sex determination using fingerprint 
in section 2, followed by discussions of fingerprint feature 
extraction in Section 3; we then proposed the gender 
classification using fingerprint features in Section 4; the 
experimental results are presented in Section 5; Section 6 
comes to the conclusion and future work. 

2.  Previous Approaches 

Gender and age classification can be me made using the 
spatial parameters or frequency domain parameters or using 
the combination of both. Most of the findings are based on 
the spatial domain analysis and few were based on the 
frequency domain. Earlier work on gender classification 
based on the ridge density shows that the ridge density is 
greater for female than male [7,8, 16,17] and [9] analyzed 
fingerprints of bagathas a tribal population of Andhra 
Pradesh (India) and showed the evident that the males 
showing higher mean ridge counts than females. Importance 
of ridge distance [18, 19] and ridge period [20] and ridge 
frequency [21] measurements as spatial parameters in the 
context of fingerprint gender classification are explained. 
Except few papers, fingerprint gender identification is made 
by manual measurements from the inked fingerprints. Many 

studies were carried out for the human face gender 
classification by using frequency domain and various 
classifiers [14, 22-29]. Only few efforts have been made for 
the gender classification through fingerprint.  

3.  Fingerprint feature extraction 

Feature extraction is a fundamental pre-processing step for 
pattern recognition and machine learning problems. In the 
proposed method, the energy of all DWT sub-bands and 
non-zero singular values obtained from the SVD of 
fingerprint image are used as features for the classification 
of gender. In this section, DWT and SVD based fingerprint 
feature extractions are described. 

3.1 DWT Based Fingerprint Feature extraction 

Wavelets have been used frequently in image processing 
and used for feature extraction, de-noising, compression, 
face recognition, and image super-resolution. Two 
dimensional DWT decomposes an image into sub-bands 
that are localized in frequency and orientation. The 
decomposition of images into different frequency ranges 
permits the isolation of the frequency components 
introduced by “intrinsic deformations” or “extrinsic factors” 
into certain sub-bands. This process results in isolating 
small changes in an image mainly in high frequency sub-
band images. Hence, DWT is a suitable tool to be used for 
designing a classification system.  
 
The 2-D wavelet decomposition of an image is results in 
four decomposed sub-band images referred to as low–low 
(LL), low–high (LH), high–low (HL), and high–high (HH). 
Each of these subbands represents different image 
properties. Typically, most of the energy in images is in the 
low frequencies and hence decomposition is generally 
repeated on the LL sub band only (dyadic decomposition).  
For k level DWT, there are (3*k) + 1 sub-bands available. 
The energy of all the sub-band coefficients is used as feature 
vectors individually which is called as sub-band energy 
vector (E). The energy of each sub-band is calculated by 
using the equation (1). 

 

	ܧ ൌ 	
1
ܥܴ

|ݔሺ݅, ݆ሻ|


ୀଵ

																																																ሺ1ሻ

ோ

ୀଵ

 

 
Where	ݔሺ݅, ݆ሻ is the pixel value of the kth sub-band and R, 
C is width and height of the sub-band respectively. 
 
Figure 2 shows the block diagram of the frequency feature 
extraction by using DWT. The input fingerprint image is 
first cropped and then decomposed by using the DWT. For 
level 1, number of subbands are 4 and 3 subbands are added 
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for each next levels  Thus the increase in levels of DWT 
increases the features.  

 
 
 
 
 
 

Fig. 2 DWT based fingerprint feature extraction 

3.2 SVD based Fingerprint Feature extraction 

The Singular Value Decomposition (SVD) is an algebraic 
technique for factoring any rectangular matrix into the 
product of three other matrices. Mathematically and 
historically, it is closely related to Principal Components 
Analysis (PCA). In addition it provides insight into the 
geometric interpretation of PCA. As noted previously, the 
SVD has long been considered fundamental to the 
understanding of PCA. 
 
 The SVD is the factorization of any ݇	ܺ	 matrix 
into three matrices, each of which has important properties. 
That is, any rectangular matrix A of k rows by p columns 
can be factored into U, S and V by using the equation (2). 
 
ܣ																			 ൌ ܷ	ܵ	்ܸ																																																																					ሺ2ሻ 

 
Where  
													ܷ ൌ  ሺ3ሻ																																																																									்ܣܣ	

 
													ܸ ൌ  ሺ4ሻ																																																																									ܣ்ܣ	

 
And S is a k	X	p diagonal matrix with r non-zero singular 
values on the diagonal, where r is the rank of A. Each 
singular value is the square root of one of the Eigen values 
of both AAand	AA. The singular values are ordered so that 
the largest singular values are at the top left and the smallest 
singular values are at the bottom right, i.e., sଵ,ଵ  sଶ,ଶ  sଷ,ଷ 
etc. 
 Among the three rectangular matrices, S is a diagonal 
matrix which contains the square root Eigen values from U 
or V in descending order. These values are stored in a vector 
called Eigen vector (V). As the internal database contains 
images of size 260x300 pixels, the feature vector of SVD is 
of the size 1x260. The spatial feature extraction by using 
SVD is shown in Figure 3. 

 
 
 
 

 

Fig. 3 SVD based fingerprint feature extraction 

4. Fingerprint Gender classification  

The proposed system for gender classification is built based 
on the fusion of fingerprint features obtained by using DWT 
and SVD. This section describes two different stages named 
as learning stage and classification stage and the KNN 
classifier used for the gender classification. 

4.1 Learning Stage 

The feature vector V of size 1x260 obtained by 
SVD and the sub band energy vector E of size 1x19 
obtained by DWT are fused to form the feature vector and 
used in the learning stage. The fusion of feature vector V 
and E is done by concatenation of features that are widely 
used for feature level fusion. The resulting feature vector is 
of the size 1x279 (1x260 +1x19).The learning stage is 
shown in Figure 4. 

 
 
 
 
 
 
 
 

 

Fig. 4 Learning stage of the proposed gender classification system 

The learning algorithm is as follows: 
Learning Algorithm: 
[Input] all samples of fingerprint with known class (Gender) 
[Output] the feature vector of all samples as database 
 
1) Decompose the fingerprint with 6 level decomposition of 

DWT. 
2) Calculate the sub-band energy vector (E) using (1). 
3) Calculate the Eigen vector (V) using (2). 
4) Fuse the vectors E and V to form the feature vector for 

the particular fingerprint. 
5) Insert this feature vector and the known class into the 

database. 
6) Repeat the above steps for all the samples. 

4.2 KNN Classifier 

In pattern recognition, the k-nearest neighbour algorithm 
(K-NN) is the generally used method for classifying objects 
based on closest training examples in the feature space. K-
NN is a type of instance-based learning where the function 
is only approximated locally and all computation is deferred 
until classification. In K-NN, an object is classified by a 
majority vote of its neighbours, with the object being 
assigned to the class most common amongst its k nearest 
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neighbours (k is a positive integer, typically small). If k = 1, 
then the object is simply assigned to the class of its nearest 
neighbour. The neighbours are taken from a set of objects 
for which the correct classification is known. This can be 
thought of as the training set for the algorithm, though no 
explicit training step is required. 

4.3 Classification Stage 

In the classification phase, the fused feature vector of the 
input fingerprint is compared with the feature vectors in the 
database by using the KNN classifier. The distance measure 
used in the classifier is ‘Euclidean Distance’. The 
classification process is as follows. 
 
Algorithm II:  Classification Algorithm 
[Input] unknown fingerprint and the feature database 
[Output] the class of the fingerprint to which this unknown 

fingerprint is assigned 
1) Decompose the given unknown fingerprint with 6 level 

decomposition of DWT. 
2) Calculate the sub-band energy vector (E) using (2). 
3) Calculate the Eigen vector (V) using (1). 
4) Fuse the vectors E and V to form the feature vector for 

the given unknown fingerprint. 
5) Apply KNN classifier and find the class of the unknown 

fingerprint by using the database generated in the 
learning phase. 

5. Experimental Results 

In this section, the performance of the proposed gender 
classification algorithm is verified by using the internal 
database. The success rate (in percentage) of gender 
classification using DWT, SVD and combination of both are 
summarized and discussed. Also, the results of the proposed 
method are compared with the results of earlier publications 
of gender classification.  

5.1 Data set 

The fingerprint images of internal database were collected 
by using Fingkey Hamster II scanner manufactured by 
Nitgen biometric solution [30], Korea. Every original image 
is of size 260x300 pixels with 256 grey levels and 
resolution of 500 dpi. The internal database includes all ten 
fingers collected from males and females of different ages. 
From the internal database, irrespective of quality and age, 
all ten fingers of 3570 fingerprints in which 1980 were male 
fingerprints and 1590 were female fingerprints are used for 
testing and training. These 3570 fingerprint images are 
separated into two sets. For the learning stage 2/3 of total 
images are used. The remaining images are used in the 
classification stage. Table 1 shows the age and gender wise 
samples of the internal database.  

Table 1: Age and gender wise samples details 

Age Group Male Female Total 

Up to 12  70 60 130 

13-19 190 320 510 

20-25 1050 680 1730 

26-35 320 270 590 

36 and above 350 260 610 

Total Samples 1980 1590 3570 

 
The scanned fingers were numbered as follows. Left little 
finger to left thumb is numbered as 1-5. Right thumb to 
right little finger is numbered as 6-10 as shown in Figure 5. 
 

 

Fig. 5 Finger numbering  

5.2 Gender classification using DWT only 

The code is tested from 2nd level to 7th level and the 
success rate for the classification is identified. No 
appreciable results were obtained for the levels 2 to 4 and 
beyond the level 7, the results were not convincing. 
Significant success rate is obtained for the levels 5, 6 and 7. 
The subband energy vector for the level 5 is of the size 1x16 
and these features are compared with templates stored in the 
database obtained during the learning stage. Similarly, the 
subband energy vectors are of the size 1x19 and 1x22 for 
the level 6 and 7 respectively.  The results achieved by the 
2-D DWT for the levels 5, 6 and 7 are listed in table 2 for 
each finger of the male and female. 

Table 2: Gender classification rate for different levels of DWT 

Finger 
 No. 

Level 5 Level 6 Level 7 

Male Female Male Female Male Female 

1 87.88 86.36 90.15 92.05 88.64 96.59 

2 84.09 86.36 84.09 90.91 86.36 90.91 

3 86.36 82.95 87.12 87.50 85.61 84.09 

4 90.91 81.82 90.15 77.27 88.64 80.68 

5 90.15 79.55 90.15 76.14 87.12 85.23 

6 94.70 79.55 93.94 79.55 92.42 77.27 

7 87.12 69.32 89.39 75.00 92.42 70.45 

8 88.64 71.59 90.15 79.55 90.15 80.68 

9 87.12 85.23 87.88 77.27 89.39 86.36 

10 89.39 82.95 90.15 80.68 90.91 84.09 

Average 88.64 80.57 89.32 81.59 89.17 83.64 
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The overall classification rate for the level 5, 6 and 7 are 
84.61%, 85.46% and 86.41% respectively. 
 
It is also observed that the success rate of right thumb finger 
(numbered as 6) of male are quite higher than the other 
fingers. Similarly, the success rate of left hand little finger 
(numbered as 1) of female are higher than the other fingers. 
The result pattern for the male and female fingers is shown 
in figure 6 (a) and 6(b) respectively.  
 

 
(a) 

 

 
(b) 

Fig 6 Result pattern of different levels of DWT (a) Male (b) Female 

By average, the level 6 DWT produces the best result for 
male gender and the level 7 DWT produces the best result 
for female gender. Considering the training and testing 
duration, level 6 DWT is considered as the optimum level 
for the gender classification.  

5.3 Gender classification using SVD only 

 In this section, SVD alone is applied for the gender 
classification and its results are compared only with the 
level 6 DWT. SVD generates large feature vector depends 
on the size of the image and for the internal database the 
feature vector is of the size 1x260. Thus, significant 
improvement on gender classification is observed and listed 
in table 3. The success rate for the male and female finger 

identification is 91.74% and 83.30% respectively and the 
overall classification rate is 87.52%. 

Table 3: Gender classification using SVD 
Finger 

No. 
Male Female 

1 90.15 92.05 
2 89.39 85.23 

3 90.15 86.36 

4 91.67 85.23 

5 93.18 84.09 

6 93.18 75.00 

7 93.94 73.86 

8 91.67 76.14 

9 91.67 86.36 
10 92.42 88.64 

Average 91.74 83.30 

 
While comparing with level 6 DWT, the SVD results are 
2.64 % more for male and 2.1 % more for female gender. In 
SVD, thumb fingers (numbered as 5 and 6) and the right 
index (numbered 7) shows higher results than the other 
fingers. Similarly, the left little finger of the female shows 
higher result than the other fingers as shown in figure 7.  
 

 

Fig. 7 Result pattern of SVD for male and female 

The success rate rises from the 1st finger to 5th finger and 
falls from the 6th finger to 10th finger for the male fingers. 
But for the female fingers, the success rate falls from the 1st 
finger to 5th finger and rises from the 6th finger to 10th 
finger and thus forms like a valley structure.  

5.4 Gender classification using combined DWT and 
SVD 

From the table 4, it is evident that, by SVD there is an 
overall raise in gender classification rate of 2.35 % in 
comparison with the level 6 DWT. To assess the results of 
combined DWT and SVD, the features of these two 
approaches are combined by concatenation and the results 
are verified. To identify the better combinations of different 
levels of DWT and SVD, features of level 5, 6 and 7 are 
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combined individually with SVD features and results are 
obtained. The gender classification results for the level 5 
plus SVD, level 6 plus SVD and the level 7 + SVD are 
shown in the table 4. A notable increase in the success rate 
is achieved in each case.  

    Table 4: Gender classification rate of the combined SVD and DWT for 
the samples used for training  

   Finger   
   No. 

Level 5 Level 6 Level 7 

Male Female Male Female Male Female 

   1 89.39 94.32 87.15 94.32 91.67 94.32 

   2 90.91 87.50 91.49 90.85 91.67 86.36 

   3 93.18 84.09 92.87 87.5 93.18 87.50 

   4 93.94 82.95 95.56 84.95 89.39 82.95 

   5 93.18 75.00 94.94 75.69 94.70 76.14 

   6 93.94 75.00 93.87 73.86 92.42 73.86 

   7 93.18 76.14 94.38 80.55 93.94 78.41 

   8 93.18 87.50 93.23 88.5 90.91 84.09 

   9 91.67 88.64 91.84 92.35 94.70 92.05 

   10 90.15 85.23 86.98 92.64 90.15 88.64 

Average 92.27 83.64 92.23 86.12 92.27 84.43 

 
Selection of optimum DWT level: The overall 
classification rate for the combined SVD and DWT level 5, 
6 and 7 are 87.96%, 89.16% and 88.35% respectively for 
the samples used for the training. While testing this method 
for external input other than the samples used for training, 
the overall classification rate obtained is 86.06%, 88.28% 
and 86.16% for SVD and DWT level 5, 6 and 7 
respectively. Thus, level 6 gives greater success rate than 
level 5 and level 7. The results are shown in table 5.Thus 
the level 6 DWT is considered as an optimum level for the 
gender identification.  

Table 5: Gender classification rate of the combined SVD and DWT for the 
testing samples  

   Finger   
   No. 

Level 5 Level 6 Level 7 

Male Female Male Female Male Female 

   1 86.99 91.67 87.67 94.32 87.67 90.63 
   2 89.04 86.46 89.86 90.88 89.04 83.33 

   3 90.41 81.25 92.79 85.88 91.10 86.46 
   4 93.15 79.17 95.46 79.68 89.73 78.13 

   5 91.78 73.96 94.92 75.92 93.15 72.92 
   6 93.84 72.92 92.8 73.87 93.15 71.88 

   7 89.73 77.08 93.17 80.69 91.78 78.13 
   8 91.78 83.33 92.57 84.28 91.10 79.17 

   9 89.73 86.46 90.73 89.78 93.15 87.50 

   10 86.99 85.42 86.76 93.58 87.67 87.50 

Average 90.34 81.77 91.67 84.89 90.75 81.56 

 
Gender classification rate of all the approaches 

discussed above are shown as a bar chart in figure 8 and 9. 

Figure 8 shows the increased rate of gender identification by 
the combined DWT and SVD for male than the individual 
approach of DWT and SVD. The success rate is more for 
the thumb and index fingers than other fingers. 
 

 

Fig. 8 Male gender classification rate of DWT, SVD and combined DWT 
and SVD  

Figure 9 shows the increased rate of gender identification by 
the combined DWT and SVD for female than the individual 
approach of DWT and SVD. The success rate is more for 
the left index (numbered 1) than other fingers. 
 

 

Fig. 9 Female gender classification rate of DWT, SVD and combined DWT 
and SVD  

Average success rate for the methods discussed are shown 
as line chart in the figure 10. There is raise in success rate in 
proposed method than DWT alone by 2.56% and only 
0.08% less with SVD alone for male. But for female, the 
proposed method produces 2.29% and 1.87% more than 
DWT and SVD alone. Similar to the DWT and SVD, the 
left hand thumb (numbered as 5) and the left hand index 
finger (numbered as 4) shows higher success rate for male 
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and the left hand little finger (numbered as 1) for female 
shows higher success rate than the other fingers.  

 

Fig. 10 Performance comparison of proposed method 

The success rate rises from the 1st finger to 5th finger and 
falls from the 6th finger to 10th finger for the male fingers 
and thus the pattern is projected in the middle area. But for 
the female fingers, the success rate falls from the 1st finger 
to 5th finger and rises from the 6th finger to 10th finger and 
thus the result pattern forms like a valley in the middle. The 
result pattern of table 4 and 5 are shown in figure 11 and 12 
respectively. 
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Fig. 11 Result patterns of table 4, (a) Male (b) Female 
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Fig. 12 Result patterns of table 4, (b) Result patterns of table 5. 

5.6 Performance comparison  

In this sub-section, the proposed method is compared with 
the earliest published results. The results of Ahmed Badawi 
et al. [10], is compared and in their study,  ridge thickness to 
valley thickness ration (RTVTR), ridge count, white lines 
count, ridge count asymmetry and pattern type concordance 
were used as features and FCM, LDA, and NN classifiers 
were used for gender classification. For this study The 
RTVTR, and white lines count features were analyzed for 
255 persons (150 males, and 105 females). These images 
were scanned from the person’s ink print. Manish Verma et 
al. [11], in their paper used ridge density and ridge width in 
addition to RTVTR as features and results were obtained for 
the internal database of 200 male and 200 female 
fingerprints with SVM classifier. Gender classification 
accuracies of the proposed method and the published results 
are shown in table 6. 

Table 6: Comparison of gender classification accuracies 
 Ahmaed 

Badawi et al. 
Manish 
Verma  
et al. 

Proposed  
method 

Features 
used 

RTVTR, white  
line count, ridge 

 count asymmetry 
pattern  type 

RTVTR, 
Ridge 

width and 
ridge 

density 

DWT & 
SVD 

Classifiers FCM LDA NN SVM KNN 
  Male 58.67 96.15 90.38 86 91.67 

  Female 56.33 72.97 83.78 90 84.89 
  56.47 84.52 87.64 88 88.28 
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6. Conclusions 

 In this work, we have proposed a new method for 
gender classification of fingerprint images based on level 6 
DWT and SVD. This method considered the frequency 
features of the wavelet domain and the spatial features of 
the singular value decomposition. The spatial features 
include the internal structure of the fingerprint images and 
the fusion of these features with the frequency features 
produces improved performance in gender classification. 
The level 6 DWT is selected as optimum level for the 
gender classification by analysing the results obtained for 
the database used for training and testing and the database 
used other than the training and testing. By the proposed 
method, the gender classification rate achieved is 91.67% 
for male and 84.89% for female.  
 
For the finger-wise gender classification, the success rate is 
higher for the little fingers and decreases from little fingers 
to thumb fingers. The success rates falls at the rate of 2.56% 
minimum to 8.05% maximum from the finger 1 to 5 and 
rises at the rate of 1.32% to 8% from finger 6 to 10. Thus 
the result pattern shown in line diagrams formed like a 
valley. Similarly among the male fingers the success rate is 
higher for the thumb fingers and index fingers and decreases 
from the thumb to little fingers. The success rates rises at 
the rate of 0.77% minimum to 7.8% maximum from the 
finger 1 to 5 and falls at the rate of 0.75% minimum to 4.38% 
maximum from finger 6 to 10. Thus the result patterns 
shown in line diagrams are slightly projected at the middle. 
 
 Our future work is to extend the proposed method 
of gender classification using the spatial parameters. Also, it 
is aimed to use various other techniques to increase the 
success rate.  
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