
Implementation study of AODV for Microsoft Windows CE
platform

Ms. Prinima Gupta1, Dr. R. K Tuteja2

1MCA, Manav Rachna College of Engineering,
Faridabad, India-121001

2MCA, N.C. Institute of Computer Sciences,
Israna, Panipat, India-121001

Abstract

The Ad hoc On-Demand Distance Vector (AODV) routing
protocol is designed for use in mobile ad-hoc networks. There
are a number of implementations of the Ad-hoc routing
protocols available for the Linux platform, but not for any
other platform. Windows CE .NET, the successor to Windows
CE 3.0, combines an advanced real-time embedded operating
system with the most powerful tools for rapidly creating the
next generation of smart, connected, and small-footprint
devices. This paper presents a design, implementation, and
evaluation of AODV protocol for the Windows CE .NET
operating system and describes the salient characteristics of the
Windows CE platform for those unfamiliar with the system. It
also focuses on the application level implementation of the
algorithm and provides the framework for integrating the
protocol in Windows CE .NET in form of an NDIS
intermediate driver.
Keywords: AODV, Windows CE .NET, Emulator, NDIS
Intermediate Driver.

1. Introduction

The field of ad-hoc networks is an area of much active
research at the moment. The AODV [1], routing
protocol is an on-demand, or reactive protocol for
finding routes, that is, a route is established only when it
is required by a source node for transmitting data
packets. It has been shown to have promising
characteristics, including performance figures, in
simulation studies compared with other proposed ad-hoc
routing protocols. This dissertation presents the design,
implementation, and evaluation of the AODV [5] rout-
ing protocol for the Windows CE platform.

The real-world testing of the ad hoc routing protocol has
been limited to the Linux Platform. The protocol has not
been accessible to non-technical users of mobile devices,
as the majority of such users are not familiar with the
Linux operating system. Users will be able to install our
version on their Windows CE mobile devices, giving
them the ability to connect to any network running
AODV. They may, for example, wish to communicate
with other users during a meeting where no pre-existing
infrastructure is in place.

In an on-demand ad-hoc network, these two processes
are closely linked, as the routing protocol must be able
to handle situations where packets are to be forwarded to
a previously unknown destination by initiating a route
discovery cycle. The network protocol stacks of modern
operating systems have not been designed to deal with
this situation; they do not provide adequate system
services for the implementation of ad-hoc routing
protocols. This greatly complicates the implementation
of on-demand ad-hoc routing protocols, and has slowed
their development. The implementation strategy of
existing ad-hoc protocols in Linux is examined earlier.
Most such protocols rely on the packet filtering and
mangling architecture called Netfilter to handle packets
for an ad-hoc routing protocol. Unfortunately the
Windows protocol stack has no direct counterpart to the
Netfilter framework.

Windows CE is a newer generation of operating system
from Microsoft. The Windows CE operating system is a
32-bit, multitasking, multithreaded operating system that
has a scalable, open architecture design, providing
support for a variety of devices [3]. Some new features
are introduced in Windows CE comparing to windows
desktop operating system, such as limitation of memory,
unicode problem, componentization, supporting a range
of embedded, mobile or multimedia product lines [2],
etc. Unlike desktop operating system has mass storage
device, Windows CE programs almost run on devices
that never have disks. Standard communications support
is built into Windows CE, enabling access to the Internet
to send and receive e-mail or browse the World Wide
Web. Windows CE 5.0 is billed as a low-cost, compact,
fast-to-market, real-time operating system available for
supporting four different CPU families, spanning the
ARM, MIPS, SuperH (SH), and x86 architectures.

2. Window CE Overview

Microsoft Windows CE .NET is designed to meet the
needs of a broad range of intelligent hardware devices,
from enterprise tools such as industrial controllers,
communications hubs, and point-of-sale terminals to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 235

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

consumer products such as cameras, Internet appliances,
interactive televisions and mobile-computing devices
[3]. The networking protocol stack in Windows CE
operating system is a “subset” of windows desktop
networking protocol stack. Windows CE .NET offers the
application developer the ease of scripting languages,
along with the versatile environment of the Microsoft
Win32 application programming interface (API).

Windows CE is adapted for a specific hardware platform
by creating a thin layer of code that resides between the
kernel and the hardware platform. This layer is known as
the OEM Adaptation Layer (OAL). The operating
system has been designed using a component based
structure such that Original Equipment Manufacturers
(OEMs) can choose only the operating system features
that they require for their specific hardware platform.
The OAL isolates device-specific hardware features
from the kernel. The Windows CE kernel, in turn,
contains processor-specific code to handle processor
core functions. The OAL is specific for a particular CPU
and hardware platform. In only choosing the
components they are interested in, OEMs can keep the
footprint of their devices small. For example, the Pocket
PC operating system is based on the building blocks
from the previous version of Windows CE, version 3. It
is not however the same as the Windows CE based
operating system on all other Windows CE 3 based
devices.

The Windows CE TCP/IP consists of core protocol
elements, services, and the interfaces between them

 The Network Device Interface Specification
(NDIS) is a public interface, documented on the
Microsoft Developer Network (MSDN), which
governs the communication between interface
device drivers controlling hardware adapters,
and the upper-level protocols, the most
common being TCP/IP.

 The Transport Driver Interface (TDI), in the
Microsoft® Windows® CE operating system
architecture, is an interface that serves as an
adaptation layer to Winsock-based user APIs. It
isolates the highly asynchronous callback-based
architecture of the stack presenting a Windows
Sockets Specification 1.1 interface.

 Winsock 2.0 is a networking API that provides
access to multiple transport protocols, including
support for creating applications that support
multiple socket types.

 The Winsock DLLs communicate with the
TCP/IP stack through the TDI interface.
Winsock is the Microsoft Windows
implementation of the Berkeley Sockets
interface, with some Windows specific
extensions. The Winsock interface is part of the
win32 API, and is most commonly used by
applications to send TCP/IP traffic to other
hosts.

Windows CE removes the barrier between kernel space
and user space for device drivers. As such all the
networking device drivers in the Windows CE
architecture effectively run in protected user mode.
Hence, such drivers can link with the Winsock DLLs,
and do not need to use the TDI interface directly as in
Windows XP.

2.1 Modular Structure

We can build a Microsoft Windows CE .NET based
platform using a number of discrete modules. This
minimizes the memory needed by the platform. By
selecting only those modules that your platform requires,
you can minimize the amount of memory that your
device requires. A module contains a collection of
related application programming interface (API)
functions. Some modules are composed of components.
Each component can contain a collection of API
functions.

2.2 Features

The Microsoft Platform Builder version 4.2 Catalog
consists of a list of board support packages (BSPs),
drivers, configurations for core operating systems (OSs),
and Platform Manager Transports. The items in the
Catalog represent the technologies you can select when
designing your Microsoft Windows CE .NET based
platform [2] [3] [4]. These technologies are organized
and displayed as features. Features are specific
implementations of the technologies available in the
Windows CE .NET 4.2 OS.

2.3 Operating Systems Features

The core operating system (OS) services provide a
common foundation for all Microsoft Windows CE
.NET OSs. The services enable low-level tasks such as
process, thread, and memory management, and provide
some file system functionality. The Windows CE OS
offers a rich set of features. Component services,
networking capabilities, multimedia support, and many
other capabilities are contained within individual OS
features.

The kernel, which is represented by the Nk.exe module,
is the core of the Microsoft Windows CE operating
system (OS). The kernel provides the base OS
functionality for any Windows CE based device. This
functionality includes process, thread, and memory
management. We can use the kernel process and thread
functions to create, terminate, and synchronize processes
and threads and to schedule and suspend a thread.
Processes, which represent single instances of running
applications, enable users to work on more than one
application at a time. Threads enable an application to
perform more than one task at a time. Thread priority
levels, priority inversion handling, interrupt support, and
timing and scheduling are all included in the Windows

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 236

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

CE kernel architecture. Together, they provide real-time
application capability for time-critical systems.

3. User level Implementation

The user level implementation is developed for testing
the algorithm on actual mobile devices on actual
operating system and gives us a fair idea of the use and
performance of the algorithm when it will be
implemented at the kernel level. It provides us an
opportunity where we can perform simulations of the
algorithm on a test bed set up. Such simulations provide
more realistic results than the ns simulations. This
implementation shows how we would integrate our
protocol with Windows CE, so that our protocol can run
directly above the data link layer and applications can be
built over our protocol.

3.1 Data Structures

The data structures made by us to implement the AODV
algorithm will cover the entities that are exchanged
during the protocol and that are used by the nodes for
management purposes. The structures used by us can be
basically classified into the following groups:

 Lists of nodes. A linked list is maintained for
nodes directly accessible over the wireless
interface. Each neighbour_list struct entry
contains the neighbour's IP address, hardware
address, the interface through which it can be
contacted, and the route table entry for this
neighbour (i.e. within one hop). When entries
in this list are timed out, this may initiate the
sending of a Route Error message.

 Packets. There are different types of packets
that can be transferred during a successful
operation of the algorithm. The various packet
types are hello, route request, route reply, route
error, and control packet. All these packets
have different properties and hence need to be
represented uniquely.

 Events. The control Packets are placed in the
different event_queue list which contains
events such as EVENT_RREQ,
EVENT_RREP, EVENT_RERR and
EVENT_CLEANUP.

3.2 Timers

Nearly every entity attached with a protocol for ad hoc
networks has an expiration time. This is due to the
mobility experienced by such networks. There are a
number of operations within an AODV implementation
that require specific timing. For example, HELLO
messages are sent at a periodic interval, Route Requests
are rebroadcast after a certain interval, etc. The timed
events are sorted in increasing time of occurrence, such

that the timed item to occur soonest is always at the front.
The following timers possible:

 EVENT_HELLO Timer: This timer is used to
trigger hello events at each interface. When a
HELLO message is sent, another
EVENT_HELLO message event is placed in the
timer queue, and set to occur in
HELLO_INTERVAL seconds. Its value serves
as basic units for other timers, thus, the
expiration values of the other timers are in a
way multiples of the expiration value here.

 EVENT_RREQ Timer: This timer is used after
a Route Request has been sent, but no Route
Reply has been received in a certain time.

 EVENT_NEIGHBOUR Timer: This timer is
used when, a result of the receipt of a HELLO
message, a new neighbour is added to the
neighbour list queue, or the lifetime of an
existing one is updated, then this entry must be
set to expire after a certain timeout.

 EVENT_CLEANUP Timer: This timer is used
such that cleanups of the routing table and
flood_id_queue occurs at periodic intervals.

3.3 Simulations

We will test the user level application developed by us
by using the facility of Emulator. With the Emulator,
you can design and build a Windows CE based platform
and test it using software that mimics hardware rather
than testing the platform on hardware. In the absence of
PDAs, we can run the application on normal PCs of our
LAN by running the emulators on them, see Figure 1.
The emulator can run our application in the same
manner a normal PC will do, only with slight
degradation in performance. On an average an emulator
gives 80% of performance of the normal PC on which it
runs. Now we will refer to the emulators running on
various PCs as nodes. So after hard coding the neighbors
in the application for every node, we can run the
software and test the performance of the protocol.

Fig-1 Emulator for Window CE

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 237

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4. Design Approaches

Two approaches were considered. The main approach
used is the intermediate driver approach. This approach
was chosen as it is the only approach that does not
require large changed to the TCP/IP protocol driver, and
as such it is the only form of such a driver that would be
easy to install and distribute. In addition, extensive
kernel modifications were performed to alter the filter-
hook mechanism to provide asynchronous packet
filtering facilities directly in the IP layer.

4.1 Implementing AODV as NDIS Intermediate
Driver

In the Windows networking architecture, the Network
Driver Interface Specification (NDIS) facilitates
communication between the operating system, upper
level protocol drivers (such as TCP/IP), and network
drivers (that control the hardware network interface
cards). The NDIS interface is located between an upper-
level protocol driver on the top of the communications
architecture, the intermediate and miniport drivers in the
middle of the communications architecture, and the
hardware network adaptors at the bottom. Thus an NDIS
protocol driver like TCP/IP calls functions in the
intermediate or miniport drivers, fully abstracted through
NDIS, and vice versa.

The most important driver among all is the intermediate
driver. NDIS intermediate drivers include a protocol
driver interface at their lower edge and a miniport driver
interface at their upper edge. The protocol interface of
intermediate driver allows it to load above a driver with
a miniport driver interface. The miniport interface of
intermediate driver allows it to load below a driver with
a protocol lower edge interface. For the upper layer
protocol drivers, NDIS intermediate driver works like a
miniport driver, but for the lower layer miniport drivers
NDIS intermediate driver works like a protocol driver.
Figure 2 shows relationship among NDIS intermediate
driver protocol driver and miniport driver.

Fig-2 NDIS Intermediate Driver [3]

Before data packets flow to the under layer networks or
upper layer applications, the mangling operation can be
performed inside the intermediate driver. NDIS
intermediate drivers can be used to filter packets and
perform data mangling operations on them. For example,
it can be used to encrypt or decrypt packets.

The advantages of this approach is that it is easy to
install, it would be easy to port to other Windows
versions which use NDIS, including Windows XP, and it
would be possible to get such a driver signed by
Microsoft under the Windows Hardware Quality Labs
(WHQL) scheme. The disadvantages include that such
an implementation could be seen as being too low in the
networking stack: as a filter mechanism between the
networking layer and data link layer of the OSI model.
Packets for an unknown route will have to be rerouted
by the AODV intermediate driver after they are ‘coaxed’
out of the IP layer. Also, because the routing protocol is
tightly coupled with the data link layer in this
implementation, it is not independent of the specific
transmission mechanism being used (e.g. 802.3, 802.11,
HiperLAN, etc).

4.2 Modifying the Filter Hook Mechanism

The filter-hook driver mechanism comes close to
meeting the requirements for an on-demand ad-hoc
routing protocol. The main drawback of the filter –hook
driver is that it cannot be used to deal with packets
asynchronously: it must either accept the packet for
transmission immediately, or discard the packet. Thus
packets cannot be buffered while a route discovery cycle
takes place. It is possible with significant effort to
modify the filter-hook mechanism, or more likely to
introduce a new similar mechanism, such that packets
can be removed and later re-injected into the IP layer, to
provide functionality similar to that of Netfilter in the
Linux operating system.

By this mechanism an implementation of AODV would
consist of a separate driver that communicates with the
TCP/IP driver using I/O Control Codes (IOCTLs). The
IP layer would export IOCTLs for registering a call-back
function to be called with a packet as a parameter as the
packet traverses the relevant hooks. The AODV driver
on initialization would use the exported IOCTL to
register its call-back function. The function would return
a value indicating the packet should immediately
continue its traversal of the network stack, should be
immediately discarded, or should be removed from its
traversal to be reinjected at a later stage. The IP layer
will also export a mechanism for the attached filter
driver to reinject packets processed asynchronously.

The advantages of such an approach are that porting
effort for future ad-hoc protocols between Linux and
Windows would be greatly reduced, and the new
hooking mechanism would be very suitable for meeting
the requirements of ad-hoc routing protocols. Such a

Protocol Driver
Protocol xxx- Media x

Miniport xxx- Media x
Intermediate Driver
Protocol xxx- Media y

Miniport xxx- Media y
Miniport Driver

N
D
I
S

NIC Hardware

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 238

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

mechanism would also be useful to many other
applications that require asynchronous packet filtering
and mangling facilities, similar to those which use Linux
Netfilter. The disadvantage of this approach include that
the code for the TCP/IP driver in Windows is proprietary
Microsoft code, and cannot be viewed or modified
without special license. Distributing such a mechanism
would not be possible unless the mechanism is adopted
by Microsoft for future versions of their operating
systems. Installing such a mechanism on existing
operating systems would not be straight forward.

4.3 Module Description

The AODV code is written in C. As such it consists of a
number of modules, whose functionality is described
here.

aodvp.h
This is an include file containing some important macros
and type definitions. A number of important structs are
defined in here, including the AODV control message
types (RERR, RREP, RREQ), and various linked list
structures for the AODV route table, precursor entries,
the timer queue, event queue, etc.

aodvp_driver {.c, .h}
This driver has the dual purpose of initialising the NDIS
intermediate driver (or filter-hook driver), and the
AODV structures. It contains the DriverEntry function
which is the first entry point called in an intermediate
driver. Its purpose is to register the intermediate driver
with NDIS. It also initialises the AODV structures, and
starts the event_queue thread. This module also contains
the clean-up function which is called when the driver is
unloaded by NDIS.

aodvp_thread {.c, .h}
As control packets are received in the intermediate
driver (or filter driver) on an interrupt, they are placed as
an entry in the event_queue structure. To prevent doing
a lot of processing on interrupts, the packets are
processed by a separate thread which is created and
managed in this module. The thread sleeps until a new
control packet arrives. The control packet is placed in
the event_queue list, and the aodv thread is woken. The
types of events to be processed are:
EVENT_RREQ: occurs when a Route Request message
is received on one of the node’s interfaces.
EVENT_RREP: occurs when a Route Reply message is
received on one of the node’s interfaces. Since HELLO
messages are Route Reply messages with a hop count of
zero, HELLO messages are also processed with this
event.
EVENT_RREP_ACK: a node can request by setting a
flag in its Route Reply message that it should receive an
explicit acknowledgement in the form of a Route Reply
Acknowledgement message. The acknowledgement is
handled with this event.

EVENT_RERR: occurs when a Route Error message is
received on one of the node’s interfaces.
EVENT_CLEANUP: occurs periodically, and is used to
clean up inactive routes in the route table, and the
flood_id_queue.

event_queue {.h, .c}
The event_queue module maintains a linked list of
event_queue_entry structs. The event queue is a First-In
First-Out (FIFO) structure. The module contains
functions to initialise the queue, insert entries, remove
the next entry, and cleanup the queue. Event queue
entries consist of AODV control packets and cleanup
events, and are used such that the bulk of the AODV
routing protocol processing occurs in the AODV thread,
and not in an interrupt thread.

miniport {.c, .h}
This module is relevant to the NDIS intermediate driver
implementation, and not the modified filter-hook driver.
It contains the NDIS miniport interface that is exported
at the upper edge of the NDIS intermediate driver. As
such, packets being sent from the TCP/IP protocol driver
arrive in this module. From here they are passed to the
packet_out module for AODV processing, before being
passed down to the underlying miniport (or another
intermediate) driver.

neighbour_list {.c, .h}
This module maintains a linked list of nodes directly
accessible over the wireless interface from this one (i.e.
within one hop). The module contains functions for
managing this list. When entries in this list are timed
out, this may initiate the sending of a Route Error
message.

packet_in {.c, .h}
When a packet is received, either through the
intermediate driver’s lower-edge protocol interface, or
the modified filter-hook driver’s incoming hook, it is
sent to a function in this module for processing. Only
AODV packets (those UDP packets destined for the
AODV port) are examined. Firstly the format of the
packet is checked to see that it is a properly formatted
AODV packet. Next, if the packet is a unicast packet
(such as a Route Reply message) destined for another
node to which we no longer have a route table entry, a
Route Error message is sent. Next, the lifetime of the
route from the source is updated, and the packet placed
in the event queue for processing.

packet_out {.c, .h}
Packets received through the intermediate driver’s upper
edge miniport interface, or the modified filter-hook
driver’s outgoing packet hook, are filtered in a function
in this module. Unicast packets for which we have a
route, or broadcast packets, are passed through without
modification. Unicast packets for which we have no
route, and hence for which a route discovery cycle is
required, are passed to the packet_queue module for

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 239

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

buffering, and a Route Request is initiated. The packets
will later be reinjected (or dropped) when the route
discovery cycle succeeds (or fails). The lifetime for valid
routes is updated when unicast packets are sent on this
route.

protocol {.c, .h}
Similar to the miniport module, this is specific to the
NDIS intermediate driver implementation. Packets
arriving at the lower edge of the intermediate driver
(from the miniport driver, or a lower layered
intermediate driver) from other hosts are filtered through
this module. They are first passed to the packet_in
module for filtering, and then released up to the
overlying protocol driver for processing.

route_table {.c, .h}
This module maintains all the needed routing
information for contacting other nodes. It provides
functions for managing the route_table_entry structures,
including the creating and deleting of entries, and
deleting of invalid entries. It provides functionality for
adding and deleting precursor entries to and from a route
table entry. Finally, it uses the Windows IP Helper API
to manage the kernel routing table, to add and delete
appropriate entries.

rrep {.c, .h}
This module provides the functions necessary for correct
handling of route reply messages, including receiving
HELLO messages. It is passed packets from the AODV
thread, and appropriate action is taken.

rreq {.c, .h}
This module provides the functionality for handling
Route Requests. Received Route Request packets are
passed into it from the AODV thread, and they are
processed as required here. This module also exposes the
function required for generating and sending a Route
Request for a particular destination.

timer_queue {.c, .h}
There are a number of operations within an AODV
implementation that require specific timing. For
example, HELLO messages are sent at a periodic
interval, Route Requests are rebroadcasted after a certain
interval, etc. This module maintains a queue of timed
events, sorted in increasing time of occurrence, such that
the timed item to occur soonest is always at the front of
the list. A separate thread runs to perform the timed
operations. It sleeps until the time that the next
timer_queue_entry is due (maintained as an absolute
time in milliseconds according to the system clock). It
then wakes up, performs any due timer items, and sleeps
until the time the next new item is due. The possible
timed items are EVENT_RREQ, EVENT_HELLO,
EVENT_CLEANUP, and EVENT_NEIGHBOUR.

5. AODV Implementation Evaluation

Here we will discuss the testing of implementation of
AODV at the user level. We tested the algorithm on
emulators provided by Platform Builder. There were two
levels of testing.

1.) This tests two directly connected nodes having
emulators, exchanging hello messages with each other.
Two computers running Platform Builder provided with
Windows CE .NET 4.2 is used for this test. The Platform
Builder is used to build our AODV application. It is then
used to generate a platform, which is a specific
implementation of Windows CE.NET based on an
"Enterprise Web Pad" and using "Emulator: X86 BSP
(Broad Support Package)".

We downloaded the OS image into the emulator running
in "Virtual Switch - Fixed IP" mode. It is imperative that
the two PCs running the Emulator have installed
Microsoft Loopback Adapter, without which the
emulators fail to run in Vitual Switch Fixed IP mode.
When the emulators came up, we set their IP addresses
& the subnet masks corresponding to the LAN and run
the AODV application from the Platform Builder by
selecting it from the drop down menu of the "Run
Programs" tab in the Platform Builder. Each node
periodically broadcasts HELLO messages. The
connected node receives the HELLO messages, and
installs a route to the other node and ensures the reply is
received.

2.) In this test, we run the application simultaneously on
three nodes having emulators configured in the topology
1-2-3 where node 1 is the source and 3 is the destination.
Node 1 pings the last node and started sending a Route
Request through the middle node. Node 2 receives the
RREQ, and sends a Route Reply. Node 1 then installs
the route and pings are correctly received. The actions
are verified for above nodes.

6. Conclusions

The contribution of this work has been to produce a real-
world implementation of AODV for Windows CE,
suitable for running on mobile and embedded devices,
such as palm-tops and PDAs. The paper showed that our
implementation can run at the user level in Windows CE
.NET. With this paper we provide a platform on which
future performance studies of AODV will be performed.

The NDIS intermediate driver approach is easy to install
and distribute. It does not require any changes to
proprietary code. However there are drawbacks to this
approach. One of the main drawbacks is that
independence of the underlying data link layer is lost.
When a packet for which a route discovery cycle takes
place reaches the intermediate driver, it has already gone

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 240

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

through kernel routing, and ARP. As such, when the
route discovery cycle completes it is necessary to insert
the hardware destination address on the Ethernet frame.
This effectively limits this implementation to
interoperating with Ethernet (802.3) and wireless
Ethernet (802.11), and other data-link layers directly
supported. If the routing protocol was to be used on any
other data-link layer, then support would have to be
explicitly added for this. This is not the case for an
implementation within the IP layer, such as the packet
filter-hook mechanism. In addition, there is a minor
overhead associated with rerouting packets which are
buffered during a route discovery cycle in the
intermediate driver (involving correcting the hardware
destination address). The filter-hook mechanism is well
situated in the protocol stack for processing packets
before kernel routing takes place. Its main drawback is
that it cannot buffer packets while a route discovery
cycle takes place.

Acknowledgment

I express my sincere gratitude and acknowledgement
towards Prof. (Dr.) R. K Tuteja, Director (Academics),
who guided me. It was his constant support and
inspiration without which my efforts would not have
taken this shape. I sincerely thank him for this, and seek
his support for all my future endeavors.

References
[1] C.Perkins, E. Belding-Royer, S. Das, “ Ad hoc On-

Demand Distance Vector(AODV) Routing”,
http://www.ietf.org/rfc/rfc3561.txt, IETF, July 2003.

[2] D. Boling, “Programming Microsoft Windows CE
.NET,” Third Edition, Microsoft Press, 2003.

[3] MSDN homepage, http://msdn.microsoft.com, Internet,
Sept.2007.

[4] A. Wigley, S. Wheelwright, R. Burbidge, “Microsoft
.Net Compact Framework,” Microsoft Press, 2003.

[5] David West. “An Implementation and Evaluation of the
Ad-Hoc On-Demand Distance Vector Routing Protocol
for Windows CE”, Trinity College Dublin, 2003.

[6] UU AODV homepage. Erik Nordström.
http://user.it.uu.se/~henrikl/aodv/. September 2003.

[7] NIST Kernel AODV homepage. Luke Klein-Berndt.
http://w3.antd.nist.gov/wctg/aodv_kernel/. September
2003.

[8] Report on the AODV Interop. Elizabeth M. Belding-
Royer. UCSB Tech Report 2002-18, June 2002.

[9] Windows Network Data and Packet Filtering.
http://www.ndis.com/papers/winpktfilter.htm. September
2003.

[10] Microsoft Developer Network Documentation for
Windows® CE .Net.

[11] V. Kawadia, Y. Zhang and B. Gupta, “System Services
for Implementing Ad-hoc Routing Protocols,” In
Proceedings of International Conference on Parallel
Processing Workshops, 2002.

[12] NDIS Intermediate Driver Samples For Windows
NT, Windows 2000 and Higher.
http://www.pcausa.com/pcasim/Default.htm.

[13] Writing an NDIS Intermediate Driver.
http://msdn.microsoft.com/library/default.asp?url=/librar
y/en-us/network/hh/network/301int_3mg7.asp.

[14] NDIS Intermediate (IM) Driver Frequently Asked
Questions. http://www.pcausa.com/resources/ndisimfaq.
htm.

Ms. Prinima Gupta is pursuing PhD (computer science). She
received her MPhil (computer science) degree in 2009. She
holds an MCA from Kurukshetra University, Kurukshetra. She is
currently working as Lecturer in MCA Department with Manav
Rachna College of Engineering, Faridabad. She has 7 years of
teaching experience. She published 03 papers in National
conferences and 01 paper in International Journal. Her area of
specialization includes Computer Networks and Computer
Architecture.

Prof. (Dr.) R. K Tuteja is PhD from Kurukshetra University,
Kurukshetra in 1969. He holds an MA (Mathematics) from KUK.
He is currently working as Director (Academics) in NCICS,
Israna, Panipat. He has 47 years of teaching experience. He
was successfully guided 30 Ph.D research students and 17
students for M. Phil. Degree. He has published 126 Research
papers in National/International Journals. He has worked as
Head of Statistics/ Mathematics/ Computers Science &
Application Department at M. D. University Rohtak.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 241

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

