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Abstract 
Model-based testing of software and hardware systems uses 
behavioral and formal models of the systems. The paper presents 
a technique for model-based black-box conformance testing of 
real-time systems using Labeled Prioritized Time Petri Nets 
(LPrTPN). The Timed Input/Output Conformance (tioco) relation, 
which takes environment assumptions into account, serves as 
reference to decide of implementation correctness. Test suites are 
derived automatically from a LPrTPN made up of two concurrent 
sub-nets that respectively specify the system under test and its 
environment. The result is optimal in the sense that test cases 
have the shortest possible accumulated time to be executed. Test 
cases selection combines test purposes and structural coverage 
criteria associated with the model. A test purpose or a coverage 
criterion is specified in a SE-LTL formula. The TIme Petri Net 
Analyzer TINA has been extended to support concurrent 
composed subnets. Automatic generation of time-optimal test 
suites with the Tina toolbox combines the model checker selt and 
the path analyzer plan. selt outputs a sequence that satisfies the 
logic formula. plan computes the fastest execution of this 
sequence which will be transformed in a test cases suite.  
Keywords: real-time system; Labelled Prioritized Time Petri 
Nets; conformance testing; time optimal test cases. 

1. Introduction 

The embedded real-time industry is changing fast – 
systems have become larger, more complex, and more 
integrated. Real-Time systems interact with their 
surrounding environment and provide the latter with the 
expected outputs at the right time. In other words, the 
timely reaction is just as important as the kind of reaction. 
Such systems need to be tested in order to check their 
reliability before use. Testing real-time systems is even 
more challenging than testing untimed ones, because the 
tester must consider when to stimulate the system, when to 
expect responses to be issued, and how to assign verdicts 

to any timed event sequence it may observe and partly 
control. Further, the test cases must be executed in real-
time, which means the test execution system itself 
becomes a real-time system.  
Without automation and modeling tools, testing remains 
ad hoc, error prone, and very expensive both at the level of 
the test suit construction and at execution time. Clearly, 
real-time testing is almost impossible to achieve manually 
for real-size systems.  
With the use of models in software/hardware design and 
development, model-based testing has received increasing 
attention from industry practitioners. It is a black-box 
approach in which common testing tasks such as test case 
generation and test result evaluation are based on a model 
of the system. Using the model to generate test cases and 
assign verdicts is cheaper and more effective than a 
completely manual approach. 
The paper addresses model-based black-box conformance 
testing of real-time systems. It checks a System Under 
Test (SUT) against its specification. This is typically 
achieved in a controlled environment where the SUT is 
executed and stimulated with inputs according to a test 
specification, and the responses of the SUT are checked to 
conform to its specification. 
The paper advocates for a type of conformance testing 
where test suites are derived from a formal model that 
specifies the expected behavior of the system to be tested. 
Precisely, the paper presents a technique for model-based 
black-box conformance testing of real-time systems based 
on Labelled Prioritized Time Petri Nets models (LPrTPN). 
The test specification is given as an LPrTPN made up of 
two concurrent subnets that respectively model the 
expected behaviour of the SUT and the latter’s 
environment. 
Optimizing test case generation requires selecting a 
limited set of test cases to be executed from a very large, 
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may be of unbounded size, list of tests that cover all the 
executions of the SST. Practically, a huge number of test 
cases, generally infinitely, can be generated from even the 
simplest models. The addition of real-time complicates 
matters and is a source of explosion of system states and 
consequently of test cases. To guide the test cases 
selection, a test purpose or coverage criterions are often 
used. Test purposes and coverage approaches guarantee 
that test suites are derived systematically. Further, the 
approaches “coverage criteria” guarantee a certain level of 
reliability, quality, thoroughness and confidence.  
In this paper, test cases can be generated in two different 
manners: on the one hand, by using manually formulated 
test purposes then encoded in the SE-LTL logic [16]; on 
the other hand, by using several kinds of coverage 
criterion expressed directly in SE-LTL such as statements, 
transitions, places, markings or states classes coverage of 
the LPrTPN model. In this context, the paper explains how 
to exploit and extend the toolbox TINA [3] to calculate the 
test cases and test suites. The proposed approach exploits 
the fact that TINA includes the tools selt and plan. selt is a 
State-Event LTL model checker. plan is a path analysis 
tool that computes a firing schedule over some given 
firing transition sequences, in particular, the fastest and the 
shortest schedules. The latest release of TINA supports 
automatic generation of time-optimal test suites for 
conformance testing i.e. test suites with optimal execution 
time. So, the particular schedules, computed by plan, 
associated to the witnesses sequences of a test purpose or a 
coverage criteria exhibited by selt, will be used to compute 
the time-optimal test cases and test suites from the SUT 
and the considering environment models. Especially, the 
required behaviour of the SUT is specified using a 
Deterministic Input Enabled and Output Urgent LPrTPN 
(DIOU-LPrTPN). 
Time-optimal test suites are interesting for several reasons. 
First, reducing the total execution time of a test suite 
allows more behaviour to be tested in the (limited) time 
allocated to testing; we may thus expect tests to be more 
thorough. Secondly, it is generally desirable that 
regression testing can be executed as quickly as possible 
to improve the turnaround time between changes. Thirdly, 
it is essential for product instance testing that a thorough 
test can be performed without testing becoming the 
bottleneck, i.e., the test suite must be applied to all 
products coming of an assembly line. Finally, in the 
context of testing of real-time systems, we hypothesize 
that the fastest test case that drives the SUT to some state, 
also has a high likelihood of detecting errors, because this 
is a stressful situation for the SUT to handle.  
The rest of the paper is organized as follows: section 2 
surveys related work. In section 3, we define the test 
specification. Section 4 defines the syntax and the 
semantics of the LPrTPN. It also discusses test case 

generation based on the DIOU-LPrTPN model. Section 5 
describes how to encode test purposes and coverage 
criteria in the SE-LTL logic. Section 6 concludes the 
paper. 

2. Related work and motivations 

Time Petri nets [30] are one among the important formal 
models widely used to specify and verify real-time 
systems. They are characterized by their expressive power 
of parallelism and concurrency, and the conciseness of the 
models. In addition, the efficient analysis methods 
proposed by [10] have contributed to their wide use. 
Adding priorities to TPN (PrTPN) increases their 
expressiveness [2] and [9]. Since we address the testing of 
reactive systems, we associate a label of an alphabet of 
actions with each transition (LPrTPN). A label is an input 
or an output or an internal action.  
TPN have other important advantages that are not 
mentioned here due to lack of space. Despite of this, little 
work has been done on model-based testing from TPNs, 
the subject being essentially addressed for timed automata 
(TA) [4]. Model-based testing for TA has been discussed 
in [12], [13], [14], [17], [19], [20], [22], [23], [24], [26], 
[27], [28], [31], [32] and [33], just to mention a few. 
Further, most TA-based testing tools were developed more 
than five years ago (see, e.g., [18], [22] and [31]).  
Algorithms for generating test suites following test 
purposes or a coverage criteria attempt to optimize test 
suites w.r.t. the number of test cases, the total length of the 
test suite, and the total time required to execute the test 
suite. In the paper, we are interested in the last two 
propositions. In this context, the main contributions of the 
paper are as follows: re-implement the toolbox TINA and 
add functionalities to support the composition of 
LPrTPN’s, definition of a subclass of LPrTPN from which 
the schedules computed by the path analysis tool plan, in 
particular the fastest schedules (optimal in the total time) 
and the shortest paths (optimal in the total length), 
associated to the diagnostic sequences, exhibited by the 
State-Event LTL model-checker selt [16], will be 
exploited to compute the time-optimal (covering) test 
suites.  

3. Test specification  

Testing involves a system surrounded by an environment. 
It is almost impossible to test the system without making 
assumptions about its environment. An uncontrolled and 
possibly imaginary environment would indeed allow all 
possible interaction sequences. But, due to the lack of 
resources, it is not feasible to validate the system for all 
possible environments. Practically, the requirements and 
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the assumptions of the environment need to be made 
explicit. 
 

 

Figure 1.  The SUT and its environment ENV 

We assume that the test specification, noted M=MSUT 

ME, is given as an LPrTPN made up of two concurrent 
subnets. The first subnet models the expected behavior of 
the SUT, noted MSUT. The second subnet models the 
behavior of the environment; it is noted ME (Fig. 2). The 
set of observable actions is partitioned into two subsets: 
input actions noted inA  and output actions noted outA . 

Inputs are the stimuli received by the system from the 
environment. Outputs are the actions sent by this system to 
its environment. They are not controllable and should be 
tested also with their deliverance dates. An input a (resp. 
output b) is post fixed by a? (b!). The system may perform 
internal actions which are invisible to the environment and 
thus to the tester. Internal or unobservable actions are 
denoted . We have  in outA A A    . 

 

 
 

Figure 2.  The test specification M: The SUT model MSUT and its 
environment model ME. 

4. Environment and system modeling 

4.1 Labelled Prioritized Time Petri Nets 

Time Petri Nets (TPN) [30] extend Petri Nets with 
temporal intervals on transitions. PrTPN extend TPN with 
a priority relation on the transitions. Since we address the 
testing of reactive systems, we add an alphabet of 
actions A and a labelling function that associates an 
action with each transition. 

4.1.1 Notations 

The sets 0 0, , , , � � � � �  are respectively the sets of 
natural, rational, non-negative rational, real and non-
negative real numbers. We consider the set I+ of non-
empty real intervals  ,a b with bounds 0,a b � . We 

consider both open and closed bounds, and also allow a 
right open infinite bound as in  1, . For i I+, i  

represents its lower bound, and i  its superior bound (if it 

exists) or . For any 0 � , i   represents the interval 

 / 0x x      . S in out out inA A A A A    is the set 

of the couples of synchronizing actions and 
 S sA A   is the set of all actions (internal and 

synchronizing actions).  

4.1.2 Syntax 

Formally, a LPrTPN over the alphabet A  is a tuple 

 0, , ,I , ,sm P,T,Pre Post where: 

-  0, ,mP,T,Pre Post is a Petri Net where P  is a finite 
set of places, T  is a finite set of transitions with 

P T = , 0:m  � +P  is the initial marking and 
, :   �Pre Post T P  are respectively the precondition 

and post-condition functions. For , ,f g P f g  �  
means that        p P f p g p    and  ,f g   
is     ,f p g p   for any p . 

- sI : T I+ is the static interval function which 
associates a firing temporal interval sI  I+ with each 
transition. The rational  sI t  (resp.  sI t ) is the static 
earliest firing time (resp. the static latest firing time) of t  
after the latter was enabled. Assuming that a transition t  
became enabled at the last one at the time , then t  can’t 
be fired before  sI+ t   and it must be done no later than 

 sI+ t  , unless disabled by firing some other transition. 
In this paper, intervals  0,  are omitted and w in the 
right end point of an interval denotes  . For example, 
 3,w  denote the interval  3, .  

-  T×T is the priority relation, assumed irreflexive, 
asymmetric and transitive, between transitions. 1 2t t  
means 2t  has priority over 1t . 

- : A T is the labelling function that associates to 
each transition an operation.  

The transitions of the net M (see section 3) are 
partitioned into purely transitions of the SUT model MSUT 
(hence invisible for the environment ME and labelled 
with ) and synchronizing transitions between the MSUT 
and the ENV (hence observable for both parties). The set 
of transitions of the model MSUT which are labelled with 
internal actions is   /SUTt t    T T . The internal 

transitions are fired individually while synchronizing 
transitions are fired by complementary actions couples 
(e.g. ?a and !a ). In a couple of synchronizing actions, we 

assume that the first component is an action of the SUT 
model MSST while the second is of the environment model 

ME. A couple    2,t t  T-T  is a synchronizing 

transition if t  and t  are labeled with complementary 
synchronization actions which are noted ,a a e.g.   ?t a   

(resp. !a ) and   !t a  (resp. ?a ). We note SUTT the set of 

ENVIRONMENT 
System Under 
       Test 

Output 

 

 

O! 

I?

Input 
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the SUT model transitions and ET the set of the 
environment model transitions. The set of the environment 
model transitions which complement a synchronizing 
transition SUTtT  is equal 

to     SUT ECT /ift t t   T   anda t a   .  

 
To illustrate the concepts, we use the light-controller 
model depicted by figure 3. The user interacts with the 
controller by touching a touch sensitive pad. The light has 
three intensity levels: OFF,  DIMMED, and BRIGHT. 
Depending on the timing between successive touches, the 
controller toggles the light levels. For example, in DIM 
state, if a second touch is made quickly (before the 
switching time 4swT  time units) after the touch that 
caused the controller to enter dimmed state (from either 
OFF or BRIGHT state), the controller increases the level to 
bright. Conversely, if the second touch happens after the 
switching time, the controller switches the light OFF. If the 
light controller has been in OFF state for a long time 
(longer than or equal to Tidle 20 ), it should reactivate 
upon a touch by going directly to bright level.  

Figure 3.  MSUT: the light controller model 

The LPrTPN shown in Fig. 3 models a SUT which can be 
composed in parallel with the environment models shown 
in Fig. 4 & 5 respectively over the action  inA  touch  

and  outA  off,dim,bright . We obtain two models 

(M1=MSUTME1 and M2=MSUTME2). Fig. 4 and 5 
show two possible environment models, ME1 and ME2, 
for the simple light controller. Fig. 4 models a user 
capable of performing any sequence of touch actions. 
When the constant Treact	 is set to zero he is arbitrarily 
fast. A more realistic user is only capable of producing 
touches with a limited rate; this can be modelled setting 
Treact	 to a non-zero value. Fig 5 models a different user 
able to make two quick successive touches, but which then 
is required to pause for some time (to avoid cramp), e.g. 
Tpause = 5.  
 

 
 
 

 
 

  

Figure 4.  ME1 - a light switch controller environment model 

 
 
 
 

 
 

                              

Figure 5.  ME2 –a nother light switch controller environment model 

4.1.3 Semantics 

4.1.3.1 Timed transition systems 

Timed Transition Systems describe systems that combine 
discrete and continuous evolutions. They are used to 
define the behavior of timed systems such as LPrTPN. A 
Timed Transition System (TTS) is a transition 
system  0, , ,SS E e A   , where E  is the set of states of 

the system, 0e  is the initial state, SA   is the set of actions 
(internal and couples of synchronizing actions). The 
transition relation  0SE A E   �  consists of 

discrete transitions  , 'a ae e or 'e e  (with 
 , Sa a A ) representing an instantaneous action, and 

continuous transitions 'de e  (with 0d � ) 
representing the passage of d units of time. Moreover, we 
require the following standard properties for TTS: (1) 

Time-determinism: if de e   and de e  with 0d �  

then e e  , (2) 0-delay: 0e e , (3) Additivity: if 
de e  and  0, ,de e d d

    �  then d de e   , (4) 

Continuity: if  de e  then 0,d d    �  such that 

d d d   there exists "e such that ' "" 'd de e e  . 

4.1.3.2 States of an LPrTPN 

A state of an LPrTPN is a pair  ,Ie m , where m  is a 

marking of the net with  m p the number of tokens in 

place p . A transition t is enabled at marking m  iff 

 m tPre . We denote by  En m the set of transitions 

enabled at m . It is then equal to 
    /En m t m t  T Pre . The second component of the 
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pair  ,Im  is a partial function over  En m called the 

interval function. It associates exactly a temporal interval 
in I+ with every enabled transition i.e.  I : En m  I+. 
Intuitively,  I t  represents the firing interval of the 

enabled transition t  shifted towards the origin as time 
elapses, and truncated to not-negative times. Assuming 
that the amount of time that has elapsed since t  is enabled 
for the last one is   then    sI It t   . An enabled 

transition t  is fireable if (1) it is immediately fireable 
(  0 I t ), (2) no other transition with higher priority is 

fireable at the same instant, (3) if t is not an internal 
transition then its complementary transition is also 
fireable. After the firing, some transitions are associated 
with their intervals  sI t  and we say that they are newly 

enabled. 
The initial state of the LPrTPN M1=MSUTME1 that 
models the SUT “light-controller” with its associated 
environment (figures 3 and 4) is  0 0 0,Ie m , where: 

- 0 0 0(1), (1) m p q (places 0 0and  p q  are both marked 

with one token). 
-    0 0 8 0, ,En m t t s  (transitions enabled by the initial 

marking 0m ). 

-            0 0 0 8 0 0I 0, , I ,   and I 0,  t t s     Tidle (the 

interval function 0I  is sI  restricted to the enabled 

transitions  0En m ). 
- Despite    0I 0,t   , 0t is only fireable on 

 0,Tidle because 0 8t t ( 8t has priority over 0t ) and 

   0 8I ,t  Tidle . By contrast, 8t  is fireable on  ,Tidle . 

The couple of transitions 0 0( , )t s  or 8 0( , )t s  labeled 

respectively by (touch?,  touch!)  can be fired  respectively 
on  0,Tidle or on  ,Tidle . 

The temporal information in states will be seen as firing 
domains instead of interval functions. The firing domain 
of a state  ,Ie m  is then described by an equations 

linear system with one variable per enabled transition 
(noted as transitions). The state will be then noted 

 ,e m D  where       / I
t

D t En m t     .The 

state  0 0 0,e m D of the LPrTPN M1=MSUT ME1 is:  

                0 0 0,e m D
 
where 

0

0 8

0

0
:

0

t
D t

s

 


Tidle  

4.1.3.3 Newly enabled Transition  

For m� + and ,l t  T T such that  t En m we define a 

predicate  , ,l m tne  which is true if l  is newly enabled 

by the firing of t from m , and false otherwise. Formally, 
the predicate is defined by:  

      
   , , l En m t tl m t l En m t l t

       ne
Pre Post

Pre  

For , , SUTm k t  � + T T and  SUTt CT t  such that 

 ,t t En m we define a predicate   , , , ,a a k m t tne , which 

is true if k  is newly enabled by the firing of 
andt t simultaneously from marking m , and false 

otherwise by: 
   , , , ,a a k m t t ne  

                        
     Post Postk En m t t t t

k En m t t k t k t
     
        

Pre Pre
Pre Pre  

The predicate   , , , ,a a k m t tne  (resp.  , ,k m lne ) indicates 

the necessity to associate to k  its static interval after firing 
simultaneously the couple  ,t t  (resp. individually the 

transition l ) at the marking m . Intuitively, it associates to 
the couple  ,t t (resp. l ) and to the transitions that 

could not be fired in parallel with  ,t t (resp. l ) their 

static intervals. 

4.1.3.4 The semantics of an LPrTPN 

The semantics of an LPrTPN  0,Post, ,I , ,sm N P,T,Pre  

is a TTS  0, , ,SE e A  � �N where E is the set of states 

 ,Im of N , 0e its initial state and  0SE A E   �  

consists of two kinds of transitions between states: discrete 
and continuous transitions. Discrete transitions are labeled 
with synchronizing or internal actions and continuous (or 
temporal) transitions are labeled by real values. 

4.1.3.5 Transitions firing Algorithms  

 The continuous transition relation is the result of time 

elapsing. It is defined by    ,I ,Idm m   iff  

1. 0d �  

2.       It t En m d t    T  

3.         I It t En m t t       T  

A continuous transition of size d is possible iff d  is not 
greater than the latest firing time of all enabled transitions 
(2). All firing intervals of enabled transitions are shifted 
synchronously towards the origin as time elapses, and 
truncated to non negative times (3).  
 The discrete transitions are the result of the transitions 
firings of the Petri net. As it is showed above, they may be 
partitioned into internal independent and synchronizing 
transitions. 
 the internal independent transition relation is 

defined by    ,I ,Im m   iff 

1.     SUTt t t En m    T T  
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2.  0 I t  

3.       0 ISUTk k En m t k k     T  

4.    m m t t   Pre Post  

     
     s

. I
iff   , , then I else I

5 k m k k
k m t k k

     T Pre
ne

 

An internal transition t of the SUT model MSUT may fire 
from a state  ,Im if it is enabled at m (1), immediately 

firable (2) and no internal or synchronizing transition of 
the SUT model with higher priority satisfies these 
conditions (3).  In the target state, the transitions of the 
combining model M that remained enabled while t  fired 
( t  excluded) retain their intervals, the others which are 
newly enabled by the result marking are associated with 
their static intervals (5). 
 the synchronizing transition relation is defined by  

   ,,I ,Ia am m    iff 

1.            2, ,t t t a t a t t En m          T T

2.      0 I 0 It t     

2.       0 ISUTk k En m t k k     T  

3.       0 IEk k En m t k k         T  

4.         m m t t t t     Pre Pre Post Post  

     
      , s

. I
iff , , , then I else I

6
a a

k m k k
k m t t k k

     


T Pre
ne

 

The synchronizing transitions t and t labelled respectively 
by the complementary actions a  and a may fire 
simultaneously from the state  ,Im if they are enabled (1), 

immediately fireable (2) and neither a transition of the 
SUT model MSST (a transition of SUTT ) nor a transition of 
the environment model ME (a transition of ET ) with 
higher priorities compared to t  and t  respectively 
satisfies these conditions (3&4). In the target state, the 
transitions that remained enabled while ,t t fired ( ,t t being 

excluded) retain their intervals, the others which are newly 
enabled at the result marking are associated with their 
static intervals (6).  
If the light controller and its environment (Fig. 3 and 4) 
remain in their initial state for 0.9 time units -the light 
controller doesn’t receive any touch from the user- we 

have then a transition 0.9
0 1e e . The new state 

 1 0 1,e m D will be:  

  
0

0 0 0 1 8

0

0
: (1), (1)  and : -0,9

0

t
m p q D t

s

 


Tidle  

The firing of the synchronizing transitions  0 0,t s from 1e  

leads to 2e  1 2e etouch?,touch! . The state  2 1 2,e m D is: 

      

1

1

1 1 1 2 2

3

4

0 0

: p ,q and : 0
0
0

t
s

m D s
s
s

 
   

 
 

Treact
 

The firing of  1 1,t s from the state  2 1 2,e m D leads to 

the state  3 2 3,e m D  dim!,dim?
2 3e e : 

          

2

4

1
2 4 1 3

2

3

4

Tsw
0

Treact: p ,q and : 0
0
0

t
t

sm D s
s
s

 
 

  
  
    

 

With the properties of TTS, a run of � �N  can be defined 

as a finite sequence of moves 
0 0 1 1

0 0 1 1 2 1
nd d

ne e e e e e 
        where discrete 

and continuous transitions alternate. ,0i i n    are either 

synchronizing transitions (  , Si a a A   ) or pure 

transitions ( i  ) and ,0i i nd    are their relative firing 

times. To such a run corresponds the firing schedule 
which is the timed word  0,i i i n      over SA   where 

0
i

i jj d   is the firing time when the actions  ,a a  

happen (resp. happens).  
We denote by: 
  Support   the projection of the schedule   over the 

alphabet SA  . It is called its support. A schedule   is 
realisable from a state e  if the discrete transitions of the 
support 0 1 n      are successively fireable from e  at 

the associated firing times 0 1 n   . 

  ENVSchedule   the projection of the schedule   

over the second components of the complementary 
actions, i.e.    0,ENV i i i nSchedule a     where ia  are 

the components of the environment model ME and 

0
i

i jj d   is the firing time when the actions  ,i ia a  

happen. Note that the symbol   doesn’t appear 
in  ENVSchedule  , it is removed. 

If the pausing time Tidle and the switching time Tsw in 
MSUT are respectively equal 20 and 4 time units then:  

0 0 1 1 2 2e e e e e e       bright!,bright?20 touch?,touch! 0 5 touch?,

0 0
3 3 4 4 5 5e e e e e e        touch! dim!,dim? 4 touch?,touch! off!

 6e,off?  is a run of � �M . 

  20(touch?,touch!)20(bright!,bright?)25(touch?,touch

!)25(dim!,dim?)29(touch?,touch!)29(off!,off?) is a firing 
schedule. 

 ENVSchedule  = 0.touch!.20.bright?.25.touch!.25.dim?. 

29.touh!.29.off?. 
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4.2 TINA (TIme Petri Net Analyzer)  

TINA is a software environment for editing and analyzing 
(LPrT)PN [7]. It includes the tools: 
– nd (NetDraw): is an editor for graphical or textual 
description of (LPrT)PN.  
– Tina: For analysing (LPr)TPN models, it’s necessary to 
finitely represent the state spaces by grouping some sets of 
states. Tina builds the Strong State Classes Graph (SSCG) 
proposed in [9], which preserves states and maximal traces 
of the state graph, and thus the truth value of all the 
formulae of the SE-LTL logic. 
– selt: is a model checker for an enriched version of State-
Event LTL [16], a Linear Temporal Logic supporting both 
State and Event properties. For the properties found false, 
selt produces a timed counter-example, namely the 
diagnostic (or witness) sequence. A diagnostic sequence 
of a property   is a sequence of discrete transitions 

(complementary and/or internal transitions). A diagnostic 
trace is a schedule where its support is a diagnostic 
sequence. The firing of this schedule from 0e  allows 
satisfying the property . 

– Plan: is a path analysis tool. It computes all, or a single, 
timed firing sequence (schedule) over some given firing 
discrete transitions sequence. In particular, it computes the 
fastest schedules and shortest paths.  

4.3 Deterministic Input Enabled and Output Urgent 
LPrTPN 

To ensure time-optimal testability, the following semantic 
restrictions turn out to be sufficient. We define the notion 
of Deterministic Input Enabled and Output Urgent 
LPrTPN, DIEOU-LPrTPN, by restricting the underlying 
TTS defined by the LPrTPN as follows: (1) Deterministic: 
For every semantic state   ,e m D  and 0sA   � , 

whenever e e   and e e  then e e  ,(2) (Weak) 

Input Enabled: whenever de for some delay 0d �  

then ina A   ,a ae , (3) Isolated Outputs: outa A  , 

whenever ,a ae  and e  , out inA A    then 

,a a  , (4) Output urgency: whenever e  , 

 outA   then 0/ ,de d   � . These conditions are 

met by the model depicted by figure 3.   

5. Test Generation  

5.1 Conformance relation and test hypothesis 

A conformance relation formalizes the set of SUT that 
behave correctly compared to a reference specification. In 
this paper, we require Timed Input/Output Conformance 
relation (tioco) [27] based on timed trace inclusion, i.e. the 
timed traces of the SUT are included in those of the 
specification. Thus after any input sequence, the SUT is 
allowed to produce an output only if the specification also 
able to produce that output.  Similarly, the SUT may delay 
(staying silent) only if the specification also may delay.  
A SUT is not a formal object (it is about a physical system 
or an implementation). However, formally proving its 
conformity requires modeling its semantics by a formal 
object. The remainder the paper assumes it can be 
modeled by an unknown LPrTPN. We assume that the 
tester can take the place of the environment and control 
the SUT via a distinguished set of observable input and 
output actions. For the SUT to be testable the LPrTPN of 
its specification should be controllable in the sense that it 
should be possible for an environment to drive the model 
through all of its syntactical parts (transitions and places). 
We therefore assume that the SUT specification is a 
DIEOU-LPrTPN, and that the SUT can be modelled by 
some unknown DIEOU-LPrTPN. The environment model 
need not be a DIEOU-LPrTPN. These assumptions are 
commonly referred to as the testing hypothesis. 
To clarify the construction we may model the test case 
itself as an LPrTPN M for the test sequence . Places in 
M  are labeled using two distinguished labels, Pass and 
Fail. The execution of a test case is formalized as a 
parallel composition of the test case Petri net M and the 
SUT model MSUT.    
 
              SUT passes M  iff M �MSUT Fail  
 
M is constructed such that a complete execution 
terminates in a Fail state (the place FAIL will be marked) if 
the SUT cannot perform and such that it terminates in a 
Pass state (the place PASS will be marked) if the SUT can 
execute all actions of . The construction is illustrated in 
Fig. 6.  
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Figure 6.  Test case LPrTPN M for the sequence = i0!.delai.o0? 

5.2 Test cases from SE−LTL properties 

Let M be the LPrTPN of the SUT model together with its 
intended environment ENV; and   the property, 

formulated in SE−LTL, to be verified over M. As 
SE−LTL evaluate the properties on all possible executions, 
we consider the negation of   i.e. the formula  , then 

we submit it to selt. If the response of selt is negative, i.e. 
all the executions don’t satisfy  , so at least one satisfy 

its negation  . selt provide simultaneously a counter-

example for  , i.e. a diagnostic sequence  that 

demonstrates that property   is satisfied. This sequence is 

submitted to the tool plan for computing a firing 
schedule  , or all the firing schedules, having this 
sequence as support. As we have seen in 3.2.1,   is an 
alternating sequence of discrete transitions, 
synchronization (or internal) actions, performed by the 
system and its environment, and temporal constraints 
needed to reach the goal (the desirable state or event). 
Once   is obtained, it is convenient to construct the 
associated test sequences. For DIEOU-LPrTPN, a test 
sequence is an alternating sequence of concrete delay 
actions and observable actions. Then a test sequence   is 
simply  ENVSchedule  . Finally, a test case to be executed 

on the real SUT implementation may be obtained from  
by the addition of verdicts. Adding the verdicts depends 
on the chosen conformance relation between the 
specification and the SUT. The construction is illustrated 
in section 5.1. The test sequences produced by this 
technique are derived from the diagnostic traces, and are 
thus guaranteed to be included in the specification.  

5.3 Test generation from a single test purpose  

A test purpose is a property that the tester wants to 
observe on the SUT. A common approach to the 
generation of test cases is to first manually formulate a set 
of informal test purposes and then to formalize these such 
that the model can be used to generate one or more test 
cases for each test purpose. Because we use the diagnostic 
trace facility of the model-checker selt, the test purpose 
must be formulated as a SE-LTL property that can be 
checked by reachability analysis of the combined model 
M. The test purpose can be directly transformed into a 
simple state or event reachability check. Also, the 
environment model can be replaced by a more restricted 
one that matches the behaviour of the test purpose only.  

 

 

Figure 7.  ME3, test environment for TP2 

TP1: check that the light can become bright. 
TP2: check that the light switches off after three 
successive touches. 
TP1 can be formulated as a simple SE-LTL state 
property 1 BRIGHT or an event property 2 bright!  

(eventually in some future the place BRIGHT of the light 
controller Petri net will be marked or the event bright! will 
be executed). 
Among all diagnostic sequences exhibited by selt that 
satisfy the property 1 (or 2 ), two sequences are more 

interesting: the shortest and the fastest sequences. The two 
schedules associated to these sequences will be 
transformed to test cases as explained in 5.2. 
For TP1 we have: 
  the shortest diagnostic sequence is 

                    (touch?,touch!)(bright!,bright?). 
 The associated fastest schedule is : 

               20.(touch?,touch!).20.(bright!,bright?) 
 The test sequence is: 20.touch!.20.bright?  
 The fastest sequence satisfying 1  is: 0.(touch?,touch!) 
 0.(dim!,dim?).0.(touch?,touch!).0.(bright!,bright?) 
 The test sequence is: 0.touch!.0.dim?.0.touch!.0.briht?                    

 

TP2 can be formalized using the property ME3 ⊧  

3 OBJECTIF with ME3 is the restricted environment 

model in Fig. 7. The fastest test sequence is 
0.touch!.0.dim?.0.touch!.0.bright?. 0.touch!.0.off?.  

5.4   Test Generation Based on Coverage criteria 

A recurrent problem is to create a test suite that ensures 
that the specification or implementation is covered in 
some way. This ensures a certain level of systematicality is 
achieved in the test generation process. A large suite of 
coverage criteria may be proposed for the LPrTPN model, 
such as statements, transitions, places, markings and 
classes, each with its merits and application domain. In 
this paper, we use the following coverage criteria of the   
SUT model.  
Transition Coverage. A test sequence satisfies the 
transition-coverage criterion if, when executed on the 
model, it fires every transition of the net. Transition 
coverage can be formulated by the property 1

N
t ii t    , 

where N is the number of transitions.  
Statement Coverage. A test sequence satisfies the 
statement-coverage criterion if, when executed on the 
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model, it executes all the observed actions. Statement 
coverage can be formulated by the property 

 1
N

s ii t    (in our example it is 

touch? bright! dim! off!    ).  

Place Coverage. A test sequence satisfies the place-
coverage criterion if, when executed on the model, it 
marks all the places of the net. Place coverage can be 
formulated by the property  1

M
m ii m p    , where M is 

the number of places of the net. 
Class Coverage. A test sequence satisfies the class-
coverage criterion if, when executed on the model, it 
generates the graph SSCG. We must first analyze the 
model with Tina and compute the SSCG. Second, we 
select a path in the SSCG graph that traverses all his nodes 
then compute particulars schedules with plan. 
Marking Coverage. A test sequence satisfies the marking-
coverage criterion if, when executed on the model, it 
generates the set  SUTRM M of reachable markings. For 

generating test sequences that ensure this criterion, we 
compute the set  SUTRM M  by projecting SSCG over 

markings and finally encode the property in the SE-LTL 
logic.  
In the example of the light controller, when the 
environment can touch arbitrarily, the generated fastest 
transition, statement, places covering test respectively are: 
 TC:0.touch!.0.dim?.0.touch!.0.bright?.0.touch!.0.off?. 
20.touch.20.bright?.24.  touch.24.  dim?.28.touch!.28.off? 
with an accumulated time of 28 t. u.. 
  PC: 20.touch.20.bright?.20.touch.20.off?.20.touch!. 
20.dim?.20.touch!.20.bright?.24.touch!.24.dim!28.touch!
. 28.off? with an accumulated time of 28 t. u.. 
  CS: 0.touch!.0.dim?.0.touch!.0.bright?.0.touch!.0. 
off? with 0 t. u.. 

5.5   Test Suite Generation  

Frequently, for a given test purpose, we cannot obtain a 
single covering test sequence. This is due to the dead-ends 
in the model. To solve this problem, we allow for the 
model (and SUT) to be reset to its initial state and to 
continue the test after the reset to cover the remaining 
parts. The generated test will then be interpreted as a test 
suite consisting of a set of test sequences separated by 
resets (assumed to be implemented correctly in the SUT). 
To introduce resets in the model, we shall allow the user to 
designate some markings as being reset-able i.e. markings 
that allows to reach the initial marking 0m . Evidently, 
performing a reset may take some time Tr  that must be 
taken into account when generating time optimal test 
sequences. Reset-able markings can be encoded into the 
model by adding reset transitions leading back to 0m . 

Let rm he reset-able marking, two reset transitions and a 
new place q must be added as: 
The transition reset! must be added such as their input 
places are the encoded places (those of rm ) and its output 
place is q. The firing of reset! marks the place q. 

      reset!
0 0, q, Tr,Tr ,Irm m   . 

5.6   Environment Behavior  

Test sequences generated by the techniques presented 
above may be non-realizable; they may require the SUT 
environment to operate infinitely fast. We demonstrate 
how different environment assumptions influence the 
generated test sequences. Consider an environment where 
the user takes at least 2 time units between each touch 
action, such an environment can be obtained by setting the 
constant Treact to 2 in Fig. 4. The fastest test sequences 
become:   
TP1: 0.touch!.0.dim?.2.touch!.2.bright?   
TP2: 0.touch!.0.dim?.2.touch!.2.bright?.4.touch!.4.off? 
Also re-examine the test suite TC generated by transition 
coverage, and compare with the one of execution time 32 
generated when Treact equals 2.    
TC’:0.touch!.0.dim?.4.touch!.4.off?.24touch!.24.bright? 
.28.touch!.28.dim?30.touch!.30.bright?.32.touch!.32.off?   
When the environment is changed to the pausing user (can 
perform 2 successive quick touches after which he is 
required to pause for some time: reaction time 2, pausing 
time 6), the fastest sequence has execution time 34, and 
follows a completely different strategy. 
TC’’:0.touch!.0.dim?.2.touch!.2.bright?.8.touch!.8.dim? 
.12.touch!.12.off?.32.touch!.32.bright?.34.touch!.34.off? 

6. Conclusions  

The paper proposes a method to transform the problem of 
timed test case generation from the LPrTPN model to a 
model-checking problem. Time-optimal test suites, which 
are computed from either a single test purpose or coverage 
criteria, may be generated using the TINA toolbox. 
Specifically, we used the tool plan to calculate the fastest 
and the shortest schedules associated with a diagnostic 
sequence issued by selt to derive test cases with optimal 
execution time. The transitions firings algorithms are 
revisited to the reactive character of real-time systems into 
account. The DIEOU-LPrTPN is quite restrictive, and 
generalization will benefit many real-time systems.  
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