
Fractal Image Compression Mechanism by Applying
Statistical Self-Similarities

Jeet Kumar1 and Manish Kumar2

 Department of Computer Application,

Shri Ramswaroop Memorial Group of Professional Colleges,
Lucknow, Uttar Pradesh, India

Abstract

The self-similarities found in the images are of three types. First
type is exact self-similarity, second is quasi self-similarity and
third is statistical self-similarity. This paper makes use of
statistical self-similarity to achieve image compression. Unlike
the traditional approaches we do not need two partitions of same
image in the form of range blocks and domain blocks; instead a
single partition of image is sufficient. This approach divides the
code book into two disjoint subsets. One subset contains the
blocks in which the pixel values are not much different and
satisfying some threshold limit. This subset is the target area for
compression. The statistical self-similarity based on the mean
value is found among various blocks of this subset. The other
subset contains the blocks that do not satisfy the threshold limit
and therefore cannot be compressed. The overhead of image
partition is halved in this approach; moreover since the target
area of compression is separated the procedure is faster than the
traditional approaches.
Keywords: Fractal Image Compression, Exact Self-similarity,
Quasi Self-similarity, Statistical Self-similarity, Range Blocks
and Domain Blocks.

1. Introduction

An image can be thought of as a 2-dimensional array of
pixels. A single partition of the image is needed in the
proposed approach. The given image is partitioned into fix
sized square blocks. Now the image is considered as a 2-
dimensional array of blocks where each block is itself a 2-
dimensional array of pixels.
Traditional approaches for fractal image compression
divide the image into range blocks and domain blocks.
Two partitions on the same image are required. While
proposed approach does not need two partitions instead a
single partition serves the purpose. The proposed approach
stores the image in the form of two block pools, i.e., ‘block
pool 0’ and ‘block pool 1’. ‘Block pool 0’ contains the
blocks for which pixel values are not close to each other
and therefore not of interest for this paper. ‘Block pool 1’
contains all those blocks exhibiting closeness within the
block, i.e. the pixel values inside the blocks are not much
different. Therefore we focus on the ‘block pool 1’ for the

compression. The mean of all pixel values for each block
of ‘block pool 1’ is calculated. Instead of storing the
complete block, only this mean value is stored for each
block. If there exist more than one block with same mean
value in the ‘block pool 1’, the mean value is stored once
along with all the locations of the block having same
mean value. Thus the concept of statistical self-similarity
is implemented by storing the same mean value of the
block once.
As far as the organization of the paper is concerned, the
introduction section introduces the concept and addresses
the problems with existing approaches. After this the
literature review section carried out the survey of related
researches. The next section named as proposed
mechanism contains the basic idea in detail along with the
illustration and algorithmic implementation of the basic
idea. At last conclusion and future scope sections
summarize the work done and suggest some extension
possibilities in the future.

2. Literature Review

Instead of storing an image bit by bit the idea to store the
image in the form of contractive transformation was given
by Michael Barnsley in 1988 [1]. Barnsley's graduate
student Arnaud Jacquin implemented the first automatic
algorithm in software in 1992 [2]. Since then the field of
fractal image compression has evolved rapidly. Many
ideas have been proposed till date towards the
improvement of the image compression with fractal
approach but still extensive computation requirement for
encoding the image and closeness between domain and
range blocks are the major issues. Traditionally an image
is partitioned into non-overlapping range blocks and
domain blocks (non-overlapping constraint is relaxed in
domain blocks). Usually size of the domain blocks is
larger than the range blocks to fulfill the contractive
requirement. Some research work also advocated domain

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 207

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

blocks of same size as that of range blocks to exploit self-
similarity at same scale [3].
In the existing approaches the image is divided into non-
overlapping blocks called the range blocks. The size and
shape of range blocks may vary to a great extent, but in
many approaches square shaped range blocks are
preferred. Although various mechanisms have been
proposed for image partition, Some approaches like fixed
size partition, quad tree partition, horizontal vertical
partition and irregular partition fall under right angled
partition category while other partition schemes like
triangular and polygonal partition can be used [4]. Usually
size of the domain blocks is larger than range blocks [5].
But most of the research is focused on the fixed square
shaped block of size B×B for range and 2B×2B for domain
[6-8]. For each range block, i, every domain block is
explored with all possible transformations. Therefore this
approach needs complete domain pool searching and
applying all the transformations one by one which
consumes much time. After this a best matched domain
block is selected on the basis of minimum distance [9,10].
At last for each range block the location of the best
matched domain block is stored along with the
transformation applicable on the particular domain block.
Therefore the image is stored as a list of domain block
locations and corresponding transformations.
The traditional fractal image compression method
described in the previous paragraph is lossy. In fact most
of the fractal image compression methods are lossy. Only
very few methods are lossless, for example the method
given by Korakot Prachumrak et. al. that makes extensive
usage of simultaneous equations is lossless [11]. Proposed
method gives a simplified algorithm with simple graphical
transformations and lesser matching overhead.

3. Proposed Mechanism

3.1 The Basic Idea

The input image of size N×N is considered as a 2-
dimensional array of pixels as shown below:

(1,1) , (1,2) , (1,3) , ……………………………, (1,N)
(2,1) , (2,2) , (2,3) , ……………………………, (2,N)
(3,1) , (3,2) , (3,3) , ……………………………, (3,N)
 . .
 . .
 . .
(N,1) , (N,2) , (N,3) , …………………………., (N,N)
where each location (i,j); 1≤i,j≤N represents a pixel.
The input image is then partitioned into fix square sized

blocks of size M×M. Now the image is considered as a 2-
dimensional array of size N/M×N/M as shown below:

(1,1) , (1,2) , (1,3) , ……………………………, (1,N/M)
(2,1) , (2,2) , (2,3) , ……………………………, (2,N/M)
(3,1) , (3,2) , (3,3) , ……………………………, (3,N/M)
 . .
 . .
 . .
(N/M,1) , (N/M,2) , (N/M,3) , …………….., (N/M,N/M)
where each location (i,j); 1≤i,j≤N/M represents a block

of size M×M.

The key concept is to search such blocks of size M×M

in which the values of each pixel is not much different. We
now place the mean of all pixel values of that block. We
will use a variable T for threshold, i.e., maximum
permissible difference between each pair of pixel in that
block.

The proposed mechanism stores the compressed image in
two disjoint block pools, i.e., block pool 0 and block pool
1. At the time of decompression the image is reconstructed
from both block pools. Block pool 0 stores such blocks of
the original image where the difference between any pair
of pixel is more than the threshold therefore these blocks
cannot be compressed. Block pool 1 stores such blocks of
the original image where the difference between every pair
of pixel is not more than the threshold. Therefore for these
blocks of block pool 1 the mean value of all pixels for
each block is obtained and stored. Now each block of
block pool 1 is represented by these mean values. If the
image is partitioned into the blocks of size M×M, we need
to store only a single value for each block instead of
storing M*M values.

3.2 Illustrative Example

Take an image of size 256×256 (N×N) and blocks of size
8×8 (M×M). If the image of size 256×256 is divided into
blocks of size 8×8, we have total (256*256)/(8*8) = 1024
blocks (N2/M2). Suppose we have found 800 blocks out of
1024 satisfying the criteria for block pool 1. Now we need
to store only 800 values for these 800 blocks instead of
storing 8*8*800 = 51200 values. Moreover if the set of
these 800 values have redundant entries, we need not to
store these values more than once. Therefore we are trying
to find statistical self-similar blocks among these 800
blocks of block pool 1.

3.3 The Novel Procedure

The compression procedure takes an N×N image, the
block size M and threshold value T as input. The
procedure returns ‘block pool 0’ and ‘block pool 1’ along
with their sizes. The decompression procedure takes
‘block pool 0’ and ‘block pool 1’ along with their sizes as

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 208

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

input and returns the final reconstructed image. The
process described in the previous section can be
summarized into following two procedures given in the
next two subsections.

3.4 The Compression Procedure

Procedure compression (N×N Image I, Block size M,
Threshold T)
begin

partition the image into blocks of M×M, (M<N);
set the status of each block as ‘Zero’ initially;
counter0=N2/M2;
counter1=0;
counter2=0;

for each block Bi with status ‘Zero’ (i=1 to
counter0)
begin
if the difference between each pair of elements of
block Bi≤T
begin
calculate the mean of all the elements of the block;
set the status of block as ‘One’;
counter1=counter1+1;
end;
else
begin
add the block to ‘block pool 0’ along with the
respective location;
set the status of each block as ‘Two’;
counter2=counter2+1;
end;
i=i+1;

 end;

 for each block Bi with status ‘One’ (i=1 to
 Counter1)

begin
set the status of block Bi as ‘Two’;
add the mean value of the block along with the
coordinate of the upper left corner of the block to
‘block pool 1’;
for each block Bj with status ‘One’ (j=i+1 to
counter1)
begin
if (mean(Bi)==mean(Bj))
begin
set the status of block Bj as ‘Two’;
if the mean value of Bj is not found in the
‘domain pool 1’, then add the mean value of the
block Bj along with the coordinate of the upper
left corner of the block to ‘block pool 1’
else

find the value same as that of mean(Bj) in the
‘block pool 1’, and attach the coordinate of the
upper left corner of the block Bj with that value;
end;
j=j+1;
end; //End of inner for loop
i=i+1;
end; //End of outer for loop

end. //End of Procedure compression

3.5 The Decompression Procedure

Procedure decompression (‘Block Pool 0’, counter2, Block
Pool 1’, counter1)
begin

for each block Bi of ‘Block Pool 0’ (i=1 to
Counter2)
begin
place the block Bi from ‘Block Pool 0’ to the
appropriate position stored with Bi in the
reconstructed final image;
end;
for each mean value(rounded to integer) for block
Bi of ‘Block Pool 1’(i=1 to Counter1)
begin
replicate the mean value to form a block Bi of
size M×M.
place the block Bi to the appropriate position(s)
(stored with mean value of Bi in the ‘block pool1’)
in the reconstructed final image;
end;

end.

4. Conclusions

If we increase the block size, the number of blocks for
‘block pool 1’ will be lesser therefore reducing the target
area for compression, but a bigger sized block will be
represented by a single mean value therefore achieving
more compression per block of ‘block pool 1’.
If we increase the threshold limit, T, the number of blocks
for ‘block pool 1’ will be more but the quality of
reconstructed image is poorer.

5. Future Scope

The work can be generalized to any arbitrary chosen block
size and threshold value as required by different types of
images. Moreover the exact self-similarity can be applied
to ‘block pool 0’ to achieve further compression. A

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 209

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

different partition mechanism of the image like quad tree
etc. can be used with this approach.

References
[1] Michael Barnsley, "Fractals Everywhere", Academic Press,

Inc., 1988.

[2] Arnaud E. Jacquin, “Image Coding Based on a Fractal
Theory of Iterated Contractive Image Transformations”,
IEEE Transactions on Image Processing, Vol.1, No.1,
January 1992.

[3] Yao Zhao and Baozong Yuan,” A Novel Scheme for Fractal
Image Coding”, Institute of Information Science Northern
Jiaotong University, Beijing 100044, P.R.China, May 2001.

[4] Brendt Wohlberg and Gerhard de Jager, ”A Review of the
Fractal Image Coding Literature”, Member, IEEE,
December 1999.

[5] Gaoping Li, “Fast Fractal Image Encoding Based on the
Extreme Difference Feature of Normalized Block”, College
of Computer Science & Technology, Southwest University
for Nationalities, Chengdu, China, 2009.

[6] Jinshu Han, “Fast Fractal Image Encoding Based on Local
Variances and Genetic Algorithm”, Dezhou University,
China, 2009.

[7] Ying Zhao, Jing Hu, Dongxiang Chi and Ming Li, “A Novel
Fractal Image Coding based on Basis Block Dictionary”,
School of Electronics and Information, Shanghai dian ji
University, Shanghai, China, 2009.

[8] Yang Liu and Jin-guang Sun, “Face Recognition Method
Based on FLPP”, Liaoning Techinical University, Huludao
Liaoning, China, 2010.

[9] D. Loganathanff, J. Amudha and K.M. Mehata”,
Classification and Feature Vector Techniques to Improve
Fractal Image Coding”, Electrical and Electronics
Engineering, Amrita Institute of Technology and Science,
Coimbatore, INDIA, 2003.

[10] Shen Furao and Osamv Hasegawa,”An Effective Fractal
Image Coding Method Without Search”, Japan, 2004.

[11] K. Prachumrak, A. Hiramatsu, T. Fuchida and H. Nakamura,
”Lossless Fractal Image Coding ”, Croatia, 2003.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 210

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

