

Timed Test Case Generation Using Labeled Prioritized Time
Petri Nets

Noureddine ADJIR1, Pierre de SAQUI SANNES2, M. Kamel RAHMOUNI3 and Abdelkader ADLA3

 1 LMMC, Department of Informatics and Mathematics, University of Moulay Tahar, Saida,
BP 138, Ennasr, 20002, Saida, Algeria

2 CNRS ; LAAS ; 7 avenue du Colonel Roche, F-31077 Toulouse, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse France

3 Department of Informatics, Faculty of Science, University of Oran,

BP 1524, El M’naouar, 31000, Oran, Algeria

Abstract
Model-based testing of software and hardware systems uses
behavioral and formal models of the systems. The paper presents
a technique for model-based black-box conformance testing of
real-time systems using Labeled Prioritized Time Petri Nets
(LPrTPN). The Timed Input/Output Conformance (tioco) relation,
which takes environment assumptions into account, serves as
reference to decide of implementation correctness. Test suites are
derived automatically from a LPrTPN made up of two concurrent
sub-nets that respectively specify the system under test and its
environment. The result is optimal in the sense that test cases
have the shortest possible accumulated time to be executed. Test
cases selection combines test purposes and structural coverage
criteria associated with the model. A test purpose or a coverage
criterion is specified in a SE-LTL formula. The TIme Petri Net
Analyzer TINA has been extended to support concurrent
composed subnets. Automatic generation of time-optimal test
suites with the Tina toolbox combines the model checker selt and
the path analyzer plan. selt outputs a sequence that satisfies the
logic formula. plan computes the fastest execution of this
sequence which will be transformed in a test cases suite.
Keywords: real-time system; Labelled Prioritized Time Petri
Nets; conformance testing; time optimal test cases.

1. Introduction

The embedded real-time industry is changing fast –
systems have become larger, more complex, and more
integrated. Real-Time systems interact with their
surrounding environment and provide the latter with the
expected outputs at the right time. In other words, the
timely reaction is just as important as the kind of reaction.
Such systems need to be tested in order to check their
reliability before use. Testing real-time systems is even
more challenging than testing untimed ones, because the
tester must consider when to stimulate the system, when to
expect responses to be issued, and how to assign verdicts

to any timed event sequence it may observe and partly
control. Further, the test cases must be executed in real-
time, which means the test execution system itself
becomes a real-time system.
Without automation and modeling tools, testing remains
ad hoc, error prone, and very expensive both at the level of
the test suit construction and at execution time. Clearly,
real-time testing is almost impossible to achieve manually
for real-size systems.
With the use of models in software/hardware design and
development, model-based testing has received increasing
attention from industry practitioners. It is a black-box
approach in which common testing tasks such as test case
generation and test result evaluation are based on a model
of the system. Using the model to generate test cases and
assign verdicts is cheaper and more effective than a
completely manual approach.
The paper addresses model-based black-box conformance
testing of real-time systems. It checks a System Under
Test (SUT) against its specification. This is typically
achieved in a controlled environment where the SUT is
executed and stimulated with inputs according to a test
specification, and the responses of the SUT are checked to
conform to its specification.
The paper advocates for a type of conformance testing
where test suites are derived from a formal model that
specifies the expected behavior of the system to be tested.
Precisely, the paper presents a technique for model-based
black-box conformance testing of real-time systems based
on Labelled Prioritized Time Petri Nets models (LPrTPN).
The test specification is given as an LPrTPN made up of
two concurrent subnets that respectively model the
expected behaviour of the SUT and the latter’s
environment.
Optimizing test case generation requires selecting a
limited set of test cases to be executed from a very large,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 123

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

may be of unbounded size, list of tests that cover all the
executions of the SST. Practically, a huge number of test
cases, generally infinitely, can be generated from even the
simplest models. The addition of real-time complicates
matters and is a source of explosion of system states and
consequently of test cases. To guide the test cases
selection, a test purpose or coverage criterions are often
used. Test purposes and coverage approaches guarantee
that test suites are derived systematically. Further, the
approaches “coverage criteria” guarantee a certain level of
reliability, quality, thoroughness and confidence.
In this paper, test cases can be generated in two different
manners: on the one hand, by using manually formulated
test purposes then encoded in the SE-LTL logic [16]; on
the other hand, by using several kinds of coverage
criterion expressed directly in SE-LTL such as statements,
transitions, places, markings or states classes coverage of
the LPrTPN model. In this context, the paper explains how
to exploit and extend the toolbox TINA [3] to calculate the
test cases and test suites. The proposed approach exploits
the fact that TINA includes the tools selt and plan. selt is a
State-Event LTL model checker. plan is a path analysis
tool that computes a firing schedule over some given
firing transition sequences, in particular, the fastest and the
shortest schedules. The latest release of TINA supports
automatic generation of time-optimal test suites for
conformance testing i.e. test suites with optimal execution
time. So, the particular schedules, computed by plan,
associated to the witnesses sequences of a test purpose or a
coverage criteria exhibited by selt, will be used to compute
the time-optimal test cases and test suites from the SUT
and the considering environment models. Especially, the
required behaviour of the SUT is specified using a
Deterministic Input Enabled and Output Urgent LPrTPN
(DIOU-LPrTPN).
Time-optimal test suites are interesting for several reasons.
First, reducing the total execution time of a test suite
allows more behaviour to be tested in the (limited) time
allocated to testing; we may thus expect tests to be more
thorough. Secondly, it is generally desirable that
regression testing can be executed as quickly as possible
to improve the turnaround time between changes. Thirdly,
it is essential for product instance testing that a thorough
test can be performed without testing becoming the
bottleneck, i.e., the test suite must be applied to all
products coming of an assembly line. Finally, in the
context of testing of real-time systems, we hypothesize
that the fastest test case that drives the SUT to some state,
also has a high likelihood of detecting errors, because this
is a stressful situation for the SUT to handle.
The rest of the paper is organized as follows: section 2
surveys related work. In section 3, we define the test
specification. Section 4 defines the syntax and the
semantics of the LPrTPN. It also discusses test case

generation based on the DIOU-LPrTPN model. Section 5
describes how to encode test purposes and coverage
criteria in the SE-LTL logic. Section 6 concludes the
paper.

2. Related work and motivations

Time Petri nets [30] are one among the important formal
models widely used to specify and verify real-time
systems. They are characterized by their expressive power
of parallelism and concurrency, and the conciseness of the
models. In addition, the efficient analysis methods
proposed by [10] have contributed to their wide use.
Adding priorities to TPN (PrTPN) increases their
expressiveness [2] and [9]. Since we address the testing of
reactive systems, we associate a label of an alphabet of
actions with each transition (LPrTPN). A label is an input
or an output or an internal action.
TPN have other important advantages that are not
mentioned here due to lack of space. Despite of this, little
work has been done on model-based testing from TPNs,
the subject being essentially addressed for timed automata
(TA) [4]. Model-based testing for TA has been discussed
in [12], [13], [14], [17], [19], [20], [22], [23], [24], [26],
[27], [28], [31], [32] and [33], just to mention a few.
Further, most TA-based testing tools were developed more
than five years ago (see, e.g., [18], [22] and [31]).
Algorithms for generating test suites following test
purposes or a coverage criteria attempt to optimize test
suites w.r.t. the number of test cases, the total length of the
test suite, and the total time required to execute the test
suite. In the paper, we are interested in the last two
propositions. In this context, the main contributions of the
paper are as follows: re-implement the toolbox TINA and
add functionalities to support the composition of
LPrTPN’s, definition of a subclass of LPrTPN from which
the schedules computed by the path analysis tool plan, in
particular the fastest schedules (optimal in the total time)
and the shortest paths (optimal in the total length),
associated to the diagnostic sequences, exhibited by the
State-Event LTL model-checker selt [16], will be
exploited to compute the time-optimal (covering) test
suites.

3. Test specification

Testing involves a system surrounded by an environment.
It is almost impossible to test the system without making
assumptions about its environment. An uncontrolled and
possibly imaginary environment would indeed allow all
possible interaction sequences. But, due to the lack of
resources, it is not feasible to validate the system for all
possible environments. Practically, the requirements and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 124

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the assumptions of the environment need to be made
explicit.

Figure 1. The SUT and its environment ENV

We assume that the test specification, noted M=MSUT

ME, is given as an LPrTPN made up of two concurrent
subnets. The first subnet models the expected behavior of
the SUT, noted MSUT. The second subnet models the
behavior of the environment; it is noted ME (Fig. 2). The
set of observable actions is partitioned into two subsets:
input actions noted inA and output actions noted outA .

Inputs are the stimuli received by the system from the
environment. Outputs are the actions sent by this system to
its environment. They are not controllable and should be
tested also with their deliverance dates. An input a (resp.
output b) is post fixed by a? (b!). The system may perform
internal actions which are invisible to the environment and
thus to the tester. Internal or unobservable actions are
denoted . We have in outA A A .

Figure 2. The test specification M: The SUT model MSUT and its
environment model ME.

4. Environment and system modeling

4.1 Labelled Prioritized Time Petri Nets

Time Petri Nets (TPN) [30] extend Petri Nets with
temporal intervals on transitions. PrTPN extend TPN with
a priority relation on the transitions. Since we address the
testing of reactive systems, we add an alphabet of
actions A and a labelling function that associates an
action with each transition.

4.1.1 Notations

The sets 0 0, , , , � � � � � are respectively the sets of
natural, rational, non-negative rational, real and non-
negative real numbers. We consider the set I+ of non-
empty real intervals ,a b with bounds 0,a b � . We

consider both open and closed bounds, and also allow a
right open infinite bound as in 1, . For i I+, i

represents its lower bound, and i its superior bound (if it

exists) or . For any 0 � , i represents the interval

 / 0x x . S in out out inA A A A A is the set

of the couples of synchronizing actions and
 S sA A is the set of all actions (internal and

synchronizing actions).

4.1.2 Syntax

Formally, a LPrTPN over the alphabet A is a tuple

 0, , ,I , ,sm P,T,Pre Post where:

- 0, ,mP,T,Pre Post is a Petri Net where P is a finite
set of places, T is a finite set of transitions with

P T = , 0:m � +P is the initial marking and
, : �Pre Post T P are respectively the precondition

and post-condition functions. For , ,f g P f g �
means that p P f p g p and ,f g
is ,f p g p for any p .

- sI : T I+ is the static interval function which
associates a firing temporal interval sI I+ with each
transition. The rational sI t (resp. sI t) is the static
earliest firing time (resp. the static latest firing time) of t
after the latter was enabled. Assuming that a transition t
became enabled at the last one at the time , then t can’t
be fired before sI+ t and it must be done no later than

 sI+ t , unless disabled by firing some other transition.
In this paper, intervals 0, are omitted and w in the
right end point of an interval denotes . For example,
 3,w denote the interval 3, .

- T×T is the priority relation, assumed irreflexive,
asymmetric and transitive, between transitions. 1 2t t
means 2t has priority over 1t .

- : A T is the labelling function that associates to
each transition an operation.

The transitions of the net M (see section 3) are
partitioned into purely transitions of the SUT model MSUT
(hence invisible for the environment ME and labelled
with) and synchronizing transitions between the MSUT
and the ENV (hence observable for both parties). The set
of transitions of the model MSUT which are labelled with
internal actions is /SUTt t T T . The internal

transitions are fired individually while synchronizing
transitions are fired by complementary actions couples
(e.g. ?a and !a). In a couple of synchronizing actions, we

assume that the first component is an action of the SUT
model MSST while the second is of the environment model

ME. A couple 2,t t T-T is a synchronizing

transition if t and t are labeled with complementary
synchronization actions which are noted ,a a e.g. ?t a

(resp. !a) and !t a (resp. ?a). We note SUTT the set of

ENVIRONMENT
System Under
 Test

Output

O!

I?

Input

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 125

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the SUT model transitions and ET the set of the
environment model transitions. The set of the environment
model transitions which complement a synchronizing
transition SUTtT is equal

to SUT ECT /ift t t T anda t a .

To illustrate the concepts, we use the light-controller
model depicted by figure 3. The user interacts with the
controller by touching a touch sensitive pad. The light has
three intensity levels: OFF, DIMMED, and BRIGHT.
Depending on the timing between successive touches, the
controller toggles the light levels. For example, in DIM
state, if a second touch is made quickly (before the
switching time 4swT time units) after the touch that
caused the controller to enter dimmed state (from either
OFF or BRIGHT state), the controller increases the level to
bright. Conversely, if the second touch happens after the
switching time, the controller switches the light OFF. If the
light controller has been in OFF state for a long time
(longer than or equal to Tidle 20), it should reactivate
upon a touch by going directly to bright level.

Figure 3. MSUT: the light controller model

The LPrTPN shown in Fig. 3 models a SUT which can be
composed in parallel with the environment models shown
in Fig. 4 & 5 respectively over the action inA touch

and outA off,dim,bright . We obtain two models

(M1=MSUTME1 and M2=MSUTME2). Fig. 4 and 5
show two possible environment models, ME1 and ME2,
for the simple light controller. Fig. 4 models a user
capable of performing any sequence of touch actions.
When the constant Treact	 is set to zero he is arbitrarily
fast. A more realistic user is only capable of producing
touches with a limited rate; this can be modelled setting
Treact	 to a non-zero value. Fig 5 models a different user
able to make two quick successive touches, but which then
is required to pause for some time (to avoid cramp), e.g.
Tpause = 5.

Figure 4. ME1 - a light switch controller environment model

Figure 5. ME2 –a nother light switch controller environment model

4.1.3 Semantics

4.1.3.1 Timed transition systems

Timed Transition Systems describe systems that combine
discrete and continuous evolutions. They are used to
define the behavior of timed systems such as LPrTPN. A
Timed Transition System (TTS) is a transition
system 0, , ,SS E e A , where E is the set of states of

the system, 0e is the initial state, SA is the set of actions
(internal and couples of synchronizing actions). The
transition relation 0SE A E � consists of

discrete transitions , 'a ae e or 'e e (with
 , Sa a A) representing an instantaneous action, and

continuous transitions 'de e (with 0d �)
representing the passage of d units of time. Moreover, we
require the following standard properties for TTS: (1)

Time-determinism: if de e and de e with 0d �

then e e , (2) 0-delay: 0e e , (3) Additivity: if
de e and 0, ,de e d d

 � then d de e , (4)

Continuity: if de e then 0,d d � such that

d d d there exists "e such that ' "" 'd de e e .

4.1.3.2 States of an LPrTPN

A state of an LPrTPN is a pair ,Ie m , where m is a

marking of the net with m p the number of tokens in

place p . A transition t is enabled at marking m iff

 m tPre . We denote by En m the set of transitions

enabled at m . It is then equal to
 /En m t m t T Pre . The second component of the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 126

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

pair ,Im is a partial function over En m called the

interval function. It associates exactly a temporal interval
in I+ with every enabled transition i.e. I : En m I+.
Intuitively, I t represents the firing interval of the

enabled transition t shifted towards the origin as time
elapses, and truncated to not-negative times. Assuming
that the amount of time that has elapsed since t is enabled
for the last one is then sI It t . An enabled

transition t is fireable if (1) it is immediately fireable
(0 I t), (2) no other transition with higher priority is

fireable at the same instant, (3) if t is not an internal
transition then its complementary transition is also
fireable. After the firing, some transitions are associated
with their intervals sI t and we say that they are newly

enabled.
The initial state of the LPrTPN M1=MSUTME1 that
models the SUT “light-controller” with its associated
environment (figures 3 and 4) is 0 0 0,Ie m , where:

- 0 0 0(1), (1) m p q (places 0 0and p q are both marked

with one token).
- 0 0 8 0, ,En m t t s (transitions enabled by the initial

marking 0m).

- 0 0 0 8 0 0I 0, , I , and I 0, t t s Tidle (the

interval function 0I is sI restricted to the enabled

transitions 0En m).
- Despite 0I 0,t , 0t is only fireable on

 0,Tidle because 0 8t t (8t has priority over 0t) and

 0 8I ,t Tidle . By contrast, 8t is fireable on ,Tidle .

The couple of transitions 0 0(,)t s or 8 0(,)t s labeled

respectively by (touch?, touch!) can be fired respectively
on 0,Tidle or on ,Tidle .

The temporal information in states will be seen as firing
domains instead of interval functions. The firing domain
of a state ,Ie m is then described by an equations

linear system with one variable per enabled transition
(noted as transitions). The state will be then noted

 ,e m D where / I
t

D t En m t .The

state 0 0 0,e m D of the LPrTPN M1=MSUT ME1 is:

 0 0 0,e m D

where

0

0 8

0

0
:

0

t
D t

s

Tidle

4.1.3.3 Newly enabled Transition

For m� + and ,l t T T such that t En m we define a

predicate , ,l m tne which is true if l is newly enabled

by the firing of t from m , and false otherwise. Formally,
the predicate is defined by:

 , , l En m t tl m t l En m t l t

 ne
Pre Post

Pre

For , , SUTm k t � + T T and SUTt CT t such that

 ,t t En m we define a predicate , , , ,a a k m t tne , which

is true if k is newly enabled by the firing of
andt t simultaneously from marking m , and false

otherwise by:
 , , , ,a a k m t t ne

 Post Postk En m t t t t

k En m t t k t k t

Pre Pre
Pre Pre

The predicate , , , ,a a k m t tne (resp. , ,k m lne) indicates

the necessity to associate to k its static interval after firing
simultaneously the couple ,t t (resp. individually the

transition l) at the marking m . Intuitively, it associates to
the couple ,t t (resp. l) and to the transitions that

could not be fired in parallel with ,t t (resp. l) their

static intervals.

4.1.3.4 The semantics of an LPrTPN

The semantics of an LPrTPN 0,Post, ,I , ,sm N P,T,Pre

is a TTS 0, , ,SE e A � �N where E is the set of states

 ,Im of N , 0e its initial state and 0SE A E �

consists of two kinds of transitions between states: discrete
and continuous transitions. Discrete transitions are labeled
with synchronizing or internal actions and continuous (or
temporal) transitions are labeled by real values.

4.1.3.5 Transitions firing Algorithms

 The continuous transition relation is the result of time

elapsing. It is defined by ,I ,Idm m iff

1. 0d �

2. It t En m d t T

3. I It t En m t t T

A continuous transition of size d is possible iff d is not
greater than the latest firing time of all enabled transitions
(2). All firing intervals of enabled transitions are shifted
synchronously towards the origin as time elapses, and
truncated to non negative times (3).
 The discrete transitions are the result of the transitions
firings of the Petri net. As it is showed above, they may be
partitioned into internal independent and synchronizing
transitions.
 the internal independent transition relation is

defined by ,I ,Im m iff

1. SUTt t t En m T T

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 127

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2. 0 I t

3. 0 ISUTk k En m t k k T

4. m m t t Pre Post

 s

. I
iff , , then I else I

5 k m k k
k m t k k

 T Pre
ne

An internal transition t of the SUT model MSUT may fire
from a state ,Im if it is enabled at m (1), immediately

firable (2) and no internal or synchronizing transition of
the SUT model with higher priority satisfies these
conditions (3). In the target state, the transitions of the
combining model M that remained enabled while t fired
(t excluded) retain their intervals, the others which are
newly enabled by the result marking are associated with
their static intervals (5).
 the synchronizing transition relation is defined by

 ,,I ,Ia am m iff

1. 2, ,t t t a t a t t En m T T

2. 0 I 0 It t

2. 0 ISUTk k En m t k k T

3. 0 IEk k En m t k k T

4. m m t t t t Pre Pre Post Post

 , s

. I
iff , , , then I else I

6
a a

k m k k
k m t t k k

T Pre
ne

The synchronizing transitions t and t labelled respectively
by the complementary actions a and a may fire
simultaneously from the state ,Im if they are enabled (1),

immediately fireable (2) and neither a transition of the
SUT model MSST (a transition of SUTT) nor a transition of
the environment model ME (a transition of ET) with
higher priorities compared to t and t respectively
satisfies these conditions (3&4). In the target state, the
transitions that remained enabled while ,t t fired (,t t being

excluded) retain their intervals, the others which are newly
enabled at the result marking are associated with their
static intervals (6).
If the light controller and its environment (Fig. 3 and 4)
remain in their initial state for 0.9 time units -the light
controller doesn’t receive any touch from the user- we

have then a transition 0.9
0 1e e . The new state

 1 0 1,e m D will be:

0

0 0 0 1 8

0

0
: (1), (1) and : -0,9

0

t
m p q D t

s

Tidle

The firing of the synchronizing transitions 0 0,t s from 1e

leads to 2e 1 2e etouch?,touch! . The state 2 1 2,e m D is:

1

1

1 1 1 2 2

3

4

0 0

: p ,q and : 0
0
0

t
s

m D s
s
s

Treact

The firing of 1 1,t s from the state 2 1 2,e m D leads to

the state 3 2 3,e m D dim!,dim?
2 3e e :

2

4

1
2 4 1 3

2

3

4

Tsw
0

Treact: p ,q and : 0
0
0

t
t

sm D s
s
s

With the properties of TTS, a run of � �N can be defined

as a finite sequence of moves
0 0 1 1

0 0 1 1 2 1
nd d

ne e e e e e
 where discrete

and continuous transitions alternate. ,0i i n are either

synchronizing transitions (, Si a a A) or pure

transitions (i) and ,0i i nd are their relative firing

times. To such a run corresponds the firing schedule
which is the timed word 0,i i i n over SA where

0
i

i jj d is the firing time when the actions ,a a

happen (resp. happens).
We denote by:
 Support the projection of the schedule over the

alphabet SA . It is called its support. A schedule is
realisable from a state e if the discrete transitions of the
support 0 1 n are successively fireable from e at

the associated firing times 0 1 n .

 ENVSchedule the projection of the schedule

over the second components of the complementary
actions, i.e. 0,ENV i i i nSchedule a where ia are

the components of the environment model ME and

0
i

i jj d is the firing time when the actions ,i ia a

happen. Note that the symbol doesn’t appear
in ENVSchedule , it is removed.

If the pausing time Tidle and the switching time Tsw in
MSUT are respectively equal 20 and 4 time units then:

0 0 1 1 2 2e e e e e e bright!,bright?20 touch?,touch! 0 5 touch?,

0 0
3 3 4 4 5 5e e e e e e touch! dim!,dim? 4 touch?,touch! off!

 6e,off? is a run of � �M .

 20(touch?,touch!)20(bright!,bright?)25(touch?,touch

!)25(dim!,dim?)29(touch?,touch!)29(off!,off?) is a firing
schedule.

 ENVSchedule = 0.touch!.20.bright?.25.touch!.25.dim?.

29.touh!.29.off?.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 128

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.2 TINA (TIme Petri Net Analyzer)

TINA is a software environment for editing and analyzing
(LPrT)PN [7]. It includes the tools:
– nd (NetDraw): is an editor for graphical or textual
description of (LPrT)PN.
– Tina: For analysing (LPr)TPN models, it’s necessary to
finitely represent the state spaces by grouping some sets of
states. Tina builds the Strong State Classes Graph (SSCG)
proposed in [9], which preserves states and maximal traces
of the state graph, and thus the truth value of all the
formulae of the SE-LTL logic.
– selt: is a model checker for an enriched version of State-
Event LTL [16], a Linear Temporal Logic supporting both
State and Event properties. For the properties found false,
selt produces a timed counter-example, namely the
diagnostic (or witness) sequence. A diagnostic sequence
of a property is a sequence of discrete transitions

(complementary and/or internal transitions). A diagnostic
trace is a schedule where its support is a diagnostic
sequence. The firing of this schedule from 0e allows
satisfying the property .

– Plan: is a path analysis tool. It computes all, or a single,
timed firing sequence (schedule) over some given firing
discrete transitions sequence. In particular, it computes the
fastest schedules and shortest paths.

4.3 Deterministic Input Enabled and Output Urgent
LPrTPN

To ensure time-optimal testability, the following semantic
restrictions turn out to be sufficient. We define the notion
of Deterministic Input Enabled and Output Urgent
LPrTPN, DIEOU-LPrTPN, by restricting the underlying
TTS defined by the LPrTPN as follows: (1) Deterministic:
For every semantic state ,e m D and 0sA � ,

whenever e e and e e then e e ,(2) (Weak)

Input Enabled: whenever de for some delay 0d �

then ina A ,a ae , (3) Isolated Outputs: outa A ,

whenever ,a ae and e , out inA A then

,a a , (4) Output urgency: whenever e ,

 outA then 0/ ,de d � . These conditions are

met by the model depicted by figure 3.

5. Test Generation

5.1 Conformance relation and test hypothesis

A conformance relation formalizes the set of SUT that
behave correctly compared to a reference specification. In
this paper, we require Timed Input/Output Conformance
relation (tioco) [27] based on timed trace inclusion, i.e. the
timed traces of the SUT are included in those of the
specification. Thus after any input sequence, the SUT is
allowed to produce an output only if the specification also
able to produce that output. Similarly, the SUT may delay
(staying silent) only if the specification also may delay.
A SUT is not a formal object (it is about a physical system
or an implementation). However, formally proving its
conformity requires modeling its semantics by a formal
object. The remainder the paper assumes it can be
modeled by an unknown LPrTPN. We assume that the
tester can take the place of the environment and control
the SUT via a distinguished set of observable input and
output actions. For the SUT to be testable the LPrTPN of
its specification should be controllable in the sense that it
should be possible for an environment to drive the model
through all of its syntactical parts (transitions and places).
We therefore assume that the SUT specification is a
DIEOU-LPrTPN, and that the SUT can be modelled by
some unknown DIEOU-LPrTPN. The environment model
need not be a DIEOU-LPrTPN. These assumptions are
commonly referred to as the testing hypothesis.
To clarify the construction we may model the test case
itself as an LPrTPN M for the test sequence . Places in
M are labeled using two distinguished labels, Pass and
Fail. The execution of a test case is formalized as a
parallel composition of the test case Petri net M and the
SUT model MSUT.

 SUT passes M iff M �MSUT Fail

M is constructed such that a complete execution
terminates in a Fail state (the place FAIL will be marked) if
the SUT cannot perform and such that it terminates in a
Pass state (the place PASS will be marked) if the SUT can
execute all actions of . The construction is illustrated in
Fig. 6.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 129

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 6. Test case LPrTPN M for the sequence = i0!.delai.o0?

5.2 Test cases from SE−LTL properties

Let M be the LPrTPN of the SUT model together with its
intended environment ENV; and the property,

formulated in SE−LTL, to be verified over M. As
SE−LTL evaluate the properties on all possible executions,
we consider the negation of i.e. the formula , then

we submit it to selt. If the response of selt is negative, i.e.
all the executions don’t satisfy , so at least one satisfy

its negation . selt provide simultaneously a counter-

example for , i.e. a diagnostic sequence that

demonstrates that property is satisfied. This sequence is

submitted to the tool plan for computing a firing
schedule , or all the firing schedules, having this
sequence as support. As we have seen in 3.2.1, is an
alternating sequence of discrete transitions,
synchronization (or internal) actions, performed by the
system and its environment, and temporal constraints
needed to reach the goal (the desirable state or event).
Once is obtained, it is convenient to construct the
associated test sequences. For DIEOU-LPrTPN, a test
sequence is an alternating sequence of concrete delay
actions and observable actions. Then a test sequence is
simply ENVSchedule . Finally, a test case to be executed

on the real SUT implementation may be obtained from
by the addition of verdicts. Adding the verdicts depends
on the chosen conformance relation between the
specification and the SUT. The construction is illustrated
in section 5.1. The test sequences produced by this
technique are derived from the diagnostic traces, and are
thus guaranteed to be included in the specification.

5.3 Test generation from a single test purpose

A test purpose is a property that the tester wants to
observe on the SUT. A common approach to the
generation of test cases is to first manually formulate a set
of informal test purposes and then to formalize these such
that the model can be used to generate one or more test
cases for each test purpose. Because we use the diagnostic
trace facility of the model-checker selt, the test purpose
must be formulated as a SE-LTL property that can be
checked by reachability analysis of the combined model
M. The test purpose can be directly transformed into a
simple state or event reachability check. Also, the
environment model can be replaced by a more restricted
one that matches the behaviour of the test purpose only.

Figure 7. ME3, test environment for TP2

TP1: check that the light can become bright.
TP2: check that the light switches off after three
successive touches.
TP1 can be formulated as a simple SE-LTL state
property 1 BRIGHT or an event property 2 bright!

(eventually in some future the place BRIGHT of the light
controller Petri net will be marked or the event bright! will
be executed).
Among all diagnostic sequences exhibited by selt that
satisfy the property 1 (or 2), two sequences are more

interesting: the shortest and the fastest sequences. The two
schedules associated to these sequences will be
transformed to test cases as explained in 5.2.
For TP1 we have:
 the shortest diagnostic sequence is

 (touch?,touch!)(bright!,bright?).
 The associated fastest schedule is :

 20.(touch?,touch!).20.(bright!,bright?)
 The test sequence is: 20.touch!.20.bright?
 The fastest sequence satisfying 1 is: 0.(touch?,touch!)
 0.(dim!,dim?).0.(touch?,touch!).0.(bright!,bright?)
 The test sequence is: 0.touch!.0.dim?.0.touch!.0.briht?

TP2 can be formalized using the property ME3 ⊧

3 OBJECTIF with ME3 is the restricted environment

model in Fig. 7. The fastest test sequence is
0.touch!.0.dim?.0.touch!.0.bright?. 0.touch!.0.off?.

5.4 Test Generation Based on Coverage criteria

A recurrent problem is to create a test suite that ensures
that the specification or implementation is covered in
some way. This ensures a certain level of systematicality is
achieved in the test generation process. A large suite of
coverage criteria may be proposed for the LPrTPN model,
such as statements, transitions, places, markings and
classes, each with its merits and application domain. In
this paper, we use the following coverage criteria of the
SUT model.
Transition Coverage. A test sequence satisfies the
transition-coverage criterion if, when executed on the
model, it fires every transition of the net. Transition
coverage can be formulated by the property 1

N
t ii t ,

where N is the number of transitions.
Statement Coverage. A test sequence satisfies the
statement-coverage criterion if, when executed on the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 130

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

model, it executes all the observed actions. Statement
coverage can be formulated by the property

 1
N

s ii t (in our example it is

touch? bright! dim! off!).

Place Coverage. A test sequence satisfies the place-
coverage criterion if, when executed on the model, it
marks all the places of the net. Place coverage can be
formulated by the property 1

M
m ii m p , where M is

the number of places of the net.
Class Coverage. A test sequence satisfies the class-
coverage criterion if, when executed on the model, it
generates the graph SSCG. We must first analyze the
model with Tina and compute the SSCG. Second, we
select a path in the SSCG graph that traverses all his nodes
then compute particulars schedules with plan.
Marking Coverage. A test sequence satisfies the marking-
coverage criterion if, when executed on the model, it
generates the set SUTRM M of reachable markings. For

generating test sequences that ensure this criterion, we
compute the set SUTRM M by projecting SSCG over

markings and finally encode the property in the SE-LTL
logic.
In the example of the light controller, when the
environment can touch arbitrarily, the generated fastest
transition, statement, places covering test respectively are:
 TC:0.touch!.0.dim?.0.touch!.0.bright?.0.touch!.0.off?.
20.touch.20.bright?.24. touch.24. dim?.28.touch!.28.off?
with an accumulated time of 28 t. u..
 PC: 20.touch.20.bright?.20.touch.20.off?.20.touch!.
20.dim?.20.touch!.20.bright?.24.touch!.24.dim!28.touch!
. 28.off? with an accumulated time of 28 t. u..
 CS: 0.touch!.0.dim?.0.touch!.0.bright?.0.touch!.0.
off? with 0 t. u..

5.5 Test Suite Generation

Frequently, for a given test purpose, we cannot obtain a
single covering test sequence. This is due to the dead-ends
in the model. To solve this problem, we allow for the
model (and SUT) to be reset to its initial state and to
continue the test after the reset to cover the remaining
parts. The generated test will then be interpreted as a test
suite consisting of a set of test sequences separated by
resets (assumed to be implemented correctly in the SUT).
To introduce resets in the model, we shall allow the user to
designate some markings as being reset-able i.e. markings
that allows to reach the initial marking 0m . Evidently,
performing a reset may take some time Tr that must be
taken into account when generating time optimal test
sequences. Reset-able markings can be encoded into the
model by adding reset transitions leading back to 0m .

Let rm he reset-able marking, two reset transitions and a
new place q must be added as:
The transition reset! must be added such as their input
places are the encoded places (those of rm) and its output
place is q. The firing of reset! marks the place q.

 reset!
0 0, q, Tr,Tr ,Irm m .

5.6 Environment Behavior

Test sequences generated by the techniques presented
above may be non-realizable; they may require the SUT
environment to operate infinitely fast. We demonstrate
how different environment assumptions influence the
generated test sequences. Consider an environment where
the user takes at least 2 time units between each touch
action, such an environment can be obtained by setting the
constant Treact to 2 in Fig. 4. The fastest test sequences
become:
TP1: 0.touch!.0.dim?.2.touch!.2.bright?
TP2: 0.touch!.0.dim?.2.touch!.2.bright?.4.touch!.4.off?
Also re-examine the test suite TC generated by transition
coverage, and compare with the one of execution time 32
generated when Treact equals 2.
TC’:0.touch!.0.dim?.4.touch!.4.off?.24touch!.24.bright?
.28.touch!.28.dim?30.touch!.30.bright?.32.touch!.32.off?
When the environment is changed to the pausing user (can
perform 2 successive quick touches after which he is
required to pause for some time: reaction time 2, pausing
time 6), the fastest sequence has execution time 34, and
follows a completely different strategy.
TC’’:0.touch!.0.dim?.2.touch!.2.bright?.8.touch!.8.dim?
.12.touch!.12.off?.32.touch!.32.bright?.34.touch!.34.off?

6. Conclusions

The paper proposes a method to transform the problem of
timed test case generation from the LPrTPN model to a
model-checking problem. Time-optimal test suites, which
are computed from either a single test purpose or coverage
criteria, may be generated using the TINA toolbox.
Specifically, we used the tool plan to calculate the fastest
and the shortest schedules associated with a diagnostic
sequence issued by selt to derive test cases with optimal
execution time. The transitions firings algorithms are
revisited to the reactive character of real-time systems into
account. The DIEOU-LPrTPN is quite restrictive, and
generalization will benefit many real-time systems.

References
 [1] Adjir N., de Saqui-Sannes P., Rahmouni M. K., “Test of
preemptive real-time systems” Proc. AICCSA IEEE/ACS, Doha,
Qatar, 2008, PP.734~742.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 131

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[2] Adjir N., de Saqui-Sannes P., Rahmouni M. K.,“Time-
Optimal Real-Time Test Case Generation Using Prioritized Time
Petri Nets”, Proc. ICASTVL, valid, Porto, Portugal, 2009, PP.
110-116.
[3] Adjir N., de Saqui-Sannes P., Rahmouni M. K., “Testing real-
time systems using TINA”, Proc TESTCOM-FATES'09,
Eindhoven, the Netherlands, 2009, PP. 1-15.
[4] Alur R., Dill D., “A theory of timed automata”, TCS, Vol.
126, No 2, 1994, PP. 183–235.
[5] Berard B., et al., “Comparison of the Expressiveness of
Timed Automata and Time Petri Nets”, Proc FORMATS, LNCS
3829, Uppsala, 2005, PP. 211–225.
[6]Berthomieu B., Diaz M., “modeling and verification of time
dependent systems using time Petri nets”, IEEE TSE, Vol. 17, No
3, 1991, PP. 259-273.
[7] Berthomieu B., Ribet P. O., Vernadat F., “The tool TINA -
Construction of Abstract State Spaces for Petri Nets and Time
Petri Nets”, IJPR, Vol. 42, No 14, 2004, PP. 2741-2756.
[8] Berthomieu B., Peres F., Vernadat F., “Bridging the gap
between Timed Automata and Bounded Time Petri Nets”, Proc
FORMATS, Springer, LNCS 4202, 2006, PP. 82-97.
[9] Berthomieu B., F. Peres, Vernadat F., “Model Checking
Bounded Prioritized Time Petri Nets”, Proc ATVA, Springer
LNCS 4762, 2007, PP. 523–532.
[10] Berthomieu B., Vernadat. F., “State Space Abstractions for
Time Petri Nets”, Handbook of Real-Time and Embedded
Systems, CRC Press, Boca Raton, FL., U.S.A., 2007.
[11] Bouyer P., Serge H., Reynie P. A., “Extended Timed
Automata and Time Petri Nets”, Proc ACSD, IEEE CSP, Turku,
Finland, 2006, PP. 91-100.
[12] Braberman V., Felder M., Marré M., “Testing timing
behavior of real-time software”, Proc ISQW, 1997.
[13] Brinksma E., Tretmans J., “Testing transition systems: An
annotated bibliography”, Proc MOVEP, Nantes, France, LNCS
2067, 2001, PP. 187-195.
[14] Cardell-Oliver R., “Conformance test experiments for
distributed real-time systems”, Proc ACM SIGSOFT ISSTA,
Rome, Italy, Vol. 27, No 4, 2002, PP. 159-163.
[15] Cassez F., Roux O. H., “Structural translation from time
Petri nets to timed automata”, JSS, Vol. 79. No 10, 2006, PP.
1456-1468.
[16] Chaki S., et al., “State/Event-based Software Model
Checking”, Proc IFM, Kent, England, LNCS 2999, 2004, PP.
128-147.
[17] Duncan C., et al., “STG: A Tool for Generating Symbolic
Test Programs and Oracles from Operational Specifications”,
Proc ESEC/ACM SIGSOFT FSE, Vol. 26, No 5, 2001, PP. 301-
302.
[18] Duncan C., et al., “STG: A symbolic test generation tool”,
Proc TACAS, Grenoble, France, LNCS 2280, 2002, PP. 470-475.
[19] De Vries R., Tretmans J., “on-the-fly conformance testing
using SPIN”, STTT, Vol. 2 No 4, 2000, PP. 382-393.
[20] En-Nouaary A., et al., “Timed test cases generation based on
state characterization technique”, Proc IEEE RTSS, Madrid,
Spain, 1998, PP. 220-229.
[21] Fernandez J. C., et al., “Using on-the-fly verification
techniques for the generation of test suites”, Proc CAV, NJ, USA,
LNCS 1102, 1996, PP. 348-359.
[22] Hessel A., et al., “Testing Real-Time Systems Using
UPPAAL”, FMT, Berlin, LNCS 4949, 2008, PP. 77-117.

[23] Higashino T., et al., “Generating test cases for a timed I/O
automaton model”, Proc IWTCS, Budapest, Hungary, 1999, PP.
197-214.
[24] Hulge L., Peleska J., “Timed Moore automata: test data
generation and model checking”, Proc ICS, IEEE DL, 2010,
PP.449-458.
[25] Jéron T., Morel P., “Test generation derived from model-
cheking”, Proc CAV, Trento, Italy, Springer Verlag LNCS 1633,
1999, PP. 108-122.
[26] Khoumsi A., Jéron T., Marchand H., “Test cases generation
for nondeterministic real-time systems”, Proc FATES, Montreal,
LNCS 2931, 2003, PP. 131-146.
[27] Krichen M., Tripakis S., “Conformance testing of real-time
systems”, FMSD, Vol. 34, No 3, 2009, PP. 238-304.
[28] Larsen K.G., et al., “Testing Real-time Embedded Software
using UPPAAL-TRON - An Industrial Case Study”, ACM
ICEMSOFT, Jersey City, NJ, USA, 2005, PP. 299-306.
[29] Lin J. C., Ho I., “Generating Real-Time Software Test Cases
by Time Petri Nets”, IJCA, ACTA Press, U.S.A. Vol. 22, No.3,
2000, PP. 151-158.
[30] Merlin P. M., Farber J., “Recoverability of communication
protocols: Implications of a theoretical study”, IEEE Trans.
Com., Vol. 24 No 9, 1976, PP. 1036-1043.
[31] Mikucionis M., Larsen K. G., Nielsen B., “T-UPPAAL:
Online Model-based Testing of Real-time Systems”, Proc
ICASE, Austria, 2004, PP. 396-397.
[32] Nielsen B., Skou. A., “Automated test generation from timed
automata”, STTT, Vol. 5, No. 1, 2003 PP. 59-77.
[33] Springintveld J., Vaandrager F., D’Argenio P., “Testing
timed automata”, TCS, Vol. 254, No. 1-2, 2001 PP. 225-257.
[34] Tretmans J., “Testing concurrent systems: A formal
approach”, Proc CONCUR, Eindhoven, LNCS 1664, 1999, PP.
46–65.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 132

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

