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Abstract 
In this paper, a comparative study on the different 
membership functions which are used for fuzzy-based noise 
reduction methods is done. This study focuses on the three 
different membership functions such as Gaussian, Sigmaf 
and Trapezoidal. The fuzzy wavelet shrinkage method is 
tested with different membership functions in order to 
reduce different types of noise such as Gaussian, Salt & 
Pepper, Poisson and Speckle. The measure of comparison 
between different membership function is based on PSNR 
(Peak Signal to Noise Ratio). Experimental results show 
that on the some well-known images, such as "Lena", 
"Barbara" and "Baboon", the Gaussian membership function 
can efficiently remove the additive Gaussian and the 
Poisson noises from the grey level images. Furthermore, on 
the Speckle and Salt & Pepper noises, the Sigmaf 
membership function outperforms the Trapezoidal one to 
remove noise. 
 
Keywords:Fuzzy set, Membership function, Noise detection, 
Noise reduction, Wavelet shrinkage. 

1. Introduction 

The goal of image denoising is to reduce noise while 
preserving important details of image [1]. In order to do, a 
lot of approaches are proposed.  To achieve a good 
performance, a noise reduction algorithm should adapt itself 
to the spatial context [1]. For this purpose, the wavelet 
transform [2] is the impressive approach. The transform 
construct a matrix coefficients which represent the important 
details of image.  Noise reduction using wavelet transform 
includes three main steps:  i) computes the wavelet 
coefficients  ii) apply the noise reduction algorithm on the 
coefficients  iii) use inverse wavelet transformation The 
additive noise of the image domain is transformed directly to 

the transform domain, because the wavelet transform has 
linear property [1]. One of the most applied methods for 
image denoising is shrinking which effects on all wavelet 
coefficients and reduces their values. The best performance 
of the image denoising is achieved if the shrinkage method 
has the low and high influences on the free noise component 
and the noisy pixel, respectively. Furthermore, after 
shrinking process, the noise component of image should be 
reduced more. One of the most common methods used in the 
shrinkage domain is thresholding [3] which if the value of 
coefficient is lower than the threshold, the coefficient is 
noise, and otherwise it is a signal component. Neighboring is 
another solution to wavelet shrinkage that will be described 
in subsection 3.1. The value of threshold is so critical. 
Therefore, the fuzzy set theorem [4] has been used to select 
best value for threshold that the most of the coefficients 
under the threshold are noise and most of the coefficients 
above the threshold are signal [1].  
    This paper is organized as follows: in section 2, related 
works in this domain are reviewed. The fuzzy shrinkage 
method with different membership function is described in 
section 3. In section 4, the dataset, the experimental results 
and discussion are stated. Section 5 deals with conclusion. 

2. Related work 

There is some research covering the problem of image 
denoising. This paper is based on [1] which proposed the 
fuzzy wavelet shrinkage for image denoising. In [1], Schulte 
et al. studied on the usage of fuzzy set theory in the domain 
of image enhancement using wavelet thresholding. Schulte et 
al. used just the Trapezoidal MF and the Gaussian noise 
distribution to evaluate the performance of fuzzy image 
denoising. Tavassoli et al. [6] studied on a new method for 
impulse noise reduction. In their method, the main algorithm 
includes 2 steps that in the first step, an Adaptive Neuro-
Fuzzy Inference System (ANFIS) model has been used to 
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detect noisy pixels. In the second step, the fuzzy shrinkage 
wavelet is used to make some changes on the detected pixels. 
Tolt and Kalaykov [7] proposed the fuzzy similarity and 
homogeneity approach for noise cancellation. The proposed 
method has two advantages:  i) simple tuning of fuzzy filter 
parameters ii) it is very convenient for high-speed real-time 
image processing. Sendur and Selesnick [10] worked on the 
dependencies between the wavelet coefficients and their 
parents for wavelet-based denoising. They proposed a new 
non-Gaussian bivariate distributions, and also corresponding 
nonlinear shrinkage functions which are derived from the 
models using Bayesian estimation theory. 
Schulte et al. [11] introduced an innovation based on to 
reduce the additive noise from digital color images. For this 
propose, two fuzzy subfilter is proposed. In the first 
subfilter, s fuzzy distances between the color components of 
the central pixel and its neighborhood. These distances 
determine in what degree each component should be 
corrected. All performed corrections preserve the color 
component distances. The goal of the second subfilter is to 
correct the pixels where the color components differences 
are corrupted so much that they appear as outliers in 
comparison to their environment. 

3. Fuzzy Shrinkage Method 

Inspired by human's remarkable capability to perform a 
wide variety of physical and mental tasks without any 
measurement and computations, and dissatisfied with 
classical logic as a tool for modeling human reasoning in an 
imprecise environment, L. A. Zadeh developed the theory 
and foundation of fuzzy logic with his 1965 paper, "Fuzzy 
Sets" [4]. Design of membership function and fuzzy rule 
base will be described in next subsections. 

3.1 Membership Function (MF) 

As the mentioned in [3, 8, 9], neighboring is a solution to 
wavelet shrinkage. In this method, a window is considered: 
if the main (central) coefficient of window (ws,d(i, j)) and 
the average value of neighbor's coefficients (xs,d(i, j)) are 
both  enough large then the central coefficient is a signal 
component. If the average value of neighbor's coefficients is 
high then the central coefficient is a signal component. If the 
central coefficient and the average value of neighbor's 
coefficients are both enough small then the central 
coefficient is noisy.  Equation (1) shows the formula to 
compute the xs,d(i, j) [1]. Note that the parameters s and d 
refers to scale and orientation of coefficient, respectively. 
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The MF is used to determine that the variable is small, large 
or degree of being large. For the both wavelet coefficient 
|ws,d(i, j)| and average value of neighborhood |xs,d(i, j)|, two 

MFs should be defined which are noted as µw  and µx, 
respectively. In [1], the Triangular MF had been used for the 
two mentioned variables (fuzzy sets), but in our study, three 
different MFs, such as Triangular, Gaussian and Sigmaf, are 
used for the both above variables to analyze which MF can 
help the noise reduction algorithm to reach the best denoised 
image. Note that in the testing phase, the type of the MFs for 
both variables is the same. For instance, in the testing phase, 
the type of the both µw and µx is Gaussian. 
To construct the all above MF, three thresholds are needed: 
two of them for µwand one of them for µx. In this study, the 
values of the thresholds are chosen from [1]. Therefore, the 
values of the three thresholds are: T1 = σ, T2 = 2σ and T3 = 
2.9σ−2.625. Note that in the testing time, the σ takes 
different values: 5, 20, 30 and 40 [1]. The Gaussian MF 
requires two parameters, standard deviation (σ) and median 
(c), to compute the degree of MF for each input. In this type 
of MF, the µw and µx are defined as (2) and (3). 
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Note that in (2), the parameter t for Gaussian should be set as 
a negligible value (near zero). In the testing part, the value of 
t is set to 0.01. In general, the Trapezoidal MF has four 
threshold while, in this work, just two of them are important. 
Because, the coefficients below the T1 should be 0, the 
coefficients between 0 and 1 are probability and the value 
above the 1 should be 1. So, it is required just two of them. 
For the Trapezoidal MF, the µw and µx are defined as (4) and 
(5). 
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The Sigmaf MF is a Sigmoidally-shaped function. Equations 
(6) and (7) demonstrate µx and µw in the type of Sigmaf. 
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3.2 Fuzzy Rule Base 

Rule base is the main part of fuzzy system and the quality of 
results in the system depends on the fuzzy rules [4]. A 
reasoning procedure known as the compositional rule of 
inference enables conclusions to be drawn by generalization 
from the qualitative information stored in the knowledge 
base [4]. The fuzzy rules can express him with the natural 
language in the following way: if x is small and y is middle, 
then z is great. The variables x, y and z are type linguistic 
[4]. The fuzzy rules in the domain of wavelet shrinkage can 
be defined as follow, 
 
IF(  |xs,d(i, j)| is a large variableOR 
( |ws,d(i, j)| is a large coefficientAND|xs,d(i, j)| is a largevariable) ) 
THENws,d(i, j) is a signal of interest 
 

In the fuzzy model, the AND (intersection) and OR (union) 
operations are roughly equivalent to the norm and co-norm, 
respectively [1, 4]. The intersection and union of the two 
fuzzy sets can be presented by the norm and co-norm.  In the 
above fuzzy rule, math form of the antecedent part |ws,d(i, j)| 
is a large coefficient  AND  |xs,d(i, j)|is a large variable" is 
µx(|xs,d(i, j)|) · µw(|ws,d(i, j)|) which is based on (10). Note 
that the µw(|ws,d(i, j)| shows the MF degree of main 
coefficient to the fuzzy set "LARGE COEEFICIENT". 
Furthermore, to prove the math form of the OR operation in 
the antecedent part of the rule is shown as follow, 
 
(µx(|xs,d(i, j)|) · µw(|ws,d(i, j)|)) + (µx(|xs,d(i, j)|)) =   
µx(|xs,d(i,j)|) · µw(|ws,d(i,j)|)) + (µx(|xs,d(i,j)|) –  
µx(|xs,d(i,j)|) . µw(|ws,d(i,j)|) . (µx(|xs,d(i,j)|)                (8) 

 
which is based on (9).  
Co-norm (probabilistic sum): (x+y-x.y)                   (9) 
Norm (algebraicproduct)      : (x.y)                       (10) 

3.3 Fuzzy-based Wavelet Shrinkage 

The output of the fuzzy process is a matrix with values in 
the range of [0--1]: value 0 shows that the corresponding 
coefficient is not signal of interest, while the value 1 means 
that the corresponding coefficient is a signal of interest. The 
value between 0 and 1 indicates the degree of certainty 
which the coefficient is a signal of interest. 

4. Excremental Results 

For this work, the three well known images have been tested 
such as "Lena", "Barbara" and "Baboon". The size of all 
gray scale images is 512×512. The size of window is set to 
3. All images are tested for different values of σ, i.e. 5, 20, 

30 and 40. The framework for implementation and testing 
the algorithm is Matlab7. 
 
1 Additive Noise 
In this experiment, all the MFs are tested on the four 
different additive noises such as Gaussian, Salt &Pepper, 
Speckle and Poisson that are described as follows:     
Gaussian noise: Gaussian noise is a Gaussian white noise 
which requires two parameters: mean and variance. In the 
testing phase, the values of mean and variance are set to 0 
and 0.1, respectively.  
Salt & Pepper: Salt & Pepper noise is a commonly used 
additive noise. The noise has just one variable, noise 
distribution. The value of the noise distribution is set to 0.1.    
Speckle: Speckle adds noise according to (11),          
J=I+n×I                        (11) 
which I is a noise free image and J is a noisy image. The 
parameter n is uniformly distributed random noise with 
mean 0 and variance 0.15.   
Poisson: Poisson noise is based on Poisson distribution that 
is generated from data.  
 

4.2 PSNR Measure 

To evaluate the performance of the noted MFs, we use the 
Peak Signal to Noise Ratio (PSNR) measure. The PSNR is 
used to evaluate the difference between the original noise 
free image and the denoised image. Notation "Signal" in the 
PSNR measure refers to noise free image. The PSNR 
measure is calculated using (12). Note that the high value of 
the PSNR shows the high quality of the reconstructed 
image. 
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Equation (13) calculates the differences between the original 
noiseless image and the filtered image. In (13), notations I 
and K refer to the input noise free image and the filtered 
image, respectively, and size of the image (original/filtered) 
is m×n. In (12), MAXI shows the maximum pixel value in the 
image. For instance, in the gray level image, MAXI is equal 
to 255. 

4.3 Discussion 

Table 1 shows the PSNR values for the mentioned MFs 
which were tested on the different additive noises and 
different values of σ too. As the mentioned, the Gaussian and 
the Sigmaf MFs which are proposed in this study are 
compared with the Trapezoidal MF which is proposed in [1].  
margins and set them in 9-point type (Fig. 1 shows an 
example). The distance between text and figure should be  
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Table 1: PSNR values of the different MFs that are tested on the different additive noise source and different values of σ. Note that the Notations “G”, “S” and 
“T” refer to (G)aussian, (S)igmaf and (T)rapezoidal, respectively. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Experimental results on the different types of additive noise. Each row refers to a type of the additive noise. First  column (left most side), second 
column, third column, fourth column and fifth column shows the noise free image, different types of additive  noise, the filtered image by Gaussian MF,  the 
denoised image by Sigma MF and the filtered image by Trapezoidal MF, respectively. 

Noise MF 
Lena Baboon Barbara 

Sigma(σ) 
5 20 30 40 5 20 30 40 5 20 30 40 

G
au

ss
ia

n
 G 17.08 18.19 19.69 19.72 17.05 17.80 19.27 19.19 17.06 17.89 19.38 19.35 

S 17.10 19.76 19.61 19.48 17.01 19.21 18.69 18.30 17.02 19.30 18.75 18.32 

T 17.09 19.59 19.23 19.68 17.04 19.14 19.23 18.91 17.05 18.21 19.32 19.03 

P
oi

ss
on

 G 27.23 34.09 32.70 31.45 27.07 31.12 28.78 26.90 27.74 32.03 29.90 28.20 

S 29.62 31.46 29.66 28.45 28.51 26.95 24.42 23.09 29.64 28.21 24.61 23.18 

T 27.67 33.26 31.52 30.24 27.28 29.70 27.00 25.17 28.16 30.86 28.14 25.89 

S
al

t 
&

 
P

ep
p

er
 G 15.46 15.88 17.93 22.02 15.60 15.93 17.83 21.31 15.38 15.70 17.40 20.69 

S 15.41 21.87 27.14 26.73 15.59 21.50 23.70 22.66 15.38 20.83 23.67 22.56 

T 15.43 17.45 22.51 26.32 15.62 17.45 21.73 23.86 15.38 16.97 21.04 23.76 

S
p

ec
k

le
 G 14.36 14.57 15.47 17.82 14.09 14.22 15.07 17.32 15.02 15.24 16.30 18.55 

S 14.39 16.10 24.26 24.76 14.10 15.81 22.37 22.98 15.02 17.04 22.89 22.97 

T 19.36 14.86 17.08 21.71 14.11 14.44 16.75 20.88 15.01 15.60 17.92 21.65 
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about 8 mm, the distance between figure and caption about 6 
mm.Fig. 1 demonstrates the denoised version of Barbara's 
image corrupted with σ =40 different additive noises, where 
different MFs are used for noise reduction.  In Table 1, the 
values of the PSNR prove that the Gaussian and the Sigmaf 
MFs outperform the Trapezoidal one. The details of 
comparison are mentioned as follows: 
Additive Gaussian Noise: The Gaussian MF achieves the 
best result and reduces the noise well for the Baboon and 
Barbara images damaged with σ =5, 30 and 40 and for the all 
tested images damaged with σ = 30 and 40 too. For this 
additive noise with σ = 20, the Sigmaf MF reveals the best 
PSNR values on the all tested image. The Trapezoidal MF 
function result in the best PSNR value just on the noisy Lena 
image with σ = 5. 
Additive Poisson Noise: For the all noisy image with σ=20, 
30 and 40, the Gaussian MF shows the highest PSNR value. 
The best PSNR value, on the noisy Baboon and the noisy 
Barbara images with the same σ = 5, belongs to Sigmaf 
membership function. Again, the best score for the 
Trapezoidal membership function is on the noisy Lena 
image with σ = 5. 
Additive Salt & Pepper Noise:For the all noisy image with 
σ = 20 and 30, the Sigmaf membership function gets the 
elevated PSNR value that is visualized in Fig. 1.On the 
noisy Lena with σ = 40 and also on the noisy Barbara image 
with σ = 5, the Sigmaf membership function receives the 
best PSNR values. The Trapezoidal MF illustrates the best 
results on the noisy Baboon and the noisy Barbara images 
with the same σ =5 and 40. The Gaussian MF shows the 
poor performance except on the noisy Lena and the noisy 
Barbara with the same σ = 5. 
Additive Speckle Noise: In this additive noise, the best 
PCNR value refers to the Sigmaf MF. The Fig. 1 proves our 
claim. This MF achieves the best PCNR values on the all 
noisy images except on the Baboon image which is corrupted 
with σ = 5 additive noise. The Trapezoidal MF is the best 
just on the noisy Baboon image with σ=5. The Gaussian MF 
shows the worst performance. 
In general, on the all mentioned additive noise sources, the 
Gaussian and Sigmaf MF outperform the Trapezoidal one. 
The Gaussian MF is the best choice for the fuzzy-based 
wavelet shrinkage in order to denoise the image which is 
corrupted with the additive Gaussian (Poisson) noise. 
Furthermore, in the fuzzy-based denoising technique, the 
best usage MF to reduce the additive Salt & Pepper 
(Speckle) noise is Sigmaf. As the shown in the Fig. 1, the 
Gaussian MF is able to preserve the most of the details. The 
Sigmaf MF reduces themost of the noisy pixels while it 
removes the details. In other words, the Sigmaf MF 
generates a smooth image. 

5. Conclusion 
The main goal of this study is to analyze the effect of 
different MFs on the well-known images which are 
corrupted with the some additive noise such as Gaussian, 

Salt & Pepper, Speckle and Poisson. In this study, two MFs 
are proposed, Gaussian and Sigmaf, for [1]. In [1], the 
Trapezoidal MF is just used. Experimental results reveal 
that the Gaussian and Sigmaf MFs outperforms the 
Trapezoidal MF. To reduce the additive Gaussian (Poisson) 
noise from the image, the Gaussian MF is the best choice 
for the fuzzy-based wavelet shrinkage technique. 
Furthermore, the Sigmaf MF is the best selection for the 
fuzzy-based denoising method to remove noise from the 
image which is damaged by the additive Salt & Pepper 
(Speckle) noise. 
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