
 

New Strategy for Congestion Control based on Dynamic 
Adjustment of Congestion Window  

Gamal Attiya 
 

Department of Computer Science and Engineering,  
Faculty of Electronic Engineering,  

Minoufiya University, Egypt 
 

 
Abstract 

This paper presents a new mechanism for the end-to-end 
congestion control, called EnewReno. The proposed mechanism 
is based on the enhancement of both the congestion avoidance 
and the fast recovery algorithms of the TCP NewReno so as to 
improve its performance. The basic idea of the proposed 
mechanism is to adjust the congestion window of the TCP sender 
dynamically based on the level of congestion in the network so as 
to allow transferring more packets to the destination. The 
performance of the proposed mechanism is evaluated and 
compared with the most recent mechanisms by simulation studies 
using the well known Network Simulator NS-2 and the realistic 
topology generator GT-ITM. 

Keywords: TCP, Congestion Control, Congestion Avoidance, 
Fast Recovery algorithm, Network Protocols. 

1. Introduction 

Today, the majority of traffic over the Internet is carried 
out by the Transmission Control Protocol (TCP). TCP is a 
window based reliable data transfer protocol providing 
data transport between two end hosts of a connection. The 
original TCP is officially defined in [1]. It has a simple 
sliding window flow control mechanism. The essential 
strategy of TCP is sending packets to a network without a 
reservation and then reacting to observable events. 
 

Over years, the use of Internet services has experienced 
dramatic growth and Internet applications have evolved 
from standard document retrieval functionality to 
multimedia services. The rapid growth of the Internet and 
the increasing of the traffic demand lied to a serious 
problem called congestion collapse [2]. Internet congestion 
occurs when the aggregate demand for resources exceeds 
the available capacity of the network. This problem leads 
to unacceptable long response times particularly for real-
time applications. Indeed, when a packet encounters 
congestion, there is a good chance that the packet is 
dropped, and the dropped packet wasted precious network 
bandwidth along the path from its sender to its untimely 
death. Congestion control is thus required to prevent 
congestion collapse in the network. Without congestion 

control, a sending node could be busy transmitting packets 
that may be dropped later. Therefore, one of the keys to the 
success of the Internet is relying on using congestion 
control mechanisms. 
 
 After observing a series of congestion collapses, 
continuous efforts are being done to avoid congestion. The 
most essential is the congestion control mechanism 
provided by Jacobson in 1988 [3]. This mechanism is 
called TCP Tahoe. It includes three algorithms; namely; 
slow start, congestion avoidance, and fast retransmit. In 
1990, a new TCP version called TCP Reno was developed 
by adding fast recovery algorithm to Tahoe [4]. TCP Reno 
can be thought of as a reactive congestion control scheme 
that uses packet loss as an indicator for congestion. In 
order to probe the available bandwidth along the end-to-
end path, the TCP congestion window is increased until a 
packet loss is detected, at which point the congestion 
window is halved and a linear increase algorithm takes 
over until further packet loss is experienced. In [5], the 
authors have shown that TCP Reno may periodically 
generate packet loss by itself and cannot efficiently recover 
multiple packet losses from a window of data. Moreover, 
the Additive Increase Multiplicative Decrease (AIMD) 
strategy of TCP Reno leads to periodic oscillations in the 
aspects of the congestion window size (cwnd), round-trip 
delay, and queue length of the bottleneck node. The 
oscillation may induce chaotic behavior in the network, 
thereby adversely affecting overall network performance.  
 

Several proposals have been put forward to improve TCP 
congestion control and to alleviate the performance 
degradation problem of packet loss. Some researchers 
attempted to refine the fast retransmit and fast recovery 
algorithms while other researchers attempted to refine the 
slow start and congestion avoidance algorithms. New 
proposals included TCP NewReno [6], Forward 
Acknowledgment (FACK) [7], Selective Acknowledgment 
(SACK) [8], dynamic recovery [9], an Extension to the 
SACK Option (D–SACK) [10], TCP with Faster Recovery 
(FR–TCP) [11], Reordering–Robust TCP (RR–TCP) [12], 
Duplicate Acknowledgment Counting (DAC) [13], and 
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TCP SACK+ [14] and TCP Vegas [15, 16]. The TCP 
New-Reno, FACK, and SACK are based on TCP Reno, 
while dynamic recovery, FR–TCP and DAC are based on 
TCP NewReno; and TCP DSACK, RR–TCP, and TCP 
SACK+ operate at the sender of SACK. 
 
Comparative studies between the different proposals for 
congestion control are presented in [17-19]. The 
comparative studies show that the TCP NewReno provides 
better performance than previous TCP variants. However, 
it has been found that the TCP NewReno is inefficient in 
terms of utilization of link capacity and unfair in its 
throughput performance [20, 21]. The problem with 
NewReno is that, it halves its congestion window, as long 
as a packet loss is detected, irrespective of the state of the 
network. Another problem is that, when there are no packet 
losses but packets are reordered by more than three 
duplicate acknowledgments; NewReno mistakenly enters 
fast recovery and halves its congestion window [22, 23]. 
 
This paper presents a new mechanism for the end-to-end 
congestion control, called EnewReno. The proposed 
mechanism is based on the enhancement of both the 
congestion avoidance and the fast recovery algorithms of 
the current TCP NewReno. The main idea is to adjust the 
congestion window at the TCP sender dynamically 
according to the state of the network (i.e., the network load 
or the level of congestion at the network). The 
performance of the proposed mechanism is evaluated and 
compared with the most recent mechanisms by simulation 
studies using the well known Network Simulator NS-2 [24] 
and the realistic topology generator GT-ITM [25, 26]. 
 
The rest of this paper is organized as follows; Section 2 
presents an overview of the widespread TCP mechanisms; 
TCP Tahoe, Reno, NewReno, Sack, and Vegas.  Section 3 
presents the weakness of TCP variants while the proposed 
mechanism is described in section 3. The simulation results 
and discussions are given in Section 5. Finally, the 
conclusions and future work are given in section 6. 

2. TCP Variants 

TCP has been refined several times aiming to improve its 
performance and ensure the internet stability. Among these 
mechanisms, which are of interest, are TCP Tahoe [3], 
Reno [4], NewReno [6], Sack [8], and Vegas [15, 16].  

2.1 TCP Tahoe 

TCP Tahoe is the first implementation that handles 
congestion control. It was released in 1988 by V. Jacobson 
[3]. TCP Tahoe controls congestion by adjusting its 

window size additively to increase and multiplicatively to 
decrease (AIMD). It uses three algorithms, namely; slow-
start, congestion avoidance and fast retransmit. During 
slow-start, the congestion window (cwnd) increases 
exponentially by one for each acknowledgement received 
until it reaches the slow-start threshold (ssthresh), and 
during congestion avoidance the congestion window 
increases linearly by one per round trip time (RTT). The 
TCP sender goes into the fast retransmit mode when it 
receives 3 duplicate acknowledgements. During fast 
retransmit, the sender retransmits the lost packet and enters 
into the slow-start phase by setting the ssthresh to the half 
of the current congestion window and setting congestion 
window to 1. Whenever a timeout occur, the ssthresh is set 
to one half of the current congestion window and the 
congestion window is set to one and the sender enters into 
the slow-start phase. The problem of Tahoe is that, when 
the loss is due to sporadic channel error, Tahoe forgets all 
outstanding data transmitted earlier and switching to slow-
start mode which causes the throughput to fall. 

2.2 TCP Reno 

TCP Reno [4] is similar to TCP Tahoe except that it 
includes the fast recovery algorithm for a single packet loss. 
When the TCP sender receives duplicate 
acknowledgements, instead of switching to slow-start after 
fast retransmit, TCP Reno enters into fast recovery. During 
fast recovery, the sender sets ssthresh to the half of the 
congestion window and the new congestion window to the 
new ssthresh plus the number of received duplicate 
acknowledgements. Each new duplicate acknowledgement 
increases the congestion window size by one. TCP Reno 
remains in fast recovery until the lost packet which 
triggered the fast retransmit has been acknowledged. When 
the sender receives new acknowledgement(s), it exits fast 
recovery and resets the congestion window to the ssthresh 
and thereby moves into congestion avoidance. So, the fast 
recovery mechanism keeps the average congestion window 
size high, resulting in better throughput performance 
compared to TCP Tahoe. Although TCP Reno works fine 
for single packet loss, in case of multiple losses from the 
same transmission window, the performance suffers, since 
it exits fast recovery and enters into it again in a repeated 
fashion or goes to timeout. In case of timeout, Reno works 
as Tahoe by setting its congestion window to one packet 
and entering into slow start mode. 

2.3 TCP NewReno 

TCP NewReno uses an augmented fast recovery 
mechanism to eliminate the Reno’s wait for a retransmit 
time-out whenever multiple packets are lost from the same 
transmission window [6]. In other words, TCP NewReno 
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modifies the sender’s behavior during fast recovery, where, 
it continues in fast recovery until all the packets which 
were outstanding during the start of the fast recovery have 
been acknowledged. This strategy helps to combat multiple 
losses without entering into fast recovery multiple times or 
causing timeout. In this case, a partial acknowledgement is 
considered as an indication that the packet following the 
acknowledged one has been dropped from the same 
transmission window, and therefore, TCP NewReno 
immediately retransmits the other lost packet indicated by 
the partial acknowledgement and remains in fast recovery. 
It exits fast recovery when all data in the window is 
acknowledged. One challenge with the NewReno 
mechanism is its inability to detect other lost packets until 
the ACK for the first retransmitted packet was received. In 
other words, it can not handle retransmission of more than 
one lost packet per RTT because it takes one round trip 
time (RTT) to detect each lost segment and to retransmit it. 
This implies that NewReno suffers from the fact that the 
detection of each packet loss takes one RTT [23].  

2.4 TCP SACk 

TCP SACK (TCP with Selective Acknowledgement) is an 
extension of the TCP Reno. It only modifies the fast 
recovery algorithm of Reno keeping the other algorithms 
unchanged [8]. Similar to NewReno, TCP SACK handles 
multiple packet losses from the same window but it has a 
better estimation capability for the number of outstanding 
packets. In SACK, instead of cumulative 
acknowledgement of packets as contained in Tahoe, Reno 
and NewReno, packets are acknowledged selectively. 
Where, the receiver can inform the sender about all 
packets that have arrived successfully. This enables the 
sender to figure out which packets have been 
acknowledged and which ones are still outstanding. So, the 
sender need retransmit only the packets that have actually 
been lost without needing to retransmit packets that have 
already been received successfully. To keep track of the 
acknowledged and lost packets, the sender maintains a data 
structure called scoreboard. Whenever the sender is 
allowed to transmit, it consults the scoreboard and 
transmits the missing packets. If there is no missing packet 
to retransmit, it transmits new packets. When a 
retransmitted packet is dropped, the sender detects it by a 
retransmit timeout. In case of timeout, it retransmits the 
packet and enters into the slow start phase. One major 
drawback of the TCP SACK is the relative difficulty in 
implementation of selective acknowledgement [23]. 

2.5 TCP Vegas 

TCP Vegas is a proactive congestion control mechanism in 
which network congestion is predicted based on packet 

delay rather than packet loss [15, 16]. Where, it detects 
congestion at an incipient stage based on increasing Round 
Trip Time (RTT) values of the packets in the connection 
unlike other flavors like TCP Tahoe, Reno, and NewReno, 
which detect congestion only after it has actually happened 
via packet drops. In other words, the algorithm emphasizes 
packet delay as a signal to help determine the rate at which 
to send packets. It depends heavily on accurate calculation 
of the Base RTT values of the packets in the connection. If 
it is too small then throughput of the connection will be 
less than the bandwidth available, while if the value is too 
large then it will overrun the connection.  
 
Vegas introduces three changes to Reno, confined to the 
sending side; (i) Modified slow start algorithm: the sender 
tries finding correct window size without causing a loss, 
where, it tries to find a connection's available bandwidth 
that does not incur packet losses. (ii) Modified congestion 
avoidance: The sender doesn’t wait for a timeout but 
updates its congestion window based on end-to-end delay 
instead of using packet-loss as the window update 
parameter. It determines congestion states using the 
sending rate. If there is a decrease in calculated rate of 
transmission, as a result of large queue in the link, it 
reduces its window. When the sending rate increases, the 
window size also increases. (iii) New retransmission 
algorithm: Vegas extended Reno retransmission algorithm 
by a fine grained timer expiry calculation mechanism to 
support early switching to fast retransmit. This is done by 
monitoring how long it took each ACK to get back to the 
sender. For this, the sender reads and records the system 
clock each time a packet is transmitted. When an 
acknowledgement arrives, it reads the clock again and 
calculates the fine grained RTT. TCP Vegas uses this fine-
grained RTT estimate to calculate Retransmission Time 
Outs (RTO). Whenever a duplicate ACK is received, the 
sender checks the Vegas expiry (Timeout) and if Vegas 
expiry occurs, the sender switches to fast retransmit 
algorithm to retransmit the packet without waiting for 3 
duplicate ACK or a time out as in Reno [15]. Similar to the 
other TCP variants, it switches to fast retransmit when it 
receives number of duplicate acknowledgements. Also, the 
sender switches to slow-start whenever the usual timeout 
occurs. The problem of Vegas is that, when Vegas is 
interoperated with other versions like Reno, performance 
of Vegas degrades because Vegas reduces its sending rate 
before Reno as it detects congestion early and hence gives 
greater bandwidth to coexisting TCP Reno flows. 

3. Weakness of TCP Variants 

The fundamental design philosophy of the most TCP 
congestion control mechanisms is that; (i) they are 
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implemented end-to-end; (ii) they consider the network as 
a "black-box" and the congestion is detected by packet loss 
via duplicate acknowledgments or timeouts; and (iii) the 
sending rate at the sender is controlled indirectly by 
adjusting the congestion window. The importance of the 
end-to-end principle can never be overemphasized, 
because, this principle guarantees the delivery of data over 
any kind of heterogeneous network. However, considering 
the network as black-box, allow the TCP sender to update 
its congestion window blindly regardless to the current 
state of the network. This strategy makes the TCP variants 
inefficient in term of network utilization.  

Briefly, the most important concept of TCP congestion 
control is the congestion window (cwnd) that determines 
the amount of data to be sent. Since the TCP sender does 
not receive any explicit congestion feedback from the 
network, hence, to determine the rate at which the source 
can transmit data, it must probe the path by progressively 
increasing the input load (through slow start and 
congestion avoidance) until implicit feedback signals such 
as timeouts or duplicate acknowledgments are arrived to 
indicate that the network capacity has been reached. The 
behavior of TCP variants, during slow start phase, makes 
them very expensive in terms of losses. This is because, the 
sender doubles the size of the cwnd every RTT while there 
are no losses - which is equivalent to doubling the 
attempted throughput every RTT.  But, when it finally 
overruns the connection bandwidth, we can expect losses 
in the order of half the current congestion window. Also, 
the behavior of TCP variants, during congestion avoidance 
phase, degrades throughput because the linear increase of 
the cwnd by constant value makes the sending rate to be 
less than available bandwidth of the TCP connection. 
Another problem with both Reno and NewReno is that, 
within fast recovery algorithm, TCP sender halves its 
congestion window, as long as the network congestion is 
detected, irrespective of the state of the network. Indeed, 
when there are no packets lost but packets are reordered by 
more than three duplicate acknowledgments, NewReno 
mistakenly enters fast recovery, and halves its congestion 
window. This strategy makes TCP NewReno inefficient in 
terms of network utilization. 

4. Proposed Mechanism 

The proposed mechanism is structurally similar to the TCP 
NewReno mechanism with two crucial differences in both 
the congestion avoidance and the fast recovery algorithms.  

4.1 Principle Idea 

The principle idea of the proposed mechanism is to adjust 
congestion window, and hence the transmission rate, at the 

TCP sender dynamically based on the network status. In 
other words, the size of the congestion window is 
dynamically calculated based on the level of congestion in 
the network instead of updating (increasing/decreasing) the 
congestion window blindly regardless the current load at 
the network. The main goal is to maintain the "right" 
amount of extra data in the network to improve the overall 
network performance. Obviously, if a connection is 
sending too much extra data, it will cause congestion; if it's 
sending too little extra data, it cannot respond rapidly 
enough to transient increase in the available bandwidth. 

4.2 Enhanced Congestion Avoidance Algorithm 

During congestion avoidance phase, most of the current 
congestion control mechanisms "blindly" increase the 
congestion window size linearly by constant value as long 
as no losses are detected. The key idea of the enhanced 
congestion avoidance algorithm is to adjust the congestion 
window at the TCP sender dynamically according to the 
available connection capacity at any time. In other words, 
the strategy is to adjust the source’s sending rate based on 
the network load. To do so, the behavior of the TCP 
congestion control at the sender site can be viewed as 
cascaded control system with two feedback loops, as 
shown in Figure 1. The inner-loop determines when each 
packet is transmitted while the outer-loop reflects how the 
congestion window size could be changed, and hence the 
sending rate. Simply, the inner-loop defines when to send 
new data and the outer-loop defines how much data will be 
send. The feedback signals are the arrival of ACKs and the 
window size. The outer-loop adjusts the window size based 
on the received ACKs and other feedback information 
from the network such as losses indication. As shown in 
the figure, the inner-loop is controlled by the receiving 
acknowledgements while the outer-loop is controlled by 
the Observer that uses TCP timers and ACKs to adjust the 
window size (transfer rate) at the sender. This explains the 
dynamic relation between the window size, the sending 
rate and queue size. The question now is how to estimate 
the transfer rate at the TCP sender and how the transfer 
rate estimation is used to adjust cwnd during the 
congestion avoidance algorithm? 

 
Figure 1: Dynamic Adjustment of Window Size 
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a) Estimating Transfer Rate 
The idea of estimating transfer rate is that the sender 
monitors the acknowledgment stream that it receives from 
the destination and estimates the data transfer rate 
currently available by the TCP connection. This may be 
done by calculating the rate at which data was delivered to 
the destination. More precisely, the TCP sender monitors 
ACKs and uses the information in the ACKs, and the rate 
at which the ACKs are received to determine the amount of 
data delivered to the destination. In other words, since the 
ACK received by the source conveys the information that 
an amount of data corresponding to a specific transmitted 
packets was delivered to the destination. Then, if the 
transmission process is not affected by losses, the required 
estimation of the transfer rate can be calculated simply by 
dividing the amount of the delivered data by the 
acknowledgement interval time. That is, the transfer rate 
currently (TRc) achieved by the TCP connection is: 

TRc = ACKeddata / Timeinterval                    (1) 

Where, ACKeddata is the amount of the data delivered to 
the destination, and Timeinterval is the acknowledgement 
interval time which is the difference between the last ACK 
received time and the current one. As the ACK reception 
rate depend on the network status and the transfer rate 
continuously estimated every time an ACK received, then 
the change of transfer rate will also depend on the network 
status. In other words, since the source performs an end-to-
end estimate of the transfer rate achieved along a TCP 
connection, the greater the bandwidth of a given path, the 
higher the data transfer rate. 
 
b) Adjustment of Congestion Window 
As soon as the cwnd crosses the ssthresh, TCP goes into 
congestion avoidance phase. In this phase, for each ACK 
received, the sender estimates the data transfer rate 
currently available by the connection and uses the 
difference between the current transfer rate estimated and 
the last one to properly set the congestion window size.  
Let ∆TR to be the difference between the current transfer 
rate (TRc) and the previous transfer rate (TRp), as: 

∆TR = TRc − TRp                                        (2) 

Hence, an incremental (increment) value is calculated to be 
added to the congestion window, as: 

                           2 * (1/cwnd);    if ∆TR > αe 
Increment =      1/cwnd;             if ∆TR > βe       (3) 
                           0;                      otherwise 

Where, αe and βe are two thresholds such that αe > βe. At 
the start of a connection, αe is set to 3 and βe is set to 1. 
These values are then changed dynamically based on the 
network status.  

The incremental value is used to update the cwnd, as: 
cwndn = cwnd + increment                           (4) 

It could be noted here that the cwnd size increased by two 
segment each RTT if the current Transfer Rate (TR) 
sufficiently higher than the last one estimated, i.e., ∆TR > 
αe or by one segment per RTT if that difference is not high 
enough. Otherwise, if ∆TR < βe, the cwnd will be 
unchanged. This is because, the network is saturated and 
the sending rate should not increased than the current. 
 
c) Algorithm Description. 
Figure 2 shows the flow chart of the Enhanced Congestion 
Avoidance algorithm.   

 

Figure 2: Flowchart of Enhanced Congestion Avoidance Algorithm 

4.3 Enhanced Fast Recovery Algorithm 

The problem of the current fast recovery algorithm is that, 
the TCP sender halves its congestion window, as soon as 
congestion detection, irrespective to the state of the 
network. This mechanism makes the current TCP variants 
inefficient in terms of network utilization because the 
congestion window controls the number of packets that a 
TCP sender can send over the network at any time. The 
crux of idea of the enhanced fast recovery is to decrease 
the congestion window based on the state of the network so 
as to allow transferring more packets to the destination. 
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The sender can determine the congestion degree in the 
network using the change in the Round Trip Time (RTT) 
and hence changes the congestion window accordingly. 
Since all packets make a round trip from the sender to the 
receiver and back to the sender, the RTT will change as the 
network traffic load changes. The value of RTT increases 
with the increasing of the network load. So, the RTT could 
be used to reflect the network status. Therefore, in entering 
the fast recovery algorithm, the sender can detect the 
change in the RTT and decrease the congestion window by 
a value related to the increase in the RTT. 
 

a) Estimating Change in Round Trip Time  
The sender continuously monitors the RTT and keeps up 
the last N values of RTTs. In entering fast recovery phase, 
the sender uses the queued values of the RTTs to compute 
the Average Round Trip Time (RTTavg), as:  

NRTTRTT
N

i
iavg /

1
∑
=

=                     (5) 

Then, the sender calculates the change in RTT (∆RTT) as 
the difference between the latest RTT (RTTn), just right 
before detecting congestion, and the average RTT, as: 

∆RTT = RTTn − RTTavg                       (6) 
 

b) Updating Congestion Window 
The sender uses the change in the RTT to update the 
congestion window by a value related to the ∆RTT. That 
is, the sender first calculates the increasing factor (INC f) 
according to the change in RTT, as: 

INCf = (cnwd / RTTn) * ∆RTT               (7) 

The new congestion window (cwndn) is then determined as 
the maximum of two segments and the difference between 
the current congestion window (cwnd) and the increasing 
factor (INCf). That is: 

cwndn = max {2, (cwnd − INCf)}            (8) 
 

c) Algorithm Description 
In entering the fast recovery algorithm, the sender first 
determines the cwndn as in Eq. 8, and sets the ssthresh to 
the maximum of cwndn and two segments. The sender then 
sets cwnd to the value of the ssthresh plus 3, the number of 
received duplicate acknowledgements, and continues with 
fast recovery. The sender increases the cwnd by one for 
each duplicate acknowledgment received and send new 
segment if allowed. With partial ACK, the sender 
retransmits the segment that follows the Acked one and 
proceeds. With full ACK, it sets the cwnd to the ssthresh 
and invokes the fast recovery algorithm. If the sender 
detects losses by timeout expiration, it will set ssthresh to 
the maximum of cwndn and two segments, and set the 
cwnd to one, and then goes into the slow start algorithm. 

4.4 EnewReno Mechanism Descriptions 

This section describes the proposed congestion control 
mechanism; EnewReno. The EnewReno uses the four 
algorithms: slow start, enhanced congestion avoidance, fast 
retransmit, and enhanced fast recovery. In the proposed 
algorithm, the fundamental of the slow start algorithm is 
unchanged. That is, when a new connection is established 
the congestion window size (cwnd) is initialized to one 
segment and the value of cwnd is updated to cwnd + 1 for 
each ACK received. As soon as the cwnd exceeds the 
ssthresh, the enhanced congestion avoidance algorithm is 
invoked. During this phase, the sender estimates the ∆TR 
and compares its value to αe and βe, then makes a decision 
of how to increase the congestion window size. The sender 
continues increasing its sending rate (cwnd) with each 
ACK received during this phase until congestion indication 
via timeouts or duplicate acknowledgements (DUPACKs). 
When the sender receives 3 DUPACKs, it enters into fast 
retransmit to resend the lost segments, and then invoke the 
enhanced fast recovery algorithm. When the sender 
receives new acknowledgement, it will exit that phase 
putting its cwnd to ssthresh and goes into congestion 
avoidance algorithm. Table 1 shows pseudo code the 
EnewReno congestion control mechanisms. 

Table 1: pseudo code the EnewReno mechanisms 

Slow Start Algorithm: 
Initial: cwnd = 1; 
For (each packet Acked) 
cwnd++; 
Until (congestion event, or, cwnd > ssthresh) 

Enhanced Congestion Avoidance: 
/* slow start is over and cwnd > ssthresh */ 
Every Ack: 

∆TR = TRc − TRp 
Calculate increment value;   (Eq., 3) 
cwnd = cwnd + increment 
Until (timeout or 3 DUPACKs) 

Fast Retransmit Algorithm: 
After receive 3 DUPACKs 
Resend lost packet; 
Invoke Enhanced Fast Recovery algorithm 

Enhanced Fast Recovery Algorithm: 

i-With 3 DUPACKs: 
cwndn = MAX {2, (cwnd - INCf)}; 
ssthresh = MAX {2, cwndn}; 
cwnd = ssthresh +3; 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 373

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

Each DACK received; 
cwnd ++; 
Send new packet if allow; 
After Full Ack: 
cwnd = ssthresh; 
Invoke Congestion Avoidance Algorithm; 

 ii-When TimeOut: 
cwndn = MAX {2, (cwnd - INCf)}; 
ssthresh = MAX {2, cwndn}; 
cwnd = 1; 
Invoke Slow Start Algorithm; 

5. Simulation Results and Discussion 

In this study, the performance of the proposed mechanism 
is evaluated by using the well-known network simulator 
NS-2. The evaluation is done on a simulation scenario of 
the US AT&T network topology, as shown in Figure 3. 
This topology is generated by using the GT-ITM realistic 
topology generator [25]. It has been proven that the created 
topology is similar to the real US AT&T continental IP 
backbone network by 86.66% [26].  

In order to get a proper estimation for the steady state 
performance, the simulation time should be long enough. 
Furthermore, a number of performance matrices should be 
considered to show the benefits of using TCP EnewReno 
over other mechanisms. In this study, a simulation time of 
40 seconds is used and the collection of data is started after 
2 seconds from the beginning of the simulation to get over 
the transient phase. In addition, a number of performance 
matrices such as the instant and the aggregate throughput, 
the changes of delay with the time, and the packet losses, 
are studied to show the benefits of using EnewReno over 
the existing mechanisms NewReno and Vegas. 

 
 
 
 
 
 
 
 
 

Figure 3: AT&T Network Topology [26]. 

5.1 Throughput 

Figure 4 shows the instant throughput, calculated every 0.1 
second, for the mechanisms: NewReno, Vegas, and 
EnewReno. Form the figure, the throughput achieved by 
the EnewReno is higher than that of Vegas and NewReno. 
This is because, during the fast recovery algorithm, 
NewReno waits to recover all lost packets and send few 
new packets, but with EnewReno the congestion window 
decreased by the degree the network load so it could send 
more new packets depend on the network status. 

 

(a) TCP NewReno 

 

(b) TCP Vegas 

 

(c) TCP EnewReno 

Figure 4: Instant Throughput for TCP NewReno, Vegas and EnewReno 
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Figure 5 shows the aggregate throughput for TCP 
EnewReno, NewReno and Vegas. The figure shows that, 
the TCP EnewReno provides higher throughput than the 
other mechanisms. This is because, the NewReno adapts 
congestion window according to blind rate adaptation 
mechanism regardless to the current load at the network, 
i.e., the ACK causes the congestion window to increase 
and packet losses cause the window to decrease. While, the 
TCP EnewReno adapts its sending rate by adjusting the 
congestion window based on the current network load. 
From the figure, before 10 second, the aggregate 
throughput for NewReno and EnewReno is similar. This is 
because they have the same behavior in the slow start 
phase. But, after 10 second, the TCP EnewReno provides 
higher throughput than the other mechanisms because of 
the behavior of EnewReno during the congestion 
avoidance and the fast recovery phases. In the congestion 
avoidance phase, EnewReno adapts window size according 
to the network status (2 packets per RTT or 1 packet per 
RTT or zero packets per RTT), while NewReno 
continuously increases its window size one packet per RTT 
regardless to the current load at the network, and TCP 
Vegas increases, stops, or decreases its window. During 
the fast recovery phase, the EnewReno reduces the sending 
rate and adjusts its congestion window according to the 
network status as soon as a packet loss is detected. While, 
TCP NewReno and Vegas reduce their congestion window 
to half the current one, regardless to the network load. 

 

Figure 5: Aggregate Throughput of different algorithms 

5.2 Delay 

Propagation and queuing delays are the primary sources of 
communication delay in the network. The propagation 
delay is a link characteristic, while, the queuing delay is a 
control flow affected delay. Hence, one of the goals of a 
congestion control mechanisms is to adjust the sending rate 
in order to minimize the queuing delay. Figure 6 shows the 
packet delay verses time for EnewReno, NewReno, and 

Vegas. As shown in the figure, between 10 and 24 sec, the 
TCP Vegas provides less delay than the other variants. 
This is because, at start, Vegas increases the sending rate 
very carefully, where it sets the ssthresh to two packets 
only. While, TCP EnewReno tries to utilize the available 
network resources by increasing the sending rate. 
However, during the congestion avoidance and fast 
recovery phases, EnewReno adapts the transmission rate to 
get better performance behavior, and that is clear between 
time 25 and 36 sec, the time delay get less than Vegas. 

 
Figure 6: Delay versus Time 

5.3 Packet Losses 

Figure 7 shows the number packets losses versus time for 
the TCP EnewReno, NewReno, and Vegas. From the 
figure, between 6 and 10 sec, EnewReno and NewReno 
have the same behavior of losses, because they have the 
same slow start algorithm, but they provide more losses 
than Vegas. However, during congestion avoidance and 
fast recovery phases, EnewReno increases or decreases its 
congestion window size based on the change in the 
network load, so the probability of losses decreased. As 
shown in the figure, EnewReno get fewer packet losses 
than NewReno and Vegas.  

 
Figure 7: Packet Losses versus Time 
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5.4 Resource Utilization 

In this section, the resource utilization is studied in terms 
of how the congestion control mechanisms impact the 
queue size at the intermediate routers. The objective is to 
achieve high utilization of the link as well as maintain the 
queue size close to a reasonably reference value via 
controlling the sending rate at the sender. Figure 8 shows 
the behavior of queue size for TCP variants, EnewReno, 
Vegas, and NewReno considering the Random Early 
Detection (RED) discipline as a buffer management 
mechanism. The RED management discipline is designed 
to cooperate with the TCP congestion control mechanism. 
It tries to manage the average queue size by monitoring the 
average buffer occupancy at the router, and setting its 
packet drop probability as a function of buffer occupancy. 
Keeping the average queue size low, burst dropping can be 
avoided even when packets from the same connection 
continuously arrive. 
 
The simulation results in Figure 8 are taken over a portion 
of time (10 sec) to have a range in the graph showing 
exactly how the queue size is changed. From the figure, 
EnewReno provides higher resource utilization, in form of 
maintaining effective queue size value, than the other TCP 
variants. This is because EnewReno tries to fully utilize the 
network resources by adapting the sending rate based on 
the network load. This behavior clearly explains the results 
in Figure 5 for the throughput and why Vegas has lower 
throughput than EnewReno and NewReno. Also, this 
behavior explains the results in Figure 6 for the delay and 
why EnewReno provides higher delay at the start of the 
connection transmission. 

6. Conclusions and Future Work 

In this paper a new mechanism, called EnewReno, is 
developed for congestion avoidance. The proposed 
mechanism is based on the enhancement of both the 
congestion avoidance and the fast recovery algorithms of 
the current TCP NewReno. The additional modifications 
are generally developed by adjusting the congestion 
window dynamically based on the network status. During 
congestion avoidance, the congestion window is not 
increased linearly as the other TCP variants but increased 
by an incremental value based on the degree of the 
network congestion in order to fully utilize the network 
resources efficiently. Also, during fast recovery, the 
congestion window is not decreased to half of its value as 
the other TCP variants but decreased by a value based on 
the change in round trip time so as to allow transferring 
more packets to the destination. The simulation results 
show that, the proposed mechanism provides better 

performance than previous TCP variants in terms of 
throughput, efficient utilization of the network resources, 
less packet losses and delay. 
 
The EnewReno mechanism has been verified to work well 
in wired networks. So, the further work should focus on 
whether EnewReno performs well in wireless networks. 
Also, in the future studies, it is intended to evaluate the 
proposed mechanism against fairness when interact with 
the UDP.  

 

(a) TCP EnewReno 

 

(b) TCP NewReno 

 

(c) TCP Vegas 

Figure 8: RED Queue Size Behavior for TCP variants 
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