
Data classification by Fuzzy Ant-Miner

Mohamed Hamlich1 and Mohammed Ramdani1

1 Computer science lab, UH2, FSTM

Mohammadia, BP 146 20650, Morocco

Abstract
In this paper we propose an extension of classification
algorithm based on ant colony algorithms to handle continuous
valued attributes using the concepts of fuzzy logic.
The ant colony algorithms transform continuous attributes into
nominal attributes by creating clenched discrete intervals. This
may lead to false predictions of the target attribute, especially
if the attribute value history is close to the borders of
discretization.
Continuous attributes are discretized on the fly into fuzzy
partitions that will be used to develop an algorithm called
Fuzzy Ant-Miner. Fuzzy rules are generated by using the
concept of fuzzy entropy and fuzzy fitness of a rule.
Keywords: Fuzzy Ant Miner, fuzzy entropy, fuzzy fitness,
discretization on the fly, classification.

1. Introduction

Ant miner is a classification algorithm that learns rules
from training sets by using the simulation of real ants [9].
Each artificial ant is a mere agent in the system and finds
a solution to the problem and communicates with other
ants indirectly through the amount of pheromone
deposited.

Ant miner is an efficient algorithm with discrete
attributes. But with the continuous attributes, the ant
colony algorithm uses intervals with strict boundaries.
This can lead to false predictions of the target attribute,
especially if the attribute’s value is close to the borders of
discretization.

To solve this problem, we propose an extension of the
classification algorithm based on ant colony algorithms
to treat continuous attributes using the concepts of fuzzy
logic [12]: Continuous attributes are discretized into
fuzzy partitions that will be used in a Fuzzy Ant-Miner
algorithm.

The originality of this approach is that it generates fuzzy
rules by using the concept of fuzzy entropy and fuzzy
fitness of a rule. The basic idea of this algorithm is that
the probability with which ant chooses a value of a fuzzy
continuous attribute among all those possible depends on
two things: the amount of pheromone deposited by the
ant, and the fuzzy entropy of the value. After obtaining
the complete rule, the method proceeds to pruning based
on the quality of a fuzzy rule. This provides simplified
and easy to interpret rules.

The simplified fuzzy rules obtained will be exploited by
using fuzzy inference systems for classification and
prediction.
In this paper we first describe the base Ant-Miner
algorithm in section 2. In the third section, we present
the principle of the cAnt-Miner algorithm which is an
extension of Ant Miner. In section (4) we present our
contribution: Fuzzy Ant Miner. Section (5) discusses the
results obtained and their comparison with those of the
original algorithm and its extension cAnt Miner. The
conclusion comes in the sixth section.

2. Ant-Miner

Ant-Miner’s [9] goal is to extract, from the data set, the
classification rules of type: if-then in the form: IF
(term 1) AND (term 2) ... AND .. AND (term n) THEN
class. Each term in the rule is a triple (attribute, operator,
value).

The pseudo code of Ant-Miner [2] shown in Figure 1
begins with an empty list of rules and adds iteratively a
rule to this list as long as the number of training
examples not covered remains larger than the maximum
number specified by the user.

In order to construct rules, the ant starts with a blank rule
(no background terms). The terms are chosen with a
probability to be added to the current partial rule
according to the amount of pheromone and heuristic
information (η) associated with these terms:

The probability that the term iA jv is chosen to be

added to the current partial rule is given by Eq. (1):

n

i

ijij

ij

t
tP

ib

j
ijij η*(t)τ

*)(
)(

 Ii (1)

iA : The ith attribute;

jv : The jth value of the field iA .

ij : The heuristic function of the term ij
)(tij : Available pheromone quantity (at time t) in the

track that will be explored by the ant.
n: Total number of attributes.

ib : Total number of values in attribute field.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 201

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

I: represents the attributes that are not yet explored by
the ant.

TrainingSet = all training examples;
InducedRuleSet = Ø;
WHILE (No. of uncovered examples in the TrainingSet >
 MaxUncoveredExamples)

i = 0;
Repeat

 i = i + 1;
 Ant (i) constructs a classification rule Ri;
 Prune the rule c;

 Update pheromone of attribute terms;
 UNTIL (i >= NoAnt) OR (the same rule Ri has been
constructed MaxRulesConverge times);
 Select the best rule among all constructed rules;
 Add the best rule to InducedRuleSet;
 Remove training examples covered by the best
rule from the TrainingSet;
END WHILE
Create default rule;
Output InducedRuleSet;

Fig. 1 pseudo-code of Ant-Miner

The normalized heuristic function is given by:

a

i

b

j
ij

ij
ij

i

Hk

Hk

)(log

)(log

2

2 (2)

The entropy of the term (ji vA) is the amount of

information associated with this term. It is given by the
Eq. (3):

)/((log*)/(2
1

jiw

k

w
jiwij vAccpvAccpH

 (3)

k: Number of classes.
The pheromone amount and the heuristic value are
associated to each term (ji vA) that corresponds to a

track which may be followed by an ant. All terms are
initialized by the same amount of pheromone:

)0(tij =

n

i
ib

1

1
 (4)

n: Number of attributes.

ib : Number of values in attribute field.

To update the pheromone amount of this term, Eq. (5) is
used:

)1(tij =)(tij + Qtij *)((5)

Where Q is the rule quality defined by:

Q=
FNTP

TP

*

TNFP

TN

 (6)

 TP (true positive): Number of examples covered by the
rule that have the class predicted by the rule.
FP (false positive): Number of examples covered by the
rule that have a different class from that predicted by the
rule.
FN (false negative): Number of examples not covered
by the rule that have the class predicted by the rule.
TN (true negative): Number of examples not covered by
the rule that have a different class from that predicted by
the rule.

The higher is Q value; the better is the quality of the
rule. The pheromone quantity is iteratively updated
according to the quality of the rule established by the
ant.
Once the ant has finished constructing the rule, the
algorithm attempts to prune it [1]. The goal of this
pruning is to eliminate some terms in order to enhance
the quality of the rule. So the rule becomes easy to
interpret by the user. After the first iteration has taken
place, we have the entire rule. Then, we attempt to
eliminate the terms of the rule one at a time and we
calculate the quality of the resulting rule.
Once the construction of the premise rule is finished, the
consequent rule is the most frequent class among those
covered by the rule in the learning set of examples.
The process of rule construction is repeated until a user-
specified number of iterations is reached, or the best rule
of the ongoing iteration is identical to the previous one.
The best rule discovered during that iterative process is
added to the list of rules and the learning examples
covered by this rule (i.e. that satisfy the best rule) are
removed from the learning set.
The major weakness of the Ant-miner algorithm is that it
deals with nominal attributes only. Continuous attributes
(the most frequent in real application domains) are
discretized in a pre-processing step.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 202

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3. Extension of Ant-Miner: cAnt-Miner

cAnt-Miner [8] is an extension of Ant-Miner that
accepts continuous attributes as well as nominal ones. In
a domain of continuous values of an attribute, a certain
value x is chosen to dynamically partition the example

set into two intervals A i <x and A i >=x.

The best value of x is the one that minimizes the entropy
of the ongoing partition:

 xA

xA

xA

xA

i i

i

i

i SH
S

S
SH

S

S
xAH

 * *),((7)

Where:

 xAi
S is the total number of examples in the

partition A i <x

 xAi
S is the total number of examples in the

partition A i >=x

 S is the total number of examples in the

learning set.

 The entropy values of xAi
S and xAI

S are

calculated by :

)/(log)./(
1

2 SccpSccpSH w

k

w
w

 (8)

 p(c/S) is the examples proportion of S which
has class c.

 k is the total number of classes.
After the best value has been found using Eq. (7), the
method uses Eq. (9) to calculate the entropies of the two

partitions (A i <x) and (A i >=x). The partition with the

minimum entropy value is the one which will be elected
by the ant. The term (Ai, operator, x) is added to the
current partial rule of the ant (for ex. Age<18).
cAnt-Miner partitions the example set into two partitions
Ai<x and Ai>=x which does not give a precise
estimation of the continuous attribute. Another
inconvenience of cAnt-Miner is that it has a crisp
discretization: A value close to x can easily switch from
a partition to another. Thus this method may generate
rules with unpredictable classes for values close to the
threshold.

4. New method of fuzzy classification :
Fuzzy Ant-Miner

4.1 Extension of cAnt-Miner algorithm

In order to avoid the crisp discretization used by cAnt-
Miner, our method extends the crisp partition by
discretizing the values of an attribute into fuzzy
partitions. First a threshold x is determined in the same
way as cAnt-Miner [10] (the one that leads to the
minimum entropy). We assume that the threshold is a
fuzzy number around x. Then the values of continuous
attribute are transformed into membership degrees of the
fuzzy values Ai approximately x and approximately
x.
The continuous attribute’s membership function (figure
2) of a fuzzy value “ xelyapproximatAi ” is calculated

by:

)(ely approximat vxAi =

b vsi 0

a si

a vsi 1

bv
ab

vb
 (9)

And)(1)(ely approximat ely approximat vv xAxA ii

Fig. 2 Fuzzy discretization of a continuous attribute

Where parameters (a and b) are calculated by:

)(min)(max
...1...1

i
li

i
li

xx
xa

 (10)

)(min)(max
...1...1

i
li

i
li

xx
xb

 (11)

 (xi) i=1..l values of attribute in training sets.
 α: parameter to be adjusted for better

performance.
Note that other ways of generating the fuzzy partitions
[5], [6] can be used in our method.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 203

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.2 Fuzzy Ant-Miner Algorithm

In order to deal with fuzzy concepts we have extended
the algorithm Ant-miner to treat these concepts (fig 3):

TrainingSet = all training examples;
InducedRuleSet = Ø;
WHILE (No. of uncovered examples in the TrainingSet >
 MaxUncoveredExamples)

 Fuzzy discretization depending on the value α;
i = 0;
Repeat

 i = i + 1;
 Ant (i) constructs a fuzzy rule Ri;
 Ant (i) constructs a fuzzy rule class of Ri
 depending on the value β;
 Prune the fuzzy rule c;

 Update fuzzy pheromone of attribute terms;
 UNTIL (i >= NoAnt) OR (the same rule Ri has been
constructed);
 Select the best fuzzy rule;
 Add the best fuzzy rule to InducedRuleSet;
 Remove training examples covered by the best
fuzzy rule from the TrainingSet;
END WHILE
Create default fuzzy rule;
Output InducedRuleSet;

Fig. 3 pseudo-code of Fuzzy Ant-Miner

By analogy with Eq. 2, the fuzzy entropy of the fuzzy

term A i =v j (vj is approximately or to x) is as

follows:

 ijH* =Entropy * (c=c w /A i =v j)

 =)/((log*)/(*
2

1

*
jiw

k

w
jiw vAcpvAcp

 (12)

Where:

)/(*
jiw vAccp represents the fuzzy

probability [13] defined by:

)/(*
jiw vAcp =

)(

),(
*

*

ji

jiw

vAp

vAcp

)(*

ji vAp =

l

e
eev xpx

j
1

)()(
 (13)

 l: number of examples in the learning set

jv : is the membership degree of x e to v j

)(exp : is estimated by the frequency of x e
in

the learning set.

),(*

jiw vAccp =),()(),(min(
1

et

l

e
evtc xcpxc

jw

 (14)

),(et xcp : is estimated by the frequency of (c t , x e) in

the learning set.
The fuzzy entropy will be normalized in the same way
as the classic entropy (4) applied to nominal attributes.
The fuzzy heuristic function of the jth partition belonging
to ith attribute is then defined by:

pn

j
iji

iji
ij

Hb

Hb

1

*
2

*
2*

))((log

)(log
 (15)

 ib : Number of fuzzy values of attribute A i

By analogy with (1), the fuzzy probability that an ant
choose the fuzzy partition of a continuous attribute
among all possible fuzzy partitions is defined by:

a

i

b

j
ijij

ijij
ij

i

t

t
tP

*

*

*)(

*)(
)(

 (16)

4.3 Rule pruning

After obtaining the complete rule, the method proceeds
to pruning it. The pruning process is based on the quality
of the fuzzy rule. Indeed the quality is computed with
TP* (fuzzy true positive), FP*(fuzzy false positive), FN*
(fuzzy false negative) and TN* (fuzzy true negative) that
are determined by calculating the membership degree of
each term in the rule.
The eth example Oe of the training set is defined by:

 eOni
e
ie cxO ,)(..1

Where:
 (xi

e)i=1….n represents the attributes values of the
example.

 :

eOc Class of the example.

Each rule rm obtained by our method is defined by

 mr rnijim cvAr ,)(..1

Where:
 vj is the fuzzy value

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 204

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 nr is the number of terms in the rule.

mr
c : Class predicted by the best rule obtained.

To determine the quality of the fuzzy rule, the examples
are injected into the rule:
The filter

merOf of the example eO in the rule is defined

by the degree membership of a term xi
e to a fuzzy value

vj and the degree membership of a class example to a
class rule:

)(,))((..1 emrrjime OCni
e
ivArO cxf

A fuzzy true positive value of example eO is calculated

by:

*)]([min

,..1

* e
ivA

li
O xTP

jie
)(

emr
OC c

 (17)

A TP* value of a training set is:

l

e
OeTPTP

1

** (18)

Similarly we calculate FP*, TN* and FN*:

*)]([min

,..1

* e
ivA

li
O xFP

jie
)(_

e
mr

O
C

c (19)

Where)(1)(_
emre

mr
OCO

C
cc

l

e
OeFPFP

1

** (20)

*)]([max

,..1

* e
ivAli

O xFN
ji

e
)(

e
mr

O
C

c

 (21)

Where)(e
ivA

x
ji

)(1 e
ivA x

ji

l

e
OeFNFN

1

** (22)

*)]([max

,..1

* e
ivAli

O xTN
ji

e
)(_

e
mr

O
C

c (23)

l

e
OeTNTN

1

** (24)

The fuzzy quality Q* is then calculated by:

 Q*=
**

*

FNTP

TP

*

**

*

TNFP

TN

 (25)

Before pruning the rule, the class assigned to it is the
most common among those covered by this rule in the

training set. Each example Oe covers the rule if eOTP*

Eq .(17) is higher than a parameter . This parameter is

adjusted for better performance.

In each rule pruning iteration, every term is temporarily
removed from the rule (note that a change in the
antecedent rule may result in a change of the consequent
rule), and the quality of the rule is re-evaluated. At the
end of the iteration, only the term removal of which
leads to an improvement of the rule quality is actually
removed. The process of rule pruning stops when there
is only one term left, or each term removal no longer
leads to the improvement of a rule quality. Once the rule
pruning has been performed, the artificial ant increases
the level of pheromone of the terms still presented in the
rule antecedent according to the fuzzy quality of the
rule:

)(
*

tij =)(
*

tij +)(
*

tij *Q *
 (26)

5. Results and discussions

In order to confirm our approach, a comparative study
has been done. In that study we have tested our method
against standard databases obtained from UCI data
repository [16].
All tests have been performed with 3 folds cross-
validation. Fuzzy rules generated by Fuzzy Ant-Miner
from the learning database are exploited to classify new
examples. This classification is done according to the
principle of fuzzy inference. In fact each generated rule
involving a fuzzy term deriving from the continuous
attribute, has a degree of validity that depends on fuzzy
probabilities. By consequence, an example filtered by
this rule will have that rule’s class with a degree of
uncertainty which is calculated using the rule of the
generalized modus ponens. Parameters values α and β
are varied to obtain better performance.

The comparison of our results with those obtained by
Ant-miner and by cAnt-miner has shown that our
method gives promising results of the predictive
accuracies especially for Wisconsin breast cancer (α
=40) and diabetes (α =18) databases Tab .1. For Tic-tac-
toe and Ljubljana breast cancer, predictive accuracies
are not influenced by parameters α and β because their
attributes are nominal.
The number of terms per rule Tab .2 is lower in our
algorithm and easy to interpret by user.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 205

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 1: Predictive accuracy (mean ± standard deviation)

Dataset Ant-Miner cAnt-Miner
Fuzzy Ant-

Miner
Tic-tac-toe 73.04±2.53 73.52±2.81 73.64±2.21

Diabetes 72,84 -
75,03±2,60

(α =18, β=0.7)

Wisconsin
breast cancer

96.04 ± 2.80 96.84±2.13
98.05±2.62

(α =40, β=0.6)

Ljubljana
breast cancer

75.28±2.24 75.91 ±8.38 78,85

Table 2: Number of terms per rule

Dataset Ant-Miner
cAnt-
Miner

Fuzzy Ant-
Miner

Tic-tac-toe 1.18 1.17 1.10

Wisconsin
breast cancer

1.97 1.09
1.25

(α =40, β=0.6)

Ljubljana
breast cancer

1.28 1.06 1.00

6. CONCLUSION

In this paper we have proposed an extension to the
learning algorithms based on ant colonies in order to
process continuous valued attributes. These parameters
are discretized on the fly according to the concepts of
fuzzy logic. Our method takes under account the fuzzy
quality of a rule and the fuzzy entropy of a term during
the process of rule construction by ants. The fuzzy rules
obtained are exploited according the principle of fuzzy
inference.

The results obtained with fuzzy Ant-Miner showed an
obvious improvement compared to those of Ant-Miner
and cAnt-Miner.

References
[1] G A.Chan ,and A.Freitas, “A new classification-rule

pruning procedure for an ant colony algorithm”, Lecture
Notes in Artificial Intelligence 2005, 3871 25–36.

[2] P.Clark, and T.Niblett, “The CN2 rule induction
algorithm”. Machine Learning, 1989, 3(4) 261–283

[3] M.Dorigo,and T.Stutzle, “Ant Colony Optimization”,
MIT Press, 2004.

[4] A.Freitas, R.Parpinelli, and H.Lopes, “Ant colony
algorithms for data mining”, Sci. & Tech. 2nd Ed, 2008.

[5] H.Liu, F.Hussain, C.Tan, and M.Dash, “Discretization:
An enabling technique”, Data Mining and Knowledge
Discovery 2002, 6 393–423.

[6] C.Marsala, «Apprentissage inductif en présence de
données imprécises : Construction et utilisation d’arbres
de décision flous », Thèse de doctorat, Université Paris 6,
1998, pages 83-115.

[7] D.Martens, M.Backer, R.Haesen, J.Vanthienen, ,
M.Snoeck, and B.Baesens, “Classification with ant
colony optimization”, IEEE Transactions on Evolutionary
Computation 2007, 11(5) 651–665.

[8] F.Otero, A.Freitas, and C.G.Johnson, “cAnt-Miner: an ant
colony classification algorithm to cope with continuous
attributes, in Ant Colony Optimization and Swarm
Intelligence”, LNCS 5217, 2008 Springer, pp. 48–59.

[9] R.Parpinelli, H.Lopes, and A.Freitas, “Data mining with
an ant colony optimization algorithm,” IEEE.
Transactions on Evolutionary Computation, 2002, vol. 6,
no. 4, pp. 321–332.

[10] J.R.Quinlan, “Bagging, boosting, and c4.5”, in
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, AAAI Press and the MIT Press, pp.
725-730, 1993.

[11] M.Ramdani, « Système d’induction formelle à base de
connaissances imprécises », Thèse de doctorat, Université
Paris 6, 1994.

[12] Zadeh.A.Lotfi, “Fuzzy sets. Information and control”,
1965, 8:338-353;

[13] Zadeh.A.Lotfi, “Probability measures of fuzzy events”,
Journal Math. Anal. Applic., (1968), 23.

[14] M.Hamlich, and M.Ramdani, «Nouvelle méthode de
classification des données médicales par algorithmes de
colonies de fourmis », Première Journée de
l’Informatique Décisionnelle (JID’10), El Jadida 11 Mars
2010.

[15] M.Hamlich,and M.Ramdani, “Fuzzy classification
method by ant colonies”, International Conference on
Discrete Mathematics & Computer Science
DIMACOS’11, 2011, pp. 69.

[16] UCI Machine learning Repository,
http://archive.ics.uci.edu/ml/datasets.html.

Mohamed Hamlich is affiliated with Computer science Lab. of
FST, Mohammadia, Morocco. His research interests include
Data Classification, knowledge extraction and artificial
intelligence. He affords scientific advice to a group of research
in cardiology at CHU, University Hassan II, Casablanca,
Morocco.

 Mohammed Ramdani is affiliated with Computer science Lab.
of FST, Mohammadia, Morocco. His research interests include
Fuzzy logic, Data Classification, knowledge extraction and
artificial intelligence.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 3, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 206

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

