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Abstract 
In this paper we propose an extension of classification 
algorithm based on ant colony algorithms to handle continuous 
valued attributes using the concepts of fuzzy logic. 
The ant colony algorithms transform continuous attributes into 
nominal attributes by creating clenched discrete intervals. This 
may lead to false predictions of the target attribute, especially 
if the attribute value history is close to the borders of 
discretization. 
Continuous attributes are discretized on the fly into fuzzy 
partitions that will be used to develop an algorithm called 
Fuzzy Ant-Miner. Fuzzy rules are generated by using the 
concept of fuzzy entropy and fuzzy fitness of a rule. 
Keywords: Fuzzy Ant Miner, fuzzy entropy, fuzzy fitness, 
discretization on the fly, classification. 

1. Introduction 

Ant miner is a classification algorithm that learns rules 
from training sets by using the simulation of real ants [9]. 
Each artificial ant is a mere agent in the system and finds 
a solution to the problem and communicates with other 
ants indirectly through the amount of pheromone 
deposited. 

Ant miner is an efficient algorithm with discrete 
attributes. But with the continuous attributes, the ant 
colony algorithm uses intervals with strict boundaries.  
This can lead to false predictions of the target attribute, 
especially if the attribute’s value is close to the borders of 
discretization.  

To solve this problem, we propose an extension of the 
classification algorithm based on ant colony algorithms 
to treat continuous attributes using the concepts of fuzzy 
logic [12]: Continuous attributes are discretized into 
fuzzy partitions that will be used in a Fuzzy Ant-Miner 
algorithm.  

The originality of this approach is that it generates fuzzy 
rules by using the concept of fuzzy entropy and fuzzy 
fitness of a rule. The basic idea of this algorithm is that 
the probability with which ant chooses a value of a fuzzy 
continuous attribute among all those possible depends on 
two things:  the amount of pheromone deposited by the 
ant, and the fuzzy entropy of the value. After obtaining 
the complete rule, the method proceeds to pruning based 
on the quality of a fuzzy rule. This provides simplified 
and easy to interpret rules.  

The simplified fuzzy rules obtained will be exploited by 
using fuzzy inference systems for classification and 
prediction.  
In this paper we first describe the base Ant-Miner 
algorithm in section 2. In the third section, we present 
the principle of the cAnt-Miner algorithm which is an 
extension of Ant Miner. In section (4) we present our 
contribution: Fuzzy Ant Miner. Section (5) discusses the 
results obtained and their comparison with those of the 
original algorithm and its extension cAnt Miner. The 
conclusion comes in the sixth section. 

2. Ant-Miner  

Ant-Miner’s [9] goal is to extract, from the data set, the 
classification rules of type: if-then in the form: IF 
(term 1) AND (term 2) ... AND .. AND (term n) THEN 
class. Each term in the rule is a triple (attribute, operator, 
value). 

The pseudo code of Ant-Miner [2] shown in Figure 1 
begins with an empty list of rules and adds iteratively a 
rule to this list as long as the number of training 
examples not covered remains larger than the maximum 
number specified by the user. 

In order to construct rules, the ant starts with a blank rule 
(no background terms). The terms are chosen with a 
probability to be added to the current partial rule 
according to the amount of pheromone and heuristic 
information (η) associated with these terms: 

The probability that the term iA jv  is chosen to be 

added to the current partial rule is given by Eq. (1): 
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iA : The ith attribute; 

jv : The jth value of the field iA . 

ij : The heuristic function of the term ij 
)(tij : Available pheromone quantity (at time t) in the 

track that will be explored by the ant. 
n: Total number of attributes. 

ib : Total number of values in attribute field. 
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I: represents the attributes that are not yet explored by 
the ant. 
 

 
TrainingSet = all training examples; 
InducedRuleSet = Ø; 
WHILE (No. of uncovered examples in the TrainingSet >   
 MaxUncoveredExamples) 

i = 0; 
Repeat  

                       i = i + 1; 
       Ant (i) constructs a classification rule Ri; 
       Prune the rule c; 

                       Update pheromone of attribute terms; 
                UNTIL (i >= NoAnt) OR (the same rule Ri has been            
constructed MaxRulesConverge times); 
                       Select the best rule among all constructed rules; 
                       Add the best rule to InducedRuleSet; 
                       Remove training examples covered by the best           
rule from the TrainingSet; 
END WHILE 
Create default rule; 
Output InducedRuleSet; 

 

Fig. 1 pseudo-code of Ant-Miner 

The normalized heuristic function is given by: 
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The entropy of the term ( ji vA  ) is the amount of 

information associated with this term. It is given by the 
Eq. (3): 
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k: Number of classes. 
The pheromone amount and the heuristic value are 
associated to each term ( ji vA  ) that corresponds to a 

track which may be followed by an ant. All terms are 
initialized by the same amount of pheromone:   

)0( tij =
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n: Number of attributes. 

ib : Number of values in attribute field. 

To update the pheromone amount of this term, Eq. (5) is 
used: 

)1( tij = )(tij + Qtij *)(          (5) 

Where Q is the rule quality defined by: 

Q=
FNTP
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 TP (true positive): Number of examples covered by the 
rule that have the class predicted by the rule.  
FP (false positive): Number of examples covered by the 
rule that have a different class from that predicted by the 
rule. 
FN (false negative): Number of examples not covered 
by the rule that have the class predicted by the rule. 
TN (true negative): Number of examples not covered by 
the rule that have a different class from that predicted by 
the rule. 
 
The higher is Q value; the better is the quality of the 
rule. The pheromone quantity is iteratively updated 
according to the quality of the rule established by the 
ant. 
Once the ant has finished constructing the rule, the 
algorithm attempts to prune it [1]. The goal of this 
pruning is to eliminate some terms in order to enhance 
the quality of the rule. So the rule becomes easy to 
interpret by the user. After the first iteration has taken 
place, we have the entire rule. Then, we attempt to 
eliminate the terms of the rule one at a time and we 
calculate the quality of the resulting rule. 
Once the construction of the premise rule is finished, the 
consequent rule is the most frequent class among those 
covered by the rule in the learning set of examples.  
The process of rule construction is repeated until a user-
specified number of iterations is reached, or the best rule 
of the ongoing iteration is identical to the previous one. 
The best rule discovered during that iterative process is 
added to the list of rules and the learning examples 
covered by this rule (i.e. that satisfy the best rule) are 
removed from the learning set. 
The major weakness of the Ant-miner algorithm is that it 
deals with nominal attributes only. Continuous attributes 
(the most frequent in real application domains) are 
discretized in a pre-processing step. 
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3. Extension of Ant-Miner: cAnt-Miner 

cAnt-Miner [8] is an extension of Ant-Miner that 
accepts continuous attributes as well as nominal ones. In 
a domain of continuous values of an attribute, a certain 
value x is chosen to dynamically partition the example 

set into two intervals A i <x and A i >=x. 

The best value of x is the one that minimizes the entropy 
of the ongoing partition: 
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Where: 

 xAi
S  is the total number of examples in the 

partition  A i <x 

 xAi
S    is the total number of examples in the 

partition  A i >=x 

 S  is the total number of  examples in the 

learning set. 

 The entropy values of xAi
S   and xAI

S   are 

calculated by : 
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 p(c/S) is the examples proportion of S which 
has class c. 

 k is the total number of classes. 
After the best value has been found using Eq. (7), the 
method uses Eq. (9) to calculate the entropies of the two 

partitions (A i <x) and (A i >=x). The partition with the 

minimum entropy value is the one which will be elected 
by the ant. The term (Ai, operator, x) is added to the 
current partial rule of the ant (for ex. Age<18). 
cAnt-Miner partitions the example set into two partitions 
Ai<x and Ai>=x which does not give a precise 
estimation of the continuous attribute. Another 
inconvenience of cAnt-Miner is that it has a crisp 
discretization: A value close to x can easily switch from 
a partition to another. Thus this method may generate 
rules with unpredictable classes for values close to the 
threshold.  

4. New method of fuzzy classification : 
Fuzzy Ant-Miner 

4.1 Extension of cAnt-Miner algorithm 

In order to avoid the crisp discretization used by cAnt-
Miner, our method extends the crisp partition by 
discretizing the values of an attribute into fuzzy 
partitions. First a threshold x is determined in the same 
way as cAnt-Miner [10] (the one that leads to the 
minimum entropy). We assume that the threshold is a 
fuzzy number around x. Then the values of continuous 
attribute are transformed into membership degrees of the 
fuzzy values Ai approximately  x and approximately  
x.  
The continuous attribute’s membership function (figure 
2) of a fuzzy value “ xelyapproximatAi  ” is calculated 

by: 

        
)(ely approximat vxAi   =
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And       )(1)( ely approximat ely approximat vv xAxA ii   
 

 

 

Fig. 2 Fuzzy discretization of a continuous attribute 

Where parameters (a and b) are calculated by: 
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 ( xi ) i=1..l values of attribute in training sets. 
 α: parameter to be adjusted for better 

performance. 
Note that other ways of generating the fuzzy partitions 
[5], [6] can be used in our method. 
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4.2 Fuzzy Ant-Miner Algorithm 

In order to deal with fuzzy concepts we have extended 
the algorithm Ant-miner to treat these concepts (fig 3): 
 

 
TrainingSet = all training examples; 
InducedRuleSet = Ø; 
WHILE (No. of uncovered examples in the TrainingSet >   
 MaxUncoveredExamples) 

 Fuzzy discretization depending on the value α; 
i = 0; 
Repeat  

                       i = i + 1; 
       Ant (i) constructs a fuzzy rule Ri; 
       Ant (i) constructs a fuzzy rule class of Ri 
       depending on the value β;     
       Prune the fuzzy rule c; 

                       Update fuzzy pheromone of attribute terms; 
                UNTIL (i >= NoAnt) OR (the same rule Ri has been            
constructed); 
                       Select the best fuzzy rule; 
                       Add the best fuzzy rule to InducedRuleSet; 
                       Remove training examples covered by the best           
fuzzy rule from the TrainingSet; 
END WHILE 
Create default fuzzy rule; 
Output InducedRuleSet; 

 

Fig. 3 pseudo-code of Fuzzy Ant-Miner 

By analogy with Eq. 2, the fuzzy entropy of the fuzzy 

term A i =v j  (vj is approximately   or   to x) is as 

follows: 

       ijH* =Entropy * (c=c w /A i =v j ) 
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Where: 

 )/(*
jiw vAccp   represents the fuzzy 

probability [13] defined by: 
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 l: number of examples in the learning set 

 
jv  : is the membership degree of x e  to v j  

 )( exp  : is estimated by the frequency of x e  
in 

the learning set. 
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),( et xcp  : is estimated by the frequency of   (c t , x e ) in 

the learning set. 
The fuzzy entropy will be normalized in the same way 
as the classic entropy (4) applied to nominal attributes. 
The fuzzy heuristic function of the jth partition belonging 
to ith attribute is then defined by: 
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 ib  : Number of fuzzy values of attribute A i  

By analogy with (1), the fuzzy probability that an ant 
choose the fuzzy partition of a continuous attribute 
among all possible fuzzy partitions is defined by:  
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4.3 Rule pruning 

After obtaining the complete rule, the method proceeds 
to pruning it. The pruning process is based on the quality 
of the fuzzy rule. Indeed the quality is computed with 
TP* (fuzzy true positive), FP*(fuzzy false positive), FN* 
(fuzzy false negative) and TN* (fuzzy true negative) that 
are determined by calculating the membership degree of 
each term in the rule.  
The eth example Oe of the training set is defined by: 

  eOni
e
ie cxO ,)( ..1

 

Where:        
 (xi

e )i=1….n represents the attributes values of the 
example. 

 
 :

eOc  Class of the example. 

Each rule rm obtained by our method is defined by 

  mr rnijim cvAr ,)( ..1

 

Where:  
 vj is the fuzzy value  
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  nr is the number of terms in the rule. 
 

mr
c  : Class predicted by the best rule obtained. 

To determine the quality of the fuzzy rule, the examples 
are injected into the rule: 
The filter 

merOf of the example eO in the rule is defined 

by the degree membership of a term xi
e to a fuzzy value 

vj and the degree membership of a class example to a 
class rule:  

  )(,))(( ..1 emrrjime OCni
e
ivArO cxf 

 
A fuzzy true positive value of example eO is calculated 

by: 
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A TP* value of a training set is: 
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Similarly we calculate FP*, TN* and FN*: 
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The fuzzy quality Q* is then calculated by: 

          Q*=
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Before pruning the rule, the class assigned to it is the 
most common among those covered by this rule in the 

training set. Each example Oe covers the rule if eOTP*  

Eq .(17) is higher than a parameter  . This parameter is 

adjusted for better performance. 

In each rule pruning iteration, every term is temporarily 
removed from the rule (note that a change in the 
antecedent rule may result in a change of the consequent 
rule), and the quality of the rule is re-evaluated. At the 
end of the iteration, only the term removal of which 
leads to an improvement of the rule quality is actually 
removed. The process of rule pruning stops when there 
is only one term left, or each term removal no longer 
leads to the improvement of a rule quality. Once the rule 
pruning has been performed, the artificial ant increases 
the level of pheromone of the terms still presented in the 
rule antecedent according to the fuzzy quality of the 
rule: 
 

                    )(
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5. Results and discussions 

In order to confirm our approach, a comparative study 
has been done. In that study we have tested our method 
against standard databases obtained from UCI data 
repository [16].  
All tests have been performed with 3 folds cross-
validation. Fuzzy rules generated by Fuzzy Ant-Miner 
from the learning database are exploited to classify new 
examples. This classification is done according to the 
principle of fuzzy inference. In fact each generated rule 
involving a fuzzy term deriving from the continuous 
attribute, has a degree of validity that depends on fuzzy 
probabilities. By consequence, an example filtered by 
this rule will have that rule’s class with a degree of 
uncertainty which is calculated using the rule of the 
generalized modus ponens. Parameters values α and β 
are varied to obtain better performance.  
 
The comparison of our results with those obtained by 
Ant-miner and by cAnt-miner has shown that our 
method gives promising results of the predictive 
accuracies especially for Wisconsin breast cancer (α 
=40) and diabetes (α =18) databases Tab .1. For Tic-tac-
toe and Ljubljana breast cancer, predictive accuracies 
are not influenced by parameters α and β because their 
attributes are nominal.  
The number of terms per rule Tab .2 is lower in our 
algorithm and easy to interpret by user. 
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Table 1: Predictive accuracy (mean ± standard deviation)  

Dataset Ant-Miner cAnt-Miner 
Fuzzy Ant-

Miner 
Tic-tac-toe 73.04±2.53 73.52±2.81 73.64±2.21 

Diabetes 72,84 - 
75,03±2,60 

(α =18, β=0.7) 

Wisconsin 
breast cancer 

96.04 ± 2.80 96.84±2.13 
98.05±2.62 

(α =40,   β=0.6) 

Ljubljana 
breast cancer 

75.28±2.24 75.91 ±8.38 78,85 

Table 2: Number of terms per rule 

Dataset Ant-Miner 
cAnt-
Miner 

Fuzzy Ant-
Miner 

Tic-tac-toe 1.18 1.17 1.10 

Wisconsin 
breast cancer 

1.97 1.09 
1.25 

(α =40,   β=0.6) 

Ljubljana 
breast cancer 

1.28 1.06 1.00 

6. CONCLUSION 

In this paper we have proposed an extension to the 
learning algorithms based on ant colonies in order to 
process continuous valued attributes.  These parameters 
are discretized on the fly according to the concepts of 
fuzzy logic. Our method takes under account the fuzzy 
quality of a rule and the fuzzy entropy of a term during 
the process of rule construction by ants. The fuzzy rules 
obtained are exploited according the principle of fuzzy 
inference. 

The results obtained with fuzzy Ant-Miner showed an 
obvious improvement compared to those of Ant-Miner 
and cAnt-Miner. 
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