
Using image as cipher key in AES

Razi Hosseinkhani1 and Seyyed Hamid Haj Seyyed Javadi2

 1 Department of computer engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Mathematics and Computer ScienceShahed University, Tehran, Iran

Abstract:

This paper describes how cipher key can be
generated from image. We use image to generate
cipher key for AES algorithm. After this step , cipher
key watermarked in image. S-Box generated by this
key which it called Key-dependant S-box. These
steps make AES algorithm more robust and more
reliable.

Keywords: AES, Encryption, Key dependant S-Box,
Watermarking, Image key generation

1 – Introduction

In cryptography, encryption is the process of
transforming information (referred to as plaintext)
using an algorithm (called cipher) to make it
unreadable to anyone except those possessing special
knowledge, usually referred to as a key. The result of
the process is encrypted information (in
cryptography, referred to as ciphertext). In many
contexts, the word encryption also implicitly refers to
the reverse process, decryption (e.g. “software for
encryption” can typically also perform decryption), to
make the encrypted information readable again (i.e.
to make it unencrypted).

Encryption has long been used by militaries and
governments to facilitate secret communication.
Encryption is now commonly used in protecting
information within many kinds of civilian systems.
For example, the Computer Security Institute
reported that in 2007, 71% of companies surveyed
utilized encryption for some of their data in transit,
and 53% utilized encryption for some of their data in
storage. Encryption can be used to protect data "at
rest", such as files on computers and storage devices.
In recent years there have been numerous reports of
confidential data such as customers' personal records
being exposed through loss or theft of laptops or
backup drives. Encrypting such files at rest helps

protect them should physical security measures fail.
Digital rights management systems which prevent
unauthorized use or reproduction of copyrighted
material and protect software against reverse
engineering are another somewhat different example
of using encryption on data at rest.

Encryption is also used to protect data in transit, for
example data being transferred via networks (e.g. the
Internet, e-commerce), mobile telephones, wireless
microphones, wireless intercom systems, Bluetooth
devices and bank automatic teller machines. There
have been numerous reports of data in transit being
intercepted in recent years. Encrypting data in transit
also helps to secure it as it is often difficult to
physically secure all access to networks [1].

Cipher algorithms have the two general categories:
Private Key algorithms and public key algorithms.
Private Key algorithms using single key to encrypt
plain text and decrypt cipher text in sender and
receiver side. Private Key algorithm samples are:
DES (DES, 1977), 3DES and Advanced Encryption
Standard [2] Public Key algorithms, such as the
Rivest-Shamir-Adleman (RSA), using two different
key for encrypt plain text and decrypt cipher text in
sender and receiver sides.

Block cipher systems depend on the S-Boxes, which
are fixed and no relation with a cipher key[3]. So
only changeable parameter is cipher key. Since the
only nonlinear component of AES is S-Boxes, they
are an important source of cryptographic strength. So
we intend use an image to create cipher key and
watermarking this cipher key into image and Using
Cipher Key to Generate Dynamic S-Box [4]. That
cause increasing the strength of AES algorithms.

In section 2, we briefly introduce the AES algorithm
[2]. In section 3, we show that how cipher key
generated from image [4]. In Section 4, we explain
how cipher key watermarked into an image. In

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 538

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

section 5, we show that how S-Box will be generated
from cipher key and in the final section we analyze
experiments and investigate about results.

2 - Advanced Encryption Standard (AES):

In cryptography, the Advanced Encryption Standard
(AES) is a symmetric-key encryption standard
adopted by the U.S. government. The standard
comprises three block ciphers, AES-128, AES-192
and AES-256, adopted from a larger collection
originally published as Rijndael. Each of these
ciphers has a 128-bit block size, with key sizes of
128, 192 and 256 bits, respectively. The AES ciphers
have been analyzed extensively and are now used
worldwide, as was the case with its predecessor, the
Data Encryption Standard (DES) [2].

AES was announced by National Institute of
Standards and Technology (NIST) as U.S. FIPS PUB
197 (FIPS 197) on November 26, 2001 after a 5-year
standardization process in which fifteen competing
designs were presented and evaluated before Rijndael
was selected as the most suitable. It became effective
as a Federal government standard on May 26, 2002
after approval by the Secretary of Commerce. It is
available in many different encryption packages.
AES is the first publicly accessible and open cipher
approved by the NSA for top secret information.

2.1- Description of the cipher

AES has a fixed block size of 128 bits and a key size
of 128, 192, or 256 bits, whereas Rijndael can be
specified with block and key sizes in any multiple of
32 bits, with a minimum of 128 bits. The blocksize
has a maximum of 256 bits, but the keysize has no
theoretical maximum.

AES operates on a 4×4 matrix of bytes, termed the
state (versions of Rijndael with a larger block size
have additional columns in the state). Most AES
calculations are done in a special finite field.

The AES cipher is specified as a number of
repetitions of transformation rounds that convert the
input plaintext into the final output of ciphertext.
Each round consists of several processing steps,
including one that depends on the encryption key. A
set of reverse rounds are applied to transform
ciphertext back into the original plaintext using the
same encryption key.

2.2- High-level description of the algorithm

1. KeyExpansion: round keys are derived from the
cipher key using Rijndael's key schedule

2. Initial Round
1. AddRoundKey: each byte of the state is

combined with the round key using bitwise
xor

3. Rounds
1. SubBytes: a non-linear substitution step
where each byte is replaced with another
according to a lookup table.
2. ShiftRows: a transposition step where each
row of the state is shifted cyclically a certain
number of steps.
3. MixColumns: a mixing operation which
operates on the columns of the state, combining
the four bytes in each column.
4. AddRoundKey

4. Final Round (no MixColumns)
1. SubBytes
2. ShiftRows
3. AddRoundKey

The Cipher is described in the pseudo code in
Algorithm 1.

Algorithm 1.Pseudo Code for Cipher

3 – Generate Key from image:

To generate key, we need 16 points from image. Each
of these points converted into one byte of Key. The

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 539

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

following algorithm shows that how these points will
be selected from image. In next step, we need to
generate key bytes from these points.

Algorithm steps:

1- Height and width of the first point acquired with
width, height and RGB color of center point.

2- Other points acquired with following function, that
it uses RGB color to generate one byte of key. The
SecretKeyGenerator described in the pseudo code in
algorithm 2.

After executing the SecretKeyGenerator(Algorithm
2), secret key is ready to be watermarked in image.

4- Watermarking secret key in image

4.1– Bitmap files structure

The first 54 byte of BMP file is header which it’s
fixed in size. Other bytes have information about
points color[5].

Figure 3: BMP file structure in brief

4.2- Watermarking algorithm

The watermarking algorithm puts Secret Key bytes
into lower bits of image points so that the image size
had to greater than 128 * 8 byte.

Algorithm 2: SecretKeyGenerator generate Secret
Key by image

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 540

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1: The original Image.

Figure 2: Selected points for create Secret Key in
SecretKeyGenerator function.

Algorithm 3: Watermark Secret key into image.

5 – Dynamic S-Box generation from cipher key
algorithm:

5.1 – First Step :

We need primary S-Box to generate dynamic S-Box ,
that should has 16 rows and columns. We use S-Box
generation algorithm that introduced in AES[2], to
create primary S-Box as follows:

1- Take the mulltiplicative inverse in the finite
feild GF(28); the element {00} is mapped
itself.

2- Apply the following affine transformation
(over GF(2)):

ܾ
ᇱ ൌ ܾ ⊕ ܾሺାସሻௗ଼	 ⊕ ܾሺାହሻௗ଼	

⊕ ܾሺାሻௗ଼	 ⊕ ܾሺାሻௗ଼	
⊕ ܿ

Equation 1: Affine transformation that is used to
create s-box

For 0 i ൏ 8 ,where b୧ is the i୲୦ bit of the byte, and
c୧ is the i୲୦ of a bytec with the value {63} or
(01100011}. Here and elsewhere, a prime on a
variable (e.g., b୧) indicate that the variable is to be
uodated with the value on the right. In matrix form,
the affine transformation element of the S-Box can be
expressed as:

Figure 4: Step 2 in S-Box generation in AES

5.2 – Second Step :

In this step, rows swapped with columns of primary
S-Box in GenerateDynamicSbox(cipherKey)
function. This function guarantees new S-Box remain
one-for-one. This routin get cipher key as input and
generate dynamic S-Box from cipher key. Note that
in this paper if cipher key has 192 or 256 bits size, we
use only first 128 bits of cipher key [4].

 5.2.1 – GenerateDynamicSbox Algorithm :

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 541

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Algorithm 4: The GenerateDynamicSbox(cipherKey)
function generate dynamic S-Box form cipher key.

In line 4, GetShiftCount(cipherKey) get cipherKey as
input and return number of shift that should be
applied to rows and columns before replacing with
each other.

In line 5, GeneratePrimarySbox () generate primary
S-Box according 4.1.

In line 6, start loop for 16 times (foreach byte of
cipher key, only first 16 byte of cipher key is used).

In line 8, GetProperIndex(cipherKey[i], out
rowIndex, out columnIndex) get byte of cipher key
and return indexes of row and column that should be
replaced with each other.

In line 9, ShiftRow(rowIndex, shiftCount, sBox) get
row index of S-Box and shift each element of given
row cyclically. It means if rowIndex = 0 and
shiftCount = 1, first element of S-Box, sBox[0,1]
replace with sBox[0,0] and sBox[0,2] replace with
sBox[0,1] ... and sBox[0,0] replace with sBox[0,15].
(The first index of sBox determine rowIndex and
second one determine columnIndex).

In line 10, ShiftColumn(columnIndex, shiftCount,
sBox) get column index of S-Box and shift each
element of given column cyclically. It means if
columnIndex = 0 and shiftCount = 1, first element of
S-Box, sBox[1,0] replace with sBox[0,0] and
sBox[2,0] replace with sBox[1,0] ... and sBox[0,0]
replace with sBox[15,0].

In line 11, Swap(rowIndex, columnIndex, sBox) get
row and column index and then swapped them with
each other. For example if rowIndex = 5 and
columnIndex = 4 the Swap function swapping
element at sBox[0,5] with sBox[4,0] and sBox[1,5]
with sBox[4,1] and ... and finaly sBox[15,5] swap
with sBox[4,15].

5.2.2 – GetShiftCount Algorithm:

This function get cipher key as input and then return
number of shift count as output. If cipher key larger
than 128 bit, only first 128 should be used.

Algorithm 5: The GetShiftCount () function used to
getshift count before swapping rows with columns.

In line 4, customizingFactor value is in [0-255]
range. This variable can customize the GetShiftCount
return value and then customize
GenerateDynamicSbox.

In line 5, start loop for 16 times (foreach byte of
cipher key, only first 16 byte of cipher key is used).

In line 6, sign ^ means XOR operation and sign %
means modulo in C#. This equation guarantees that
changing only one bit of Cipher key cause changing
the value of shiftCount.

.In line 9, shiftCount XOR with customizingFactor
that cause generate 256 different customizing states
for shiftCount value.

5.2.3 – GetProperIndex Algorithm:

This function gets byte of cipher key and then return
rowIndex and columnIndex as output. This function
using Shuffle exchange algorithm [9] that used in
designing parallel algorithms.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 542

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Algorithm6: The GetProperIndex function pseudo
code

In line 3, rowUsedArray and columnUsedArray
variables are using for saving index that used in
previous steps.

In line 4, sign & means AND operation in C#.

In line 5, sign >> means shift right n-times in C#.

In line 6, Shuffle function get rowIndex number and
return next available rowIndex number if given
rowIndex is in rowUsedArray.

In line 7, Shuffle function get columnIndex number
and return next available columnIndex number if
given columnIndex is in columnUsedArray.

In line 8, current rowIndex add to rowUsedArray
array.

In line 9, current columnIndex add to
columnUsedArray array.
This causes that every row and column only one time
returns with this function thus every row and column
is used for one time in GenerateDynamicSbox.

6 – Experimental results :

In general, in S-Box, n input bits are first represented
as one of 2n different characters. The set of 2n
chracters are then permuted so that each character is
transposed to one of the others in the set. The
character is then converted back to an n-bit output. It
can be easily shown that there are (2n)! differnet
substitution or connection patterns possible.

The cryptanalyst’s task becomes computionally
unfeasible as n gets large, say n = 128; then 2n = 1038,
and (1038)! is an astronomical number.

We experimentally compared keys that generated by
same image with different opacity(second image 1%
lighter than first image), then we generate dynamic S-
Box from keys. S-Box tables illustrated in figure 5,
6.

key_hex1
={3c,1a,69,a4,0b,69,82,53,12,df,07,fd,3d,00,51,5d}

Figure 5. The dynamic S-Box generated with
key_hex1.(S-Box1)

We find 253 different between S-Box1 and S-Box2,
thus approximately %99 of second S-Box is changed.
The difference of S-Box1 and S-Box2 elements is
illustrated in figure 7.

key_hex2
={3e,1d,6b,a5,0e,0c,83,55,15,df,0a,df,3f,03,53,5f}

Figure 6: The dynamic S-Box generated with
key_hex2.(S-Box2)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 543

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 7: Plot of the difference of the S-Box elements
(S-Box1 and S-Box2)

7– Refrences

[1] Encrption Availbale at :
http://en.wikipedia.org/wiki/Encryption

[2] Federal Information Processing Standards,
“Advanced Encryption Standard (AES)” Publication
197, November 26 - 2001

[3] Kazys KAZLAUSKAS, Janunius
KAZLAUSKAS,” Key-Dependent S-Box Generation
in AES Block Cipher System” , Inoformatica
Volume: 20 – 2009

[4] Using Cipher Key to Generate Dynamic S-Box
in AES Cipher System, Razi Hosseinkhani, H.Haj
Seyyed Javadi, Internationl Journal Of Computer
Sciences And Security, Volume 6, Issue 1

[5] BMP file format Available at :
http://en.wikipedia.org/wiki/BMP_file_format

[6] Michael J.Quinn, Designing efficient algorithms
for parallel computers, University of New
Hamoshire, 1987

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 544

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

