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Abstract 

Image denoising is the principle problem of image restoration 
and many scholars have been devoted to this area and proposed 
lots of methods. In this paper we propose modified feature 
restoration algorithm based on threshold and neighbor technique 
which gives better result for all types of noise. Because of some 
limits of conventional methods in image denoising, several 
drawbacks are seen in the conventional methods such as 
introduction of blur and edges degradation.  Those can be 
removed by using the new technique which is based on the 
wavelet transforms. The shrinkage algorithms like Universal 
shrink, visue shrink, bays shrink; have strengths in Gaussian 
noise removal. Our proposed method gives noise removal for all 
types of noise, in wavelet domain. It gives a better peak signal to 
noise ratio as compared to traditional methods 
 
Keywords: Image Noise, threshold, Wavelet. 

1. Introduction 

Image Denoising consists of an attempt to recover an 
image which has been degraded by a linear shift-invariant 
filtering operation with noise. It has applications in fields 
such as astronomy, remote sensing and biomedical 
imaging as well as in everyday life for the enhancement of 
noisy photos. The existing linear image restoration of 
algorithms assumes that the Point Spread Function (PSF) 
is known a priori and it attempts to reverse it in 
cooperation to reduce noise by utilizing the available 
information. Although many researchers have worked on 
this type of problem, it was difficult to work with the 
unknown noise in many real situations [1]. 

The image restoration process is restoring an unknown 
image using partial or no information about the imaging 
system. It is well known that the image restoration is quite 
a challenging problem in the field of image processing, 
especially for those images which are degraded by 
Gaussian noise. The traditional method for image 
restoration is to detect the parameters of the PSF firstly 
from the degraded image, and then to recover the 

underlying image. However, the restoration of the 
Gaussian noise image is very difficult, especially in the 
case of PSF unknown. 

In [2] [3] Donoho proposes different thresholding 
technique, but this technique not keep details like edges, to 
overcome this we proposes new technique. In this paper, 
we have proposed the threshold and convolution 
technique. The input image is applied to different noises to 
get the noisy image. Different types of noise such as white 
Gaussian, Salt and Pepper, Speckle and Poisson’s added to 
the image .This image is transformed into the wavelet 
domain [4][5].The Wavelet features are modified by the 
proposed technique and process which would be reversed 
by applying Inverse Wavelet Transform to remove the 
noise from the image. Figure 1, elaborates the process of 
denoising Image denoising algorithm consists of a few 
steps, let us consider an input signal x(t) and noisy signal  
n(t), add both the signals  to get y(t) , i.e. 

 )()()( tntxty                       (1)                        

where the noise can be Gaussian, Poisson’s, speckle and  
Salt and pepper, then apply wavelet transform to get w(t). 

 )()(   twty TransformWavelet                                      (2) 

Modify the wavelet coefficient w(t) using different 
threshold algorithm and take inverse wavelet transform to 

get denoising image )(ˆ tx . 

  ˆ( ) ( )Inverse Wavelet Transformw t x t                (3) 

The Fig. 1 depicts a denoising scheme. The results 
obtained from various proposed threshold and convolution 
methods compare with the PSNR values of denoising 
images [6]. This paper is organized as chapter I expresses 
the introduction of image denoising scheme, chapter II 
illustrates the theory of wavelet transform while chapter 
III introduces proposed threshold methods and chapter IV 
briefs the implementation and result. 
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Fig. 1: Block diagram of denoising technique  

2. Wavelet Transform 

The wavelet expansion set is not unique. A wavelet system 
is a set of building blocks to construct or represent a signal 
or function. It is a two dimensional expansion set, usually 
a basis, for some class one or higher dimensional signals 
[7] [8] [9].  

The wavelet can be represented by a weighted sum of 
shifted scaling function   )2( t  as,  

 
n

ntnht Zn      )2(2)()( 1                    (4) 

For some set of coefficient h1 (n), this function gives the 
prototype or mother wavelet )(t  for a class of 

expansion function of the form  

)2(2)( 2/
, ktt jj
kj    

                                      
(5) 

Where j2 is the scaling of kt j2, is the translation in t , 

and 2/2 j maintains the 2L  norms of the wavelet at 
different scales. The construction of wavelet using the set 

of scaling function )(tk and )(, tkj that could span all 

of  );(2 RL   therefore function )()( 2 RLtg   can be 

written as 

   













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(6) 

First summation in the above equation gives a function 
that is low resolution of g (t), for each increasing index j in 
the second summation, a higher resolution function is 
added which gives increasing details. The function d(j,k) 
indicates the differences between the translation index k, 
and the scale parameter j.  In wavelet analysis expand 
coefficient at a lower scale level to higher scale level, from 
equation (7), we scale and translate the time variable to 
give  




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


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nktnh
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     )22(2)(                  
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
     (7) 

After changing variables m=2k+n, the above equation 
becomes    

  

m

jt mtkmhkt 12(2)2()2(             (8) 

At one scale lower resolution, wavelets are necessary for 
the detail not available at a scale of j. We have  







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tj
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jj
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Where the 2/2 j   terms maintain the unity norm of the 

basic functions at various scales. If )(, tkj and 

)(, tkj are orthonormal, the j level scaling coefficients 

are found by taking the inner product 

  dtkttfttfkc jj
kjj )2(2)()(),()( 2/

,         

                (10) 

By using equation (10) and interchanging the sum and 
integral, can be written as  

   

m

jj
j dtmttfkmhkc )2(2)()2()( 12/)1( 

      (11) 

But the integral is an inner product with the scaling 
function at a scale 1j  giving  

 
m

jj mckmhkc )()2()( 1                               (12) 

The corresponding wavelet coefficient is 

 
m

jj mckmhkd )()2()( 11                             (13)                      

Fig. (2) shows the structure of two stages down sampling 
filter banks in terms of coefficients. 

A reconstruction of the original fine scale coefficient of 
the signal made from a combination of the scaling 
function and wavelet coefficient at a course resolution is 
derived by 
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Fig. 2: Two stages down sampling Filter bank 

 

considering a signal in the j+1 scaling function 

space 1)(  jvtf . This function is written in terms of the 

scaling function as   

  


k

jj
j ktkctf )2(2)()( 12/)1(

1                   (14) 

In terms of the next scales require wavelet as  
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                                 (16) 

Fig. (3) shows the structure of two stages up sampling 
filter banks in terms of coefficients i.e. synthesis from 
coarse scale to fine scale one [5] [6] [7]. 

 

Fig. 3: Two stages up sampling filter 

The filter structure analysis can be done by applying one 
step of the one dimensional transform to all rows, then 
repeating the same for all columns then proceeding with 
the coefficients that result from a convolution within both 
directions, this is one level wavelet decomposition that 
proceeds similar for two levels for LL components to get a 
two-level decomposition structure shown in Fig. (4). 

 

Fig. 4: Two-dimensional wavelet transforms  

Calculating wavelet coefficients at every possible scale is 
a fair amount of work, and it generates an awful lot of 
data. We choose only a subset of scales and positions at 
which to make our calculation. It turns out, rather 
remarkably, that if we chose only a subset of scales and 
positions based on powers of two so-called dyadic scales 
and positions then our analysis will be much more 
efficient and just as accurate. We obtain such an analysis 
from the discrete wavelet transform [10] [11] [12]. 

3. Proposed Thresholding 

There are different denoising schemes used to remove 
noise while preserving original information and basic 
parameter of the image. Contrast, brightness, edges and 
background of the image should be preserved while 
denoising in this technique. Wavelet transform tool is used 
in denoising of image. Actually, the performance of our 
algorithm is very close to, and in some cases even 
surpasses, to that of the already published denoising 
methods. There are different techniques applied to the 
feature vector of wavelet. It was good for a few noise 
functions but our proposed technique gives a better result 
than the existing method does [13] [14] [15]. The 
universal threshold scheme was suggested by Donoho and 
Johnston for Gaussian noise. As the name in itself 
suggests, the universal threshold scheme is a global 
thresholding scheme in which a universal threshold is 
fixed for all the empirical wavelet coefficients. Visu 
Shrink was introduced by Donoho [2]. It uses a threshold 
value t that is proportional to the standard deviation of the 
noise. Bayes Shrink is an adaptive wavelet threshold 
method proposed by Chang, Yu, and Vetterli using a 
Bayesian estimate of the risk. Threshold calculations are 
based on the assumption that wavelet coefficients can be 
described by a generalized Gaussian distribution with 
shaping parameter  These distribution functions fit the 
coefficients of the most natural images very well. The 
threshold chooser based on Stein’s Unbiased Risk 
Estimator (SURE) was proposed by Donoho and Johnston 
and is called as Sure Shrink [17] [18]. It is a combination 
of the universal threshold and the SURE threshold. We 
have proposed a few functions for denoising using 
wavelet, performance of our methods evaluated by using 
PSNR [19]. As one may observe, threshold determination 
is an important question when applying the wavelet 
thresholding scheme. A small threshold may yield a result 
close to the input, but the result may be still being noisy. A 
large threshold on the other hand, produces a signal with a 
large number of zero coefficients. This leads to overly 
smooth signal. Paying too much attention to smoothness 
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generally suppress the details and edges of the original 
signal and cause blurring and ringing artifacts.  
3.1 Proposed Threshold 1:  

The image features are characterized by mean and 
standard deviation. The mean smoothen the image data 
reduces noise. Noise in an image logarithmically reduces. 
We propose nonlinear threshold operator for removing 
noise. This threshold is generated as   

)log(2 Mmnewth                   (17) 

Where, is the total number of pixel of an image,   is 
the mean of the image. This function preserves the 
contrast, edges, background of the images. This threshold 
function is calculated at different scale levels.  This 
proposed threshold performance calculated using peak 
signal to noise ratio (PSNR). A simple but often used 
quantitative measure of assessing image distortion due to 
degradation is the signal to noise ratio (SNR). The 
disadvantage with this measure of the SNR is that it is a 
function of the image variance. Even if the mean square 
error (MSE) between the two images is the same, SNR 
values can differ if the corresponding variance differs. 
Another quantitative measure often used in practice is 
peak SNR (PSNR), which is defined as the ratio of the 
square of the peak signal to the MSE, expressed in dB  


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11

]),[ˆ],[(
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Where,   is the original image detail, and 

 is the recovered image detail. 

3.2 Circular kernel 

Kernel applied to the wavelet approximation coefficient, 
to get de-noised image with all parameters is undisturbed. 
The kernel used here in this technique contains some 
components are zeros and ones as shown in Fig. (5). 

A multi-resolution analysis wavelet structure has been 
used for this kernel to get result. This kernel helps to 
preserve the edges and boundary of the images so that 
better technique as compare to the other threshold 
methods. This kernel is used at the different 
decomposition level simply moving this window in an 
image. This step is called as convolution. The kernel has 
little degradation and enhancing components will not 
affect the original information of the image. It preserves 
the detail of the image. After convolution we have to 

apply inverse wavelet to get denoisy image. This 
convolution method gives better peak signal to noise ratio 
(PSNR). 

  

Fig. 5: Circular Kernel 

3.3 Mean-Max threshold:   

This method generates the threshold using mean and max 
method after wavelet decomposition at different level. Let 
xi denote the sequence of elements; threshold can be 
calculated using following technique. 

 





















)],.......([

 .... )],,.......([

     )],,.......([

1

12

1

iki

k

k

j

xxMIN

xxMIN

xxMIN

MAXxMAXMIN

      
      
      
     (18) 

 





















)],.......([

 .... )],,.......([

     )],,.......([

1

12

1

iki

k

k

j

xxMAX

xxMAX

xxMAX

MINxMINMAX

            
      
      
    (19) 

This methodology gives MIN and MAX of the sub band at 
different level of the decomposed image. Then wavelet 
coefficients are threshold by different combination at 
different decomposition level. This threshold gives better 
PSNR for different noisy images.  

3.4 Nearest neighbor:  

This technique gives better result for different kernel 
structure shown in Fig. (6). In this kernel central pixel 
(CP), calculated from the neighbor value. Three different 
kernels have proposed for better reduction of noise using 
wavelet transform at different scale. Mark ‘x’ denotes low 
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value at that position [20]. The neighbor values 1,2,3,4 
denote the components of the kernel will be marked as 
one. This mask is moving in the different sub band of the 
decomposed image. Then degraded coefficients are 
enhanced in this technique. These three kernels give better 
PSNR as compared to all technique at different noise 
level.  

 

    

Fig. 6: Kernel at different noise level 

3.5 Proposed Threshold 2: 

For the image degradation depends on the standard 
deviation, mean, variance of image. Concentrating on the 
parameter we have proposed a new technique of threshold 
algorithm and to get the good results for the different 
noisy and blurred structures. 

 ).log( devstdenergymean                      

(20) 

This threshold gives better PSNR performance parameter. 
For all types of noise image quality is drastically 
improved. This threshold is applied independently to each 
sub-band of an image’s wavelet coefficients using soft 
thresholding, including the lowest resolution LL sub-band. 
This yields a frequency adaptive threshold that is more 
aggressive in the signal. Use of this threshold optimizes 
performance by removing the most noise possible while 
still preserving the original signal. 

3.6 Cluster average Technique 

This technique applies to the features of the wavelet and is 
modified on the basis of the best suit by the technique of 
neighbor of cluster. The best basis determined from 
wavelet feature is as  


i

iXyavg
1

3/1)(                         (21) 

Replace the new value using ))(min( iyavgstore   

                          

Fig. 7: neighbor pixel 

In Fig. (7) the center pixel CP will be replaced by taking 
minima of all averages in all dimensions. This 3*3 
neighbor varies in the full image and modified the wavelet 
coefficient at different level. The modified wavelet feature 
is obtained using the above method applied to the 
frequency domain. This technique gives a better PSNR of 
denoised image. This clustering is applied to 
independently to each sub-band at different level of 
decomposition. The wavelet coefficients using this 
neighboring at each level is modified and gives the 
denoised image by inverse wavelet transform.  

4. Implementation and Result 

Noise reduction plays a fundamental role in image 
processing, and wavelet analysis has been demonstrated to 
be a powerful method for performing image noise 
reduction. The procedure for noise reduction is applied on 
the wavelet coefficients achieved using the wavelet 
decomposition and representing the image at different 
scales. After noise reduction, the image is reconstructed 
using the inverse wavelet transform. A degraded noisy 
image can be approximately described using equation (1); 
this noisy image is obtained by using all noisy functions. 
Wavelet transform tool is applied to noisy image to get 
wavelet coefficient, the steps of algorithm are as follows  
i) Read an image. 
ii) Apply different types of noise such as Gaussian, 

Poisson’s, speckle and Salt and pepper etc. 
iii) Apply wavelet transform to noisy image at a required 

level, we would get four components namely, 
Approximation, Horizontal, Vertical, Diagonal 
coefficients. 

iv) Select appropriate coefficients from the above 
decomposition and find out statistical parameters of 
coefficients. Based on the statistical parameters and on 
one of the threshold selection algorithms find out 
proper threshold value for respective coefficients. 
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v) In denoising each coefficient is threshold by 
comparing against a threshold; if the coefficient is 
smaller than the threshold it is set to zero, otherwise, it 
is kept. 

vi) Apply Inverse Wavelet transform to threshold 
coefficient, it gives a de-noised image. 

We have considered here ten images Result of all 
functions shown in Table (1) for all type of noise. Then we 
will recover the denoised image. We compared various 
denoising method on several test images widely used in 
image processing community. Here, we report the result 
only for the Lena image. The result shown in Fig. (8) 
shows graphical representation functions and their PSNR 
for Gaussian noisy image , Fig. (9) shows graphical 
representation functions and their PSNR shows the result 
for Salt and pepper noisy image, Fig. (10) shows the 
graphical representation functions and their PSNR shows 
the result for Speckle noise image. Fig. (11) shows 
graphical representation functions and there PSNR depicts 
the result of Poisson’s noise image.  

5. Conclusion 

The method describes a new way of denoising the image 
based on the wavelet transform. Because of some limits of 
conventional methods in image denoising, several 
drawbacks such as edge degradation are seen in the 
conventional methods.  Those can be removed by using 
the new technique which is based on the wavelet 
transforms. We have analyzed the various techniques of 
image denoising by using the proposed methods. The 
proposed method 1 and proposed method 2 has good result 
at different noise level as compared to the existing 
methods. The circular kernel and Min Max method gives 
the better result visually but the PSNR is not good for this 
method as compared to all methods. This technique 
preserves the details of the image like edges as compared 
to the existing technique. The nearest neighbor method has 
better result as compared to the all existing method as well 
as all proposed technique.  The cluster averaging 
technique has comparable excellent PSNR values. For 
Gaussian noise, all functions work better than the existing 
threshold. In Speckle noise, nearest neighbor methods give 
a better result. In Poisson’s noise, all methods give 
comparable results. In Salt and Pepper noise, our proposed 
cluster method has better results. The results would be 
improved by using various applications of the filter masks. 
The improvement can be seen with a change in the type of 
wavelet family function that is used in the image 
transformation. 
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Fig. (8) Different Noisy methods Vs PSNR for Gaussian noisy image 
 

 
 
 
 

Fig. (9) Different Noisy methods Vs PSNR for Salt and Pepper noisy image 
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Fig. (10) Different Noisy methods Vs PSNR for Speckle noisy image 
 
 
 

 
 
 
 

Fig. (11) Different Noisy methods Vs PSNR for Poisson noisy image 
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Table 1: Result of existing Threshold and proposed threshold for Gray scale image 

Average Result Grayscale image PSNR 

Methods / Different Noise with 
different Variance 

Gaussian Noisy Image  Salt and Pepper Noisy Image Speckle Noisy Image Poisson’s 
Noisy  

variance 
0.0001 

variance 
0.001 

variance 
0.01 

noise 
density 
0.0005 

noise 
density 
0.005 

noise 
density 
0.05 
 

variance 
0.0004 
 

variance 
0.004 
 

variance 
0.04 
 

 

Visushrink 22.16977 22.14152 21.92842 22.16511 22.18395 22.23792 22.16046 22.12868 21.79722 22.10774 

Universal threshold  15.59039 15.55855 15.23345 15.58474 15.5606 15.26962 15.59164 15.54939 15.2169 15.51797 

Sure shrink 27.62108 27.41412 25.81209 27.60585 27.28795 24.97738 27.61881 27.38486 25.66125 27.21611 

Normal Shrink 27.65737 27.33262 25.27777 27.63827 27.1326 24.34225 27.65563 27.30175 25.13692 27.05406 

Bays shrink  28.06855 27.32924 25.28576 27.63227 27.13368 24.3437 27.65462 27.29712 25.12893 27.05518 

Proposed Threshold 1 34.24185 30.42973 26.15837 30.94006 29.07881 25.04729 32.74616 29.38359 25.91142 28.77463 

Circular kernel 18.01832 17.98021 17.65805 17.86465 17.8454 17.63618 17.86525 17.97706 17.71615 17.82687 

Mean 
Max 
approxim
ation 

Maxmax 16.83597 16.845 16.86032 16.83453 16.84967 16.95953 16.84073 16.86323 16.94244 16.86811 

Maxmin 16.83347 16.74133 16.65495 16.80812 16.63208 16.36204 16.75627 16.74423 16.58488 16.77375 

Minmax 15.8685 15.69424 15.9039 15.73588 15.82213 16.30574 15.68155 15.70579 16.05217 15.73023 

Meanmax 16.90268 16.91443 16.95962 16.90468 16.92339 16.96804 16.90141 16.90642 16.95164 16.91248 

Sqrtth 16.91752 16.91206 16.81611 16.89092 16.81259 16.62759 16.91807 16.91243 16.85461 16.90424 

Nearest 
Neighbor 

Four neighbor 
diagonal 

41.28095 41.27857 41.27484 41.28104 41.28083 41.28042 41.27804 41.26721 41.21891 41.2671 

Four neighbor 
directional 

40.22822 40.22491 40.21406 40.22843 40.22753 40.22321 40.22636 40.21482 40.15304 40.21488 

Eight connectivity 
neighbor 

40.23025 40.2276 40.22342 40.2307 40.23078 40.22598 40.22871 40.21883 40.16281 40.21832 

Cluster  Method 32.28825 29.87745 26.06135 31.89543 30.0085 26.07388 31.14709 29.33233 25.82711 28.71412 
Proposed Threshold 2 34.25101 29.56134 26.1228 29.4063 28.70642 24.97664 29.42172 28.87425 25.87373 28.52123 
 
 

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 412

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




