

New Strategy for Congestion Control based on Dynamic
Adjustment of Congestion Window

Gamal Attiya

Department of Computer Science and Engineering,
Faculty of Electronic Engineering,

Minoufiya University, Egypt

Abstract

This paper presents a new mechanism for the end-to-end
congestion control, called EnewReno. The proposed mechanism
is based on the enhancement of both the congestion avoidance
and the fast recovery algorithms of the TCP NewReno so as to
improve its performance. The basic idea of the proposed
mechanism is to adjust the congestion window of the TCP sender
dynamically based on the level of congestion in the network so as
to allow transferring more packets to the destination. The
performance of the proposed mechanism is evaluated and
compared with the most recent mechanisms by simulation studies
using the well known Network Simulator NS-2 and the realistic
topology generator GT-ITM.

Keywords: TCP, Congestion Control, Congestion Avoidance,
Fast Recovery algorithm, Network Protocols.

1. Introduction

Today, the majority of traffic over the Internet is carried
out by the Transmission Control Protocol (TCP). TCP is a
window based reliable data transfer protocol providing
data transport between two end hosts of a connection. The
original TCP is officially defined in [1]. It has a simple
sliding window flow control mechanism. The essential
strategy of TCP is sending packets to a network without a
reservation and then reacting to observable events.

Over years, the use of Internet services has experienced
dramatic growth and Internet applications have evolved
from standard document retrieval functionality to
multimedia services. The rapid growth of the Internet and
the increasing of the traffic demand lied to a serious
problem called congestion collapse [2]. Internet congestion
occurs when the aggregate demand for resources exceeds
the available capacity of the network. This problem leads
to unacceptable long response times particularly for real-
time applications. Indeed, when a packet encounters
congestion, there is a good chance that the packet is
dropped, and the dropped packet wasted precious network
bandwidth along the path from its sender to its untimely
death. Congestion control is thus required to prevent
congestion collapse in the network. Without congestion

control, a sending node could be busy transmitting packets
that may be dropped later. Therefore, one of the keys to the
success of the Internet is relying on using congestion
control mechanisms.

 After observing a series of congestion collapses,
continuous efforts are being done to avoid congestion. The
most essential is the congestion control mechanism
provided by Jacobson in 1988 [3]. This mechanism is
called TCP Tahoe. It includes three algorithms; namely;
slow start, congestion avoidance, and fast retransmit. In
1990, a new TCP version called TCP Reno was developed
by adding fast recovery algorithm to Tahoe [4]. TCP Reno
can be thought of as a reactive congestion control scheme
that uses packet loss as an indicator for congestion. In
order to probe the available bandwidth along the end-to-
end path, the TCP congestion window is increased until a
packet loss is detected, at which point the congestion
window is halved and a linear increase algorithm takes
over until further packet loss is experienced. In [5], the
authors have shown that TCP Reno may periodically
generate packet loss by itself and cannot efficiently recover
multiple packet losses from a window of data. Moreover,
the Additive Increase Multiplicative Decrease (AIMD)
strategy of TCP Reno leads to periodic oscillations in the
aspects of the congestion window size (cwnd), round-trip
delay, and queue length of the bottleneck node. The
oscillation may induce chaotic behavior in the network,
thereby adversely affecting overall network performance.

Several proposals have been put forward to improve TCP
congestion control and to alleviate the performance
degradation problem of packet loss. Some researchers
attempted to refine the fast retransmit and fast recovery
algorithms while other researchers attempted to refine the
slow start and congestion avoidance algorithms. New
proposals included TCP NewReno [6], Forward
Acknowledgment (FACK) [7], Selective Acknowledgment
(SACK) [8], dynamic recovery [9], an Extension to the
SACK Option (D–SACK) [10], TCP with Faster Recovery
(FR–TCP) [11], Reordering–Robust TCP (RR–TCP) [12],
Duplicate Acknowledgment Counting (DAC) [13], and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 368

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

TCP SACK+ [14] and TCP Vegas [15, 16]. The TCP
New-Reno, FACK, and SACK are based on TCP Reno,
while dynamic recovery, FR–TCP and DAC are based on
TCP NewReno; and TCP DSACK, RR–TCP, and TCP
SACK+ operate at the sender of SACK.

Comparative studies between the different proposals for
congestion control are presented in [17-19]. The
comparative studies show that the TCP NewReno provides
better performance than previous TCP variants. However,
it has been found that the TCP NewReno is inefficient in
terms of utilization of link capacity and unfair in its
throughput performance [20, 21]. The problem with
NewReno is that, it halves its congestion window, as long
as a packet loss is detected, irrespective of the state of the
network. Another problem is that, when there are no packet
losses but packets are reordered by more than three
duplicate acknowledgments; NewReno mistakenly enters
fast recovery and halves its congestion window [22, 23].

This paper presents a new mechanism for the end-to-end
congestion control, called EnewReno. The proposed
mechanism is based on the enhancement of both the
congestion avoidance and the fast recovery algorithms of
the current TCP NewReno. The main idea is to adjust the
congestion window at the TCP sender dynamically
according to the state of the network (i.e., the network load
or the level of congestion at the network). The
performance of the proposed mechanism is evaluated and
compared with the most recent mechanisms by simulation
studies using the well known Network Simulator NS-2 [24]
and the realistic topology generator GT-ITM [25, 26].

The rest of this paper is organized as follows; Section 2
presents an overview of the widespread TCP mechanisms;
TCP Tahoe, Reno, NewReno, Sack, and Vegas. Section 3
presents the weakness of TCP variants while the proposed
mechanism is described in section 3. The simulation results
and discussions are given in Section 5. Finally, the
conclusions and future work are given in section 6.

2. TCP Variants

TCP has been refined several times aiming to improve its
performance and ensure the internet stability. Among these
mechanisms, which are of interest, are TCP Tahoe [3],
Reno [4], NewReno [6], Sack [8], and Vegas [15, 16].

2.1 TCP Tahoe

TCP Tahoe is the first implementation that handles
congestion control. It was released in 1988 by V. Jacobson
[3]. TCP Tahoe controls congestion by adjusting its

window size additively to increase and multiplicatively to
decrease (AIMD). It uses three algorithms, namely; slow-
start, congestion avoidance and fast retransmit. During
slow-start, the congestion window (cwnd) increases
exponentially by one for each acknowledgement received
until it reaches the slow-start threshold (ssthresh), and
during congestion avoidance the congestion window
increases linearly by one per round trip time (RTT). The
TCP sender goes into the fast retransmit mode when it
receives 3 duplicate acknowledgements. During fast
retransmit, the sender retransmits the lost packet and enters
into the slow-start phase by setting the ssthresh to the half
of the current congestion window and setting congestion
window to 1. Whenever a timeout occur, the ssthresh is set
to one half of the current congestion window and the
congestion window is set to one and the sender enters into
the slow-start phase. The problem of Tahoe is that, when
the loss is due to sporadic channel error, Tahoe forgets all
outstanding data transmitted earlier and switching to slow-
start mode which causes the throughput to fall.

2.2 TCP Reno

TCP Reno [4] is similar to TCP Tahoe except that it
includes the fast recovery algorithm for a single packet loss.
When the TCP sender receives duplicate
acknowledgements, instead of switching to slow-start after
fast retransmit, TCP Reno enters into fast recovery. During
fast recovery, the sender sets ssthresh to the half of the
congestion window and the new congestion window to the
new ssthresh plus the number of received duplicate
acknowledgements. Each new duplicate acknowledgement
increases the congestion window size by one. TCP Reno
remains in fast recovery until the lost packet which
triggered the fast retransmit has been acknowledged. When
the sender receives new acknowledgement(s), it exits fast
recovery and resets the congestion window to the ssthresh
and thereby moves into congestion avoidance. So, the fast
recovery mechanism keeps the average congestion window
size high, resulting in better throughput performance
compared to TCP Tahoe. Although TCP Reno works fine
for single packet loss, in case of multiple losses from the
same transmission window, the performance suffers, since
it exits fast recovery and enters into it again in a repeated
fashion or goes to timeout. In case of timeout, Reno works
as Tahoe by setting its congestion window to one packet
and entering into slow start mode.

2.3 TCP NewReno

TCP NewReno uses an augmented fast recovery
mechanism to eliminate the Reno’s wait for a retransmit
time-out whenever multiple packets are lost from the same
transmission window [6]. In other words, TCP NewReno

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 369

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

modifies the sender’s behavior during fast recovery, where,
it continues in fast recovery until all the packets which
were outstanding during the start of the fast recovery have
been acknowledged. This strategy helps to combat multiple
losses without entering into fast recovery multiple times or
causing timeout. In this case, a partial acknowledgement is
considered as an indication that the packet following the
acknowledged one has been dropped from the same
transmission window, and therefore, TCP NewReno
immediately retransmits the other lost packet indicated by
the partial acknowledgement and remains in fast recovery.
It exits fast recovery when all data in the window is
acknowledged. One challenge with the NewReno
mechanism is its inability to detect other lost packets until
the ACK for the first retransmitted packet was received. In
other words, it can not handle retransmission of more than
one lost packet per RTT because it takes one round trip
time (RTT) to detect each lost segment and to retransmit it.
This implies that NewReno suffers from the fact that the
detection of each packet loss takes one RTT [23].

2.4 TCP SACk

TCP SACK (TCP with Selective Acknowledgement) is an
extension of the TCP Reno. It only modifies the fast
recovery algorithm of Reno keeping the other algorithms
unchanged [8]. Similar to NewReno, TCP SACK handles
multiple packet losses from the same window but it has a
better estimation capability for the number of outstanding
packets. In SACK, instead of cumulative
acknowledgement of packets as contained in Tahoe, Reno
and NewReno, packets are acknowledged selectively.
Where, the receiver can inform the sender about all
packets that have arrived successfully. This enables the
sender to figure out which packets have been
acknowledged and which ones are still outstanding. So, the
sender need retransmit only the packets that have actually
been lost without needing to retransmit packets that have
already been received successfully. To keep track of the
acknowledged and lost packets, the sender maintains a data
structure called scoreboard. Whenever the sender is
allowed to transmit, it consults the scoreboard and
transmits the missing packets. If there is no missing packet
to retransmit, it transmits new packets. When a
retransmitted packet is dropped, the sender detects it by a
retransmit timeout. In case of timeout, it retransmits the
packet and enters into the slow start phase. One major
drawback of the TCP SACK is the relative difficulty in
implementation of selective acknowledgement [23].

2.5 TCP Vegas

TCP Vegas is a proactive congestion control mechanism in
which network congestion is predicted based on packet

delay rather than packet loss [15, 16]. Where, it detects
congestion at an incipient stage based on increasing Round
Trip Time (RTT) values of the packets in the connection
unlike other flavors like TCP Tahoe, Reno, and NewReno,
which detect congestion only after it has actually happened
via packet drops. In other words, the algorithm emphasizes
packet delay as a signal to help determine the rate at which
to send packets. It depends heavily on accurate calculation
of the Base RTT values of the packets in the connection. If
it is too small then throughput of the connection will be
less than the bandwidth available, while if the value is too
large then it will overrun the connection.

Vegas introduces three changes to Reno, confined to the
sending side; (i) Modified slow start algorithm: the sender
tries finding correct window size without causing a loss,
where, it tries to find a connection's available bandwidth
that does not incur packet losses. (ii) Modified congestion
avoidance: The sender doesn’t wait for a timeout but
updates its congestion window based on end-to-end delay
instead of using packet-loss as the window update
parameter. It determines congestion states using the
sending rate. If there is a decrease in calculated rate of
transmission, as a result of large queue in the link, it
reduces its window. When the sending rate increases, the
window size also increases. (iii) New retransmission
algorithm: Vegas extended Reno retransmission algorithm
by a fine grained timer expiry calculation mechanism to
support early switching to fast retransmit. This is done by
monitoring how long it took each ACK to get back to the
sender. For this, the sender reads and records the system
clock each time a packet is transmitted. When an
acknowledgement arrives, it reads the clock again and
calculates the fine grained RTT. TCP Vegas uses this fine-
grained RTT estimate to calculate Retransmission Time
Outs (RTO). Whenever a duplicate ACK is received, the
sender checks the Vegas expiry (Timeout) and if Vegas
expiry occurs, the sender switches to fast retransmit
algorithm to retransmit the packet without waiting for 3
duplicate ACK or a time out as in Reno [15]. Similar to the
other TCP variants, it switches to fast retransmit when it
receives number of duplicate acknowledgements. Also, the
sender switches to slow-start whenever the usual timeout
occurs. The problem of Vegas is that, when Vegas is
interoperated with other versions like Reno, performance
of Vegas degrades because Vegas reduces its sending rate
before Reno as it detects congestion early and hence gives
greater bandwidth to coexisting TCP Reno flows.

3. Weakness of TCP Variants

The fundamental design philosophy of the most TCP
congestion control mechanisms is that; (i) they are

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 370

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Packet_(information_technology)

implemented end-to-end; (ii) they consider the network as
a "black-box" and the congestion is detected by packet loss
via duplicate acknowledgments or timeouts; and (iii) the
sending rate at the sender is controlled indirectly by
adjusting the congestion window. The importance of the
end-to-end principle can never be overemphasized,
because, this principle guarantees the delivery of data over
any kind of heterogeneous network. However, considering
the network as black-box, allow the TCP sender to update
its congestion window blindly regardless to the current
state of the network. This strategy makes the TCP variants
inefficient in term of network utilization.

Briefly, the most important concept of TCP congestion
control is the congestion window (cwnd) that determines
the amount of data to be sent. Since the TCP sender does
not receive any explicit congestion feedback from the
network, hence, to determine the rate at which the source
can transmit data, it must probe the path by progressively
increasing the input load (through slow start and
congestion avoidance) until implicit feedback signals such
as timeouts or duplicate acknowledgments are arrived to
indicate that the network capacity has been reached. The
behavior of TCP variants, during slow start phase, makes
them very expensive in terms of losses. This is because, the
sender doubles the size of the cwnd every RTT while there
are no losses - which is equivalent to doubling the
attempted throughput every RTT. But, when it finally
overruns the connection bandwidth, we can expect losses
in the order of half the current congestion window. Also,
the behavior of TCP variants, during congestion avoidance
phase, degrades throughput because the linear increase of
the cwnd by constant value makes the sending rate to be
less than available bandwidth of the TCP connection.
Another problem with both Reno and NewReno is that,
within fast recovery algorithm, TCP sender halves its
congestion window, as long as the network congestion is
detected, irrespective of the state of the network. Indeed,
when there are no packets lost but packets are reordered by
more than three duplicate acknowledgments, NewReno
mistakenly enters fast recovery, and halves its congestion
window. This strategy makes TCP NewReno inefficient in
terms of network utilization.

4. Proposed Mechanism

The proposed mechanism is structurally similar to the TCP
NewReno mechanism with two crucial differences in both
the congestion avoidance and the fast recovery algorithms.

4.1 Principle Idea

The principle idea of the proposed mechanism is to adjust
congestion window, and hence the transmission rate, at the

TCP sender dynamically based on the network status. In
other words, the size of the congestion window is
dynamically calculated based on the level of congestion in
the network instead of updating (increasing/decreasing) the
congestion window blindly regardless the current load at
the network. The main goal is to maintain the "right"
amount of extra data in the network to improve the overall
network performance. Obviously, if a connection is
sending too much extra data, it will cause congestion; if it's
sending too little extra data, it cannot respond rapidly
enough to transient increase in the available bandwidth.

4.2 Enhanced Congestion Avoidance Algorithm

During congestion avoidance phase, most of the current
congestion control mechanisms "blindly" increase the
congestion window size linearly by constant value as long
as no losses are detected. The key idea of the enhanced
congestion avoidance algorithm is to adjust the congestion
window at the TCP sender dynamically according to the
available connection capacity at any time. In other words,
the strategy is to adjust the source’s sending rate based on
the network load. To do so, the behavior of the TCP
congestion control at the sender site can be viewed as
cascaded control system with two feedback loops, as
shown in Figure 1. The inner-loop determines when each
packet is transmitted while the outer-loop reflects how the
congestion window size could be changed, and hence the
sending rate. Simply, the inner-loop defines when to send
new data and the outer-loop defines how much data will be
send. The feedback signals are the arrival of ACKs and the
window size. The outer-loop adjusts the window size based
on the received ACKs and other feedback information
from the network such as losses indication. As shown in
the figure, the inner-loop is controlled by the receiving
acknowledgements while the outer-loop is controlled by
the Observer that uses TCP timers and ACKs to adjust the
window size (transfer rate) at the sender. This explains the
dynamic relation between the window size, the sending
rate and queue size. The question now is how to estimate
the transfer rate at the TCP sender and how the transfer
rate estimation is used to adjust cwnd during the
congestion avoidance algorithm?

Figure 1: Dynamic Adjustment of Window Size

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 371

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

a) Estimating Transfer Rate
The idea of estimating transfer rate is that the sender
monitors the acknowledgment stream that it receives from
the destination and estimates the data transfer rate
currently available by the TCP connection. This may be
done by calculating the rate at which data was delivered to
the destination. More precisely, the TCP sender monitors
ACKs and uses the information in the ACKs, and the rate
at which the ACKs are received to determine the amount of
data delivered to the destination. In other words, since the
ACK received by the source conveys the information that
an amount of data corresponding to a specific transmitted
packets was delivered to the destination. Then, if the
transmission process is not affected by losses, the required
estimation of the transfer rate can be calculated simply by
dividing the amount of the delivered data by the
acknowledgement interval time. That is, the transfer rate
currently (TRc) achieved by the TCP connection is:

TRc = ACKeddata / Timeinterval (1)

Where, ACKeddata is the amount of the data delivered to
the destination, and Timeinterval is the acknowledgement
interval time which is the difference between the last ACK
received time and the current one. As the ACK reception
rate depend on the network status and the transfer rate
continuously estimated every time an ACK received, then
the change of transfer rate will also depend on the network
status. In other words, since the source performs an end-to-
end estimate of the transfer rate achieved along a TCP
connection, the greater the bandwidth of a given path, the
higher the data transfer rate.

b) Adjustment of Congestion Window
As soon as the cwnd crosses the ssthresh, TCP goes into
congestion avoidance phase. In this phase, for each ACK
received, the sender estimates the data transfer rate
currently available by the connection and uses the
difference between the current transfer rate estimated and
the last one to properly set the congestion window size.
Let ∆TR to be the difference between the current transfer
rate (TRc) and the previous transfer rate (TRp), as:

∆TR = TRc − TRp (2)

Hence, an incremental (increment) value is calculated to be
added to the congestion window, as:

 2 * (1/cwnd); if ∆TR > αe
Increment = 1/cwnd; if ∆TR > βe (3)
 0; otherwise

Where, αe and βe are two thresholds such that αe > βe. At
the start of a connection, αe is set to 3 and βe is set to 1.
These values are then changed dynamically based on the
network status.

The incremental value is used to update the cwnd, as:
cwndn = cwnd + increment (4)

It could be noted here that the cwnd size increased by two
segment each RTT if the current Transfer Rate (TR)
sufficiently higher than the last one estimated, i.e., ∆TR >
αe or by one segment per RTT if that difference is not high
enough. Otherwise, if ∆TR < βe, the cwnd will be
unchanged. This is because, the network is saturated and
the sending rate should not increased than the current.

c) Algorithm Description.
Figure 2 shows the flow chart of the Enhanced Congestion
Avoidance algorithm.

Figure 2: Flowchart of Enhanced Congestion Avoidance Algorithm

4.3 Enhanced Fast Recovery Algorithm

The problem of the current fast recovery algorithm is that,
the TCP sender halves its congestion window, as soon as
congestion detection, irrespective to the state of the
network. This mechanism makes the current TCP variants
inefficient in terms of network utilization because the
congestion window controls the number of packets that a
TCP sender can send over the network at any time. The
crux of idea of the enhanced fast recovery is to decrease
the congestion window based on the state of the network so
as to allow transferring more packets to the destination.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 372

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The sender can determine the congestion degree in the
network using the change in the Round Trip Time (RTT)
and hence changes the congestion window accordingly.
Since all packets make a round trip from the sender to the
receiver and back to the sender, the RTT will change as the
network traffic load changes. The value of RTT increases
with the increasing of the network load. So, the RTT could
be used to reflect the network status. Therefore, in entering
the fast recovery algorithm, the sender can detect the
change in the RTT and decrease the congestion window by
a value related to the increase in the RTT.

a) Estimating Change in Round Trip Time
The sender continuously monitors the RTT and keeps up
the last N values of RTTs. In entering fast recovery phase,
the sender uses the queued values of the RTTs to compute
the Average Round Trip Time (RTTavg), as:

NRTTRTT
N

i
iavg /

1
∑
=

= (5)

Then, the sender calculates the change in RTT (∆RTT) as
the difference between the latest RTT (RTTn), just right
before detecting congestion, and the average RTT, as:

∆RTT = RTTn − RTTavg (6)

b) Updating Congestion Window
The sender uses the change in the RTT to update the
congestion window by a value related to the ∆RTT. That
is, the sender first calculates the increasing factor (INC f)
according to the change in RTT, as:

INCf = (cnwd / RTTn) * ∆RTT (7)

The new congestion window (cwndn) is then determined as
the maximum of two segments and the difference between
the current congestion window (cwnd) and the increasing
factor (INCf). That is:

cwndn = max {2, (cwnd − INCf)} (8)

c) Algorithm Description
In entering the fast recovery algorithm, the sender first
determines the cwndn as in Eq. 8, and sets the ssthresh to
the maximum of cwndn and two segments. The sender then
sets cwnd to the value of the ssthresh plus 3, the number of
received duplicate acknowledgements, and continues with
fast recovery. The sender increases the cwnd by one for
each duplicate acknowledgment received and send new
segment if allowed. With partial ACK, the sender
retransmits the segment that follows the Acked one and
proceeds. With full ACK, it sets the cwnd to the ssthresh
and invokes the fast recovery algorithm. If the sender
detects losses by timeout expiration, it will set ssthresh to
the maximum of cwndn and two segments, and set the
cwnd to one, and then goes into the slow start algorithm.

4.4 EnewReno Mechanism Descriptions

This section describes the proposed congestion control
mechanism; EnewReno. The EnewReno uses the four
algorithms: slow start, enhanced congestion avoidance, fast
retransmit, and enhanced fast recovery. In the proposed
algorithm, the fundamental of the slow start algorithm is
unchanged. That is, when a new connection is established
the congestion window size (cwnd) is initialized to one
segment and the value of cwnd is updated to cwnd + 1 for
each ACK received. As soon as the cwnd exceeds the
ssthresh, the enhanced congestion avoidance algorithm is
invoked. During this phase, the sender estimates the ∆TR
and compares its value to αe and βe, then makes a decision
of how to increase the congestion window size. The sender
continues increasing its sending rate (cwnd) with each
ACK received during this phase until congestion indication
via timeouts or duplicate acknowledgements (DUPACKs).
When the sender receives 3 DUPACKs, it enters into fast
retransmit to resend the lost segments, and then invoke the
enhanced fast recovery algorithm. When the sender
receives new acknowledgement, it will exit that phase
putting its cwnd to ssthresh and goes into congestion
avoidance algorithm. Table 1 shows pseudo code the
EnewReno congestion control mechanisms.

Table 1: pseudo code the EnewReno mechanisms

Slow Start Algorithm:
Initial: cwnd = 1;
For (each packet Acked)
cwnd++;
Until (congestion event, or, cwnd > ssthresh)

Enhanced Congestion Avoidance:
/* slow start is over and cwnd > ssthresh */
Every Ack:

∆TR = TRc − TRp
Calculate increment value; (Eq., 3)
cwnd = cwnd + increment
Until (timeout or 3 DUPACKs)

Fast Retransmit Algorithm:
After receive 3 DUPACKs
Resend lost packet;
Invoke Enhanced Fast Recovery algorithm

Enhanced Fast Recovery Algorithm:

i-With 3 DUPACKs:
cwndn = MAX {2, (cwnd - INCf)};
ssthresh = MAX {2, cwndn};
cwnd = ssthresh +3;

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 373

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Each DACK received;
cwnd ++;
Send new packet if allow;
After Full Ack:
cwnd = ssthresh;
Invoke Congestion Avoidance Algorithm;

 ii-When TimeOut:
cwndn = MAX {2, (cwnd - INCf)};
ssthresh = MAX {2, cwndn};
cwnd = 1;
Invoke Slow Start Algorithm;

5. Simulation Results and Discussion

In this study, the performance of the proposed mechanism
is evaluated by using the well-known network simulator
NS-2. The evaluation is done on a simulation scenario of
the US AT&T network topology, as shown in Figure 3.
This topology is generated by using the GT-ITM realistic
topology generator [25]. It has been proven that the created
topology is similar to the real US AT&T continental IP
backbone network by 86.66% [26].

In order to get a proper estimation for the steady state
performance, the simulation time should be long enough.
Furthermore, a number of performance matrices should be
considered to show the benefits of using TCP EnewReno
over other mechanisms. In this study, a simulation time of
40 seconds is used and the collection of data is started after
2 seconds from the beginning of the simulation to get over
the transient phase. In addition, a number of performance
matrices such as the instant and the aggregate throughput,
the changes of delay with the time, and the packet losses,
are studied to show the benefits of using EnewReno over
the existing mechanisms NewReno and Vegas.

Figure 3: AT&T Network Topology [26].

5.1 Throughput

Figure 4 shows the instant throughput, calculated every 0.1
second, for the mechanisms: NewReno, Vegas, and
EnewReno. Form the figure, the throughput achieved by
the EnewReno is higher than that of Vegas and NewReno.
This is because, during the fast recovery algorithm,
NewReno waits to recover all lost packets and send few
new packets, but with EnewReno the congestion window
decreased by the degree the network load so it could send
more new packets depend on the network status.

(a) TCP NewReno

(b) TCP Vegas

(c) TCP EnewReno

Figure 4: Instant Throughput for TCP NewReno, Vegas and EnewReno

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 374

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 5 shows the aggregate throughput for TCP
EnewReno, NewReno and Vegas. The figure shows that,
the TCP EnewReno provides higher throughput than the
other mechanisms. This is because, the NewReno adapts
congestion window according to blind rate adaptation
mechanism regardless to the current load at the network,
i.e., the ACK causes the congestion window to increase
and packet losses cause the window to decrease. While, the
TCP EnewReno adapts its sending rate by adjusting the
congestion window based on the current network load.
From the figure, before 10 second, the aggregate
throughput for NewReno and EnewReno is similar. This is
because they have the same behavior in the slow start
phase. But, after 10 second, the TCP EnewReno provides
higher throughput than the other mechanisms because of
the behavior of EnewReno during the congestion
avoidance and the fast recovery phases. In the congestion
avoidance phase, EnewReno adapts window size according
to the network status (2 packets per RTT or 1 packet per
RTT or zero packets per RTT), while NewReno
continuously increases its window size one packet per RTT
regardless to the current load at the network, and TCP
Vegas increases, stops, or decreases its window. During
the fast recovery phase, the EnewReno reduces the sending
rate and adjusts its congestion window according to the
network status as soon as a packet loss is detected. While,
TCP NewReno and Vegas reduce their congestion window
to half the current one, regardless to the network load.

Figure 5: Aggregate Throughput of different algorithms

5.2 Delay

Propagation and queuing delays are the primary sources of
communication delay in the network. The propagation
delay is a link characteristic, while, the queuing delay is a
control flow affected delay. Hence, one of the goals of a
congestion control mechanisms is to adjust the sending rate
in order to minimize the queuing delay. Figure 6 shows the
packet delay verses time for EnewReno, NewReno, and

Vegas. As shown in the figure, between 10 and 24 sec, the
TCP Vegas provides less delay than the other variants.
This is because, at start, Vegas increases the sending rate
very carefully, where it sets the ssthresh to two packets
only. While, TCP EnewReno tries to utilize the available
network resources by increasing the sending rate.
However, during the congestion avoidance and fast
recovery phases, EnewReno adapts the transmission rate to
get better performance behavior, and that is clear between
time 25 and 36 sec, the time delay get less than Vegas.

Figure 6: Delay versus Time

5.3 Packet Losses

Figure 7 shows the number packets losses versus time for
the TCP EnewReno, NewReno, and Vegas. From the
figure, between 6 and 10 sec, EnewReno and NewReno
have the same behavior of losses, because they have the
same slow start algorithm, but they provide more losses
than Vegas. However, during congestion avoidance and
fast recovery phases, EnewReno increases or decreases its
congestion window size based on the change in the
network load, so the probability of losses decreased. As
shown in the figure, EnewReno get fewer packet losses
than NewReno and Vegas.

Figure 7: Packet Losses versus Time

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 375

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5.4 Resource Utilization

In this section, the resource utilization is studied in terms
of how the congestion control mechanisms impact the
queue size at the intermediate routers. The objective is to
achieve high utilization of the link as well as maintain the
queue size close to a reasonably reference value via
controlling the sending rate at the sender. Figure 8 shows
the behavior of queue size for TCP variants, EnewReno,
Vegas, and NewReno considering the Random Early
Detection (RED) discipline as a buffer management
mechanism. The RED management discipline is designed
to cooperate with the TCP congestion control mechanism.
It tries to manage the average queue size by monitoring the
average buffer occupancy at the router, and setting its
packet drop probability as a function of buffer occupancy.
Keeping the average queue size low, burst dropping can be
avoided even when packets from the same connection
continuously arrive.

The simulation results in Figure 8 are taken over a portion
of time (10 sec) to have a range in the graph showing
exactly how the queue size is changed. From the figure,
EnewReno provides higher resource utilization, in form of
maintaining effective queue size value, than the other TCP
variants. This is because EnewReno tries to fully utilize the
network resources by adapting the sending rate based on
the network load. This behavior clearly explains the results
in Figure 5 for the throughput and why Vegas has lower
throughput than EnewReno and NewReno. Also, this
behavior explains the results in Figure 6 for the delay and
why EnewReno provides higher delay at the start of the
connection transmission.

6. Conclusions and Future Work

In this paper a new mechanism, called EnewReno, is
developed for congestion avoidance. The proposed
mechanism is based on the enhancement of both the
congestion avoidance and the fast recovery algorithms of
the current TCP NewReno. The additional modifications
are generally developed by adjusting the congestion
window dynamically based on the network status. During
congestion avoidance, the congestion window is not
increased linearly as the other TCP variants but increased
by an incremental value based on the degree of the
network congestion in order to fully utilize the network
resources efficiently. Also, during fast recovery, the
congestion window is not decreased to half of its value as
the other TCP variants but decreased by a value based on
the change in round trip time so as to allow transferring
more packets to the destination. The simulation results
show that, the proposed mechanism provides better

performance than previous TCP variants in terms of
throughput, efficient utilization of the network resources,
less packet losses and delay.

The EnewReno mechanism has been verified to work well
in wired networks. So, the further work should focus on
whether EnewReno performs well in wireless networks.
Also, in the future studies, it is intended to evaluate the
proposed mechanism against fairness when interact with
the UDP.

(a) TCP EnewReno

(b) TCP NewReno

(c) TCP Vegas

Figure 8: RED Queue Size Behavior for TCP variants

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 376

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

References
[1] J. Postel, “Transmission Control Protocol,” IETF RFC

793, September 1981.
[2] J. Nagle, “Congestion control in IP/TCP Internetworks,”

Request for Comments (RFC) 896, Internet Engineering
Task Force, January 1984.

[3] V. Jacobson, “Congestion Avoidance and Control,” ACM
SIGCOMM Computer Communication Review, Vol. 18,
No. 4, pp. 314-329, August 1988.

[4] V. Jacobson, "Berkeley TCP Evolution from 4.3-Tahoe to
4.3 Reno," Proceedings of the 18th Internet Engineering
Task Force, University of British Columbia, Vancouver,
BC, Aug. 1990.

[5] A. Veres, M. Boda, "The Chaotic Nature of TCP
Congestion Control," Proceedings of IEEE INFOCOM,
pp.1715–1723, 2000.

[6] J. Hoe, “Start-up Dynamics of TCP’s Congestion Control
and Avoidance Schemes,” Master Theses, Massachusetts
Institute of Technology, 1995.

[7] M. Mathis, J. Mahdavi, "Forward acknowledgement:
refining TCP congestion control," Proceedings of ACM
SIGCOMM, pp. 181-191, 1996.

[8] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018, Internet
Engineering Task Force, October 1996.

[9] H. Wang, C.L. Williamson, “A new scheme for TCP
congestion control: smooth-start and dynamic recovery,”
Proceedings of IEEE MASCOTS, pp. 69–76, 1998.

[10] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, “An
extension to the selective acknowledgement (SACK)
option for TCP,” IETF RFC 2883, July 2000.

[11] C. Casetti, M. Geria, S.S. Lee, S. Mascolo, M. Sanadidi,
“TCP with faster recovery,” Proceedings of IEEE
MILCOM, vol. 1, pp. 320–324, 2000.

[12] M. Zhang, B. Karp, S. Floyd, L.L. Peterson, “RR–TCP: a
reordering–robust TCP with DSACK,” Proceedings of
IEEE ICNP, pp. 95–106, 2003.

[13] B. Kim, J. Lee, “Retransmission loss recovery by duplicate
acknowledgment counting,” IEEE Communications
Letters, vol. 8, No. 1, pp. 69–71, 2004.

[14] B. Kim, D. Kim, J. Lee, “Lost retransmission detection for
TCP SACK,” IEEE Communications Letters, vol. 8, No. 9,
pp. 600–602, 2004.

[15] L. S. Brakmo, S. W. O’Malley and L. L. Peterson, “TCP
Vegas: New Techniques for Congestion Detection and
Avoidance,” Proceedings of ACM SIGCOMM, London,
August 31-September 2, pp. 24–35, 1994.

[16] L. Brakmo and L. Peterson, “TCP Vegas: End-to-End
Congestion Avoidance on Global Internet,” IEEE Journal
on Selected Areas in Communications, Vol. 13, No. 8, pp.
1465-1480, 1995.

[17] K. Fall and S. Floyd, “Simulation Based Comparisons of
Tahoe, Reno and SACK TCP,” ACM SIGCOMM
Computer Communication Review, Vol. 26, No. 3, July
1996.

[18] J. Mo, R.J. La, V. Anantharam, J. Walrand, "Analysis and
comparison of TCP Reno and Vegas," Proceedings of
IEEE INFOCOM, pp. 1556–1563, 1999.

[19] Hanaa A. Torkey, Gamal M. Attiya and I. Z. Morsi,
"Performance Evaluation of End-to-End Congestion

Control Protocols", Minufiya Journal of Electronic
Engineering Research (MJEER), Vol. 18, No. 2, pp. 99-
118, July 2008.

[20] D. Roman, K. Yevgeni, and H. Jarmo, ”TCP NewReno
Throughput in the Presence of Correlated Losses: The
Slow-but-Steady Variant”, IEEE International Conference
on Computer Communications INFOCOM, pp. 1- 6, April
2006.

[21] M. Niels, B. Chadi, A. Konstantin, and A. Eitan, ”Inter-
protocol fairness between TCP NewReno and TCP
Westwood”, 3rd EuroNGI Conference on Next Generation
Internet Networks, Vol.1, pp. 21-23, May 2007.

[22] Cheng-Yuan Ho, Yaw-Chung Chen, Yi-Cheng Chan,
Cheng-Yun Ho, "Fast retransmit and fast recovery schemes
of transport protocols: A survey and taxonomy," Computer
Networks, Vol. 52, pp.1308–1327, 2008.

[23] Kolawole I. Oyeyinka, Ayodeji O. Oluwatope, Adio. T.
Akinwale, Olusegun Folorunso, Ganiyu A. Aderounmu,
and Olatunde O. Abiona, "TCP Window Based Congestion
Control Slow-Start Approach," Communications and
Network, Vol. 3, pp.85-98, , May 2011.

[24] K. Fall, and K. Varadhan, “The ns Manual (formerly ns
Notes and Documentation)”, UC Berkeley, LBL,
USC/ISI, and Xerox PARC, December 2006.

[25] GT-ITM “Georgia Tech Internetwork Topology”,
http://www.cc.gatech.edu/project/gtitm.

[26] O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz,
“How to use Topology Generators to create realistic
Topologies”, Technical Report, KOM Darmstadt
University Germany, December 2002.

Gamal Attiya graduated in 1993 and obtained
his MSc degree in computer science and
engineering from the Menufiya University,
Egypt, in 1999. He received PhD degree in
computer engineering from the University of
Marne-La-Vallée, Paris-France, in 2004. He is
currently Lecturer at the department of
Computer Science and Engineering, Faculty of
Electronic Engineering, Minoufiya University,
Egypt. His main research interests include distributed computing,
task allocation and scheduling, computer networks and protocols,
congestion control, QoS, and multimedia networking.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 377

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.cc.gatech.edu/project/gtitm

