
MVSDAP: a new extensible, modifiable and secure data access
pattern for layered Information Systems

GholamAli Nejad HajAli Irani1, Vali Tawosi2

 1 Faculty of Engineering, University of Bonab
Bonab, 5551761167, Iran

2 Electronic and Computer Faculty, Tarbiyat Modares University
Tehran, Iran

Abstract

Nowadays, in software architecture especially in agile
methodologies dynamicity, extendibility and modifiability are
important challenges. In three layered architecture, plenty of
patterns are provided for data access layer. In this paper
additional to secure access to data and dynamic validation
controls, emphasis is on extendibility and modifiability of data
access pattern. We tried newly provided pattern not to lose
performance. In this new pattern, respecting to object oriented
heuristics, a module along with a tool has been provided that is
able to be attached to every project and perform all data access
tasks. This pattern has maximum reusability so it can be used in
different kinds of projects of any size regardless to the
methodology used.
Keywords: Layered Software Architecture, Quality Attributes,
Object Oriented Design, Data Model.

1. Introduction

Nowadays, extension and modification is innate portion of
software systems and often projects in every stage of
development and even after deployment and at runtime
need to be extended or modified. Extendibility and
modifiability of a system still is a great challenge for
software architectures. Software production line is one of
main activities in software engineering which received a
huge attention in research [5]. Creation of a software
product line that is able to produce new software based on
stack holder’s requirements, using reusable pre made
platforms and a great ability of extendibility and
modifiability, is the main concern in software product line
[8]. Software product lines use a variety of architectures.
Most of existence architectures are based on three layered
architecture that is obtained from Model-View-Controller
(MVC). Three layered architecture is consist of user
interface layer (UIL), business logic layer (BLL) and data
access layer (DAL).
Our proposed approach for software product line
specialized for information systems, is a three layered

architecture. In this approach for developing each layer an
extendable and modifiable framework is proposed that
each layer can manage all of its duty. As presented in
Fig.1 all of system use cases will be performed in
“Workflow Engine Framework”.

All components of project for fetching and storing data
use “Data Access Framework” (DAF). DAF does all task
pertaining to database. For developing DAF we suggest an
architecture which is shown in Fig.2. This architecture
composed of three main modules including MVSDAP,
MVSTools and DBManager.

DBManager connects us to database and encapsulate
implementation details of database connection. Instead of

DBA

DB
Manager

MVS
DAP

MVS
Tools

Data Tier

Data Access Framework

Other
Framew

orks

DBMS
+

MVS
Data

Fig. 2 Suggested Architecture for DAF

Software Product Line
 For Information Systems (SPL2IS)

DBMS

Data Access
Framework

(DAF)

Workflow Engine Framework

UI
 Framework

Business
Framework

Fig. 1 Suggested Framework for Software Product Line

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 76

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

DBManager one can use available stand alone modules
like Hibernate. There is a list of such modules in [9, 10,
12]. [13] has a comparison between some of them. Our
aim in this paper is to provide a new pattern called
“MVSDAP” and its subsidiary tool called “MVSTools” in
companion with a “DBManager” does all of data access
tasks.
Firstly we are going to investigate existence data access
patterns and then propose our new pattern with more
extendibility, modifiability and better security in
comparison with existence patterns. We had to follow the
steps shown in the following to provide our new pattern.
1. Provide a Meta-Model or Architecture to DAL
operations.
2. To collect and categorize all previous methods and
patterns.
3. To investigate and obtain parameters of extension and
modification in DAL.
4. To investigate and obtain parameters of security and
validation in DAL.
5. To provide a new pattern and describe its modules.
6. To analyze extensibility and modifiability and security
of previous methods.
7. To describe extensibility and modifiability of provided
pattern.
8. To describe control and validation of input values
9. To describe security of provided pattern
10. To evaluate and compare quality attributes of provided
pattern.

2. Previous Data Access Patterns

So far, plenty of data access patterns have been provided
for information systems. In the literature there are out to
50 patterns with different names provided for data access
layer. After an investigation in to these patterns we
reached to a general categorization in a way that every
pattern is falling in one of these categories.

DAP0: patterns with no DAL. In these patterns (if even
can call it a pattern) all of BLL classes do their operations
to DBMS by themselves. Advantage of this method is
performance which may be used in real time systems. An
instant of this category is introduced in [6] by the name of
Transaction Script.

DAP0Sp: this is DAP0 with this difference that BLL
classes instead of connecting directly to the database use
Stored Procedures to fetch data and alter them. One can
use some control and security principle in stored
procedures. This pattern enjoy a high performance,
however in enterprise information systems where problem
domain is very vast and there are complicated use cases,
using this methods will make a big problem in
development process.

DAP1: it encapsulates access to the database. In this
pattern, using one or more classes in data access layer,
implementation details like database name, server name,
user name and password are kept hidden from upper layers.
Now all of BLL classes use these classes to communicate
with database. There are methods defined in DAL classes
to perform requests coming from BLL classes including
create, read, update and delete (CRUD) operations. This
pattern is like “Metadata Mapping” introduced in [6]. In
this pattern an interface between BLL and DAL has
defined supporting all data access methods and for each
database type a class has been created and inherited from
that interface [7].

DAP1T: same as DAP1 except that this kind of pattern has
two methods (we call them “Begin” and “End”) in order to
support transaction. These two methods are used to start
and finish transactions. CRUD operations are executed
after a transaction has started (by calling Begin method)
and at last it will be finished (by calling End method). The
whole transaction will be done (commit state) or rejected
(rollback) if there were errors. In the case of rollback,
relevant error message will be presented to user and all
changes to database (affiliated by this transaction) will be
rolled back.

DAP2: in this pattern for each table in project, a class will
be created (we call them “Entity” classes) and CRUD
operation for that table performed by its class. Advantage
is that one can put syntactical and access control on each
table separately. This pattern is introduced as “Table data
gateway” in [6].

DAP2F1: for setting better control and stronger security
and also respecting to modularity principal, this pattern
has some improvements to DAP2. In order to give
permission to an entity to select data from other entity
classes, this pattern define an “Finder” class for each
entity class and gather them in a common layer (accessible
to all of entity classes). Finder is responsible for selecting
data from its respective entity and serves all of entity
classes [6].

DAP2F2: same as DAP2F1 except that we have just one
general Finder class able to select data from all entity
tables and serve all entity classes [7].

DAP2F1Sp and DAP2F2Sp: implemented with stored
procedures (for higher performance) and DAP2T:
supporting transactions.

With the same concept DAP2F1T, DAP2F2T,
DAP2F1SpT, DAP2F2SpT can be defined.

DAP3: similar to DAP2, this pattern is using entity classes
for tables. The difference is that respecting to object
oriented heuristics all CRUD methods are implemented in
a common class and all entity classes inherit these

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 77

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

methods from that. Adding support for transactions,
implementing with stored procedures and separating
Finder classes from entity classes are possible in this
pattern to define new patterns. “Object-Relational
Metadata Mapper” pattern introduced in [6] falls in this
category.

DAP3M: same as DAP3 except that all of the Meta-data of
the tables and fields are stored and the parent class which
all entity classes are inherited from that can check validity
of table names, view names, field names and data type and
so on, using this Meta-data. In this pattern parent class is
able to create CRUD executable statements dynamically.

DAP4M: unlikely DAP2 and DAP3 this pattern doesn’t
create an entity class for each table. In order to improve
extendibility and modifiability this pattern uses Meta-data
(like DAP3M) and defines some general classes in DAL to
do all tasks. In this pattern when a BLL class wants to do a
CRUD operation, sends all information (table name, fields
name and values and action) to DAL and then validity of
information are checked. If all information were valid, an
executable statement (depending on request) has made
dynamically and execute. “Layer supertype” pattern
introduced in [6] is like this pattern.

2. MVSDAP Pattern

Major headings are to be column centered in a bold font
without underline. They need be numbered. "2. Headings
and Footnotes" at the top of this paragraph is a major
heading.

Fig. 3 MVSDAP Architecture

MVSDAP is consisting of six main modules.
1. Core Module: Manages all operations performing by

pattern. In other words this module is just a coordinator
and all of actions will performed by other modules and
controlled by this module.

2. Meta Data: Stores all of information about project itself
consisting of information about all tables, views,
attributes, etc.

3. Validation: Stores and handle all of information needed
for data access layer validation checks.

4. Security: Manages access level for each entity and its
related data.

5. MVS Tools: We call three recent modules as MVS.
Handling these modules will be possible by means of an
application which we call it “MVS Tools”.

6. MVS Reader: Since MVS information is stored in
database, executing every transaction needs to fetch
some data from database and use in provided pattern
modules. For overcome this time consuming
communication and increasing performance “MVS
Reader” is added to model. After storing Meta Data,
Validation and Security information in database by
database administrator using MVS Tools, as soon as the
project starts to run this information will be fetched
from DB and will be available for other modules.

CRUD Module: This Module receives CRUD operations
from core module, makes the executable statement
dynamically and executes that using DBManager.

4. Static Aspects: MVS Data Model

In this section we are going to define a data model which
will be stored by MVS Tools, read by MVS Reader and
serve other modules.

4.1. Meta-Data Data Model

This part holds schema information including the
information of tables, views and their ID’s. In favor of
supporting different schemas in different databases and
that may be project had composed of several modules,
there is a Module class in our model. Every module has
several tables or views each having names and aliases.
Each table or view has several fields which we can store
their information in “Field”. As different databases have
different data types, this model include a “DataType” class
for storing and managing data types. Meta-data data model
is shown in Fig.4.

4.2. Validation Data Model

In this part all validation checks of data are kept and
managed. Based on 3 layer architecture, we can only set
validation of data access layer but no business rules.
Hence we separate validations into two categories. First
category consists of syntax errors which check input data
syntactical and manage its relevant errors. As an example
of validations which falls in this category are isNumber,
isString, inRange, etc. Second category is of referential
consistency; they are called semantic errors.
From Fig.5, Every field has several syntax errors. For
example a field can have three validation checks:
“isNotEmpty” means field is not allow null; “isInt” means
field’s value should be integer and “isIntRange” means

 pkg MVSDAP Architecture

DBManager

Core Module

CRUD Module

MVS Reader

Meta Data Module

Validation Module

Security Module

MVS Accessor

Project Accessor
«flow»

«flow»

«flow»

«flow»

«use»

«use»

«use»

«use»

«use»

«use»

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 78

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

that field’s value not only should be integer but also
should be in a specific integer range. DBA can set an
special error message for each of checks that will be
presented to user when validation check is not successful.
“MethodName” attribute will hold the name of the
function which will be called to perform validation check.

4.3. Security Data Model

In this part information about authorization rules for each
table are kept. Authorization rules indicate that witch
operations on witch tables are allowed. Since variety of
security models is vast, we will describe just “insert”
operation (Fig. 6). For each table we can define several
insert operations in which data insertion for every attribute
is allowed and its error has defined separately. For
example every attribute in every insert statement can have
a state like authorized for set value, set as null or set
default value. Such a model can be provided for other
statements like select, update and delete.

4.4. MVS Tools

To manage all MVS information by database administrator,
an application is needed that we call it MVSTools.
Certainly this application must have 3 main parts for
Meta-Data, Validation and Security settings. In each part
of software some heuristic can be used that database
administrators can easily work with this software. For
example we can get Meta-Data of any project from
database itself. All meta-data of project is saved in a part
of database called Schema_Information. Validation part of
software is shown in Fig.7. All of the codes of this
software (except security module) is available at [14].

Fig. 8 Insert sample code

try {
MVSDAP Em = new MVSDAP();

 Em.setEntity("Book"); // Em.setEntity("EntityName");
Em.Fields["Title"]="C++"; //Em.Fields["FieldName"]="Field Value";

 Em.Fields["Pages"]=null;
 Em.insert();
 }
catch(Exception e) {
 MessageBox.show(e.Message);
 }

class Validation Module

Validators

- ID: int
- Name: String
- SyntaxORSemantic: Boolean
- DefaultErrMsg: String
- MethodName: String

SyntaxErrors

- ID: int
- MinValue: String
- MaxValue: String
- ErrMsg: String

SemanticErrors

- ID: int
- ErrMsg: String
- Desc: String

FieldTable

1

1..*

1

1..*

1

Have

*

1

Have

**

RefField

1

*

RefTable

1

Fig. 5 Validation Data Model

class Meta Data Module

Module

- MID: int
- Name: String

Table

- TID: int
- Name: String
- Alias: String
- isView: Boolean

Field

- FID: int
- Name: String
- Alias: String
- DefultValue: String
- isPK: Boolean
- isFK: Boolean
- isAutoIncrease: Boolean
- isUnique: Boolean
- isNullable: Boolean

Type System

DBMSes

- ID: int
- Name: String
- Desc: String

DataType

- DTID: int
- Name: String
- MinValue: String
- MaxValue: String
- Bytes: int

1

*

1

1..*

1

1..*

* 1

Fig. 4 Meta-Data Data Model

Fig. 6 Security Data Model

class Security Module-Insert

Table

Field

InsertCommands

- ID: int
- MethodName: String
- ErrMsg: String

FieldsofInsert

- ID: int
- Priority: int

ValueStatus

- ID: int
- Name: String
- Value: String

1 *

1 *

1

*

1

*

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 79

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7 Validation part of MVS Tools

5. Dynamic Aspects

To describing dynamic parts of system, Insert scenario has
been selected. Fig.9 shows the full sequence of codes
which is shown in Fig.8. Consider that LoadMVS method
loads all MVS information as soon as project starts to run,
and put it in MVSReader module.

6. Evaluation

Provided pattern by adding new features to data access
layer makes changes in quality attributes of this layer.
Extensibility, modifiability, security and performance are
quality attributes that influenced by new pattern. These
topics will be discussed in the reminder.

6.1. Extensibility and Modifiability

To compare extensibility and modifiability of provided
pattern with other patterns, effective parameters in
extensibility and modifiability can be used. First of all, the
parameters must be gathered and categorized. Next
parameters list must be prioritized based on degree of
importance. Then the degree of simplicity of applying
extensibility and modifiability of each pattern must be
calculated. Let Pi as effective parameter in extensibility

and modifiability and Ei as degree of importance of each
pattern and Deg(Pi) as degree of simplicity of applying of
each pattern, then degree of extensibility and modifiability
of each pattern can be obtain by formula 1.

 (1)

Parameters of extensibility and modifiability in data
access layer can be categorized in table 3. In this table,
only those parameters have been listed that satisfies three
conditions. First, extension and modification of that
parameter occur in the system frequently. Second,
extension and modification of that parameter influence
source code of project. Third, the parameter must not have
similar effects in all of compared patterns. For example
changing the Username and Password of a database rarely
occurs in system development. Therefore only those
patterns have been added to table 3 that have influence
source code of project and frequently occur in the system.
On the other hand, the degree of importance of some
patterns depends on type of project and expertise of
project developer team and some other things. So some
ambiguous parameters have been eliminated from table 3.
On the other hand, from all categorized pattern only
DAP3M and DAP4M have been developed with
extensible approach and other patterns have not. So in the
comparison, MVSDAP has been compared just with
DAP3M and DAP4M.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 80

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 sd Class Model

«Package»

Core Module

a BLL
Class

«Package»

Meta Data
Module

«Package»

Validation
Module

«Package»

Security
Module

«Package»

CRUD Module

«Package»

MVS Reader

alt Validity of Entity Name

[boE==false]

alt Validity of Field Name

[boF==false]

alt Validity of Field Value

[boV==false]

alt Validity of Access

[boS==false]

«Pachage»

DBManager

loop for All Defined Validations

[foreach vs in Vs]

loop For All SetFields

loop For All Fields in FVs

new() :MVSDAP

SetEntity("EntityName") boE=
CheckEntityName("EntityName")

getMetaData()

Exception("Invalid Entity Name")

*SetField("FieldName", "FieldValue")
boF= CheckFieldName("FieldName")

Exeption("Field Name is invalid")

boV= CheckValidity("FieldName", "FieldValue")
Vs= getValidationData("FieldName")

CheckValidity("FieldName", "FieldValue")

Exception("Invalid Entity Value")

FVs= SaveField("FieldName", "FieldValue")

Insert()
boS= CheckSecurity("EntityName", FVs)

getSecurityData()

CheckAccess("TableName", FVs[i])

Exception("Invalid Access")

setInsert("EntityName", FVs)
strSQL =
CreateInsertSQL
("TableName",FVs)

ExecuteInsert(strSQL)

Fig. 9 Sequence of Invocations in Insert Method

To calculate the degree of simplicity of each pattern,
source codes of each pattern have been investigated
comprehensively. Based on analysis of source codes of
each pattern, each extension and modification can be one
of the following scenarios in table 2.
Degree of applying extensibility and modifiability in state
3 is very small and this action performs so quickly rather
than other states. So simplicity degree of applying state 3
can be set to 1. For state 1, if change alters just one part
(block) of code, the degree can be set to 4 and if changes
alters several parts of code, the degree can be set to 10. For
state 2, if change alters just one part of code, the degree
can be set to 10 and for several parts of code, the degree

can be set to 25. This degree can be considered as a unit of
time. Note that maybe the expertise of database
administrator and data access developers can affect these
degrees, so multiplying these degrees with appropriate
factor can be turn to unit of time. For example if factor of
10 has been considered to high experienced developer then
change in one part of code takes 4×10 seconds.
All results of extensibility and modifiability have been
shown in table 3. In this table D1 is Deg(DAP3M), D2 is
Deg(DAP4M) and D3 is Deg(MVSDAP).
Based on comparisons and results of table 3, extensibility
and modifiability of provided pattern is significant.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 81

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

State 3: Steps of modify and extend
with MVS Tools

State 2: Steps of extend code with
IDE and Generator Application

State1: Steps of change in code with
IDE

1. Open MVS Tools application 1. Open IDE application 1. Open IDE application
2. Apply changes or extensions 2. Add new written or generated codes 2. Change code and apply with DBA
3. Save project in MVS Tools 3. Debug modified codes 3. Debug modified codes
 4. Compile DAL layer 4. Compile DAL layer
 5. Replace DLL or JAR file in project 5. Replace DLL or JAR file in project

Table 3: Extensibility and Modifiability Parameters in DAL

Category Name Parameter Name (P) E(P) D1 D2 D3
Parameters of
extensibility and
modifiability in a
Database

Change Database .1 4 4 10
Change Table 1 4 1 1
Insert a new Table .5 10 1 1
Delete a Table .5 4 1 1
Add a new Field into a Table .7 10 1 1
Delete a Field from a Table .7 4 1 1
Change a Field Name .5 4 1 1
Change Auto Null ability .4 1 1 1
Change Field Type .3 4 1 1
Change Field Length .5 1 1 1
Change Field DEFAULT value 1 1 1 1
Change Field to/from Primary Key .5 1 1 1
Change Field Identity Type .7 1 1 1
Change Field to/from Unique ability 1 1 1 1
Change Field to/from Index ability .7 1 1 1
Change Field to/from Foreign Key 1 1 1 1
Change View Name 1 4 1 1
Insert a new View 1 10 1 1
Delete a View .7 4 1 1
Delete a Field from a View 1 4 1 1
Add a new Field into a View 1 10 1 1
Change Alias in a View’s Fields .7 4 1 1

Parameters of
extensibility and
modifiability of
Security

Add Insert permission to a table 1 10 25 1
Add Insert permission to each fields of a table 1 10 10 1
Change Insert permission to a table .7 4 4 1
Change Insert permission to each fields of a table .7 4 4 1
Add Update permission to a table 1 10 25 1
Add Update permission to each fields of a table 1 10 10 1
Change Update permission to a table .7 4 4 1
Change Update permission to each fields of a table .7 4 4 1
Change permission of condition in Update action .5 4 4 1
Add Delete permission from a table 1 10 25 1
Change Delete permission from a table .7 4 4 1
Change permission of condition in Delete action .5 4 4 1

Parameters of
Validation

Add a new validation to a field 1 10 25 1
Change a validation type of a field .7 4 4 1

Result : 144.6 156.6 27.6

6.2. Security

Security of database and data access layer performs in
different levels. Controls of permissions to a database and
its Tables and other information can be managed with
DBMS. But the security that has been added in this paper
is defining different part of security that cannot be

managed by DBMS. To perform the additional type of
security, some codes must be written in Stored Procedures
or Functions or Triggers in DBMS or in projects code in
Entity Classes. In all cases extensibility and modifiability
of code is reduced. But in the new provided pattern all
security features perform dynamically and has high quality
of extensibility and modifiability.

Table 4: Provided Parameters in Security of DAL

Table 2: Steps of extensibility and modifiability in different patterns

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 82

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Security Parameter Category
Name

Control insert action into a table
Access to

Insert Action
Control insert action into a field
Control insert NULL value into a field
Control insert DEFAULT value into a field
Control update action in a table

Access to
Update Action

Control update action in a field
Control update a field to NULL value
Control update a field to DEFAULT value
Control condition of update based fields values
Control delete action in a table Access to

Delete Action Control condition of delete based fields values

6.3. Performance

Performance of data access layer depends on many factors
that have been widely investigated in [11]. Extensibility
and modifiability of a system have trade-off with
performance of system. In this paper extensibility and
modifiability features have been added to many part of
data access layer. So this action reduces the performance
of system in general. So to prevent excessive loss of
performance, many object oriented heuristics have been
used in implementation of MVSDAP. Accordingly, a
static method called MVSLoad written in MVSReader that
immediately called after first running the project and this
method retrieve all data related to MVS from Database
and saved in MVSReader. After this time there is no need
to retrieve data for all MVS functionalities. So the time of
reading all MVS data in MVSLoad add to total
performance of system.
Now to insert a new record in database, based on codes in
Figure 8, in line 2, firstly we must check the existence of
Table Name through Meta-Data. Then to perform this
action there is no need to retrieve from Database. Because
all MVS data retrieved before in MVSLoad. So the time of
these checks will equal like a simple linear search, O(Tc)
that Tc is the number of all Tables of project. In line 3, 4
and 5, input values get and validate with MVS data.
Normally these validations perform in any projects but in
this case, data of validation search in MVSReader. This
time is Ac*O(Rc) that Ac is count of Fields and Rc is
count of records in Syntax Error Table.
In line 6, Insert method is invoked. Firstly permission of
Insert check with Security Module and this time is O(Ic)
that Ic is count of records of Insert Commands Table. If
permission is true, all data of Insert send to CRUD Module.
In this module firstly SQL Command will create then
Insert operation executes. Creation of SQL Command and
execution exist in any projects. So all additional time of
this pattern for Insert method is shown in formula 2.

 (2) Tinsert = O(Tc) + Ac ×
O(Rc) + O(Ic)

As regards Ac, Ic, Rc and Tc are constant for any projects
then the overall time is a small number. Also the
MVSLoad method is calculated once time for any projects.

7. Conclusion and future works

In this paper a new extensible and modifiable pattern
(MVSDAP) for data access layer has been provided. In
addition, data security in Tables, Views and Fields level
are major achievements of this paper that performs in high
level of extensibility and modifiability.
This pattern (except Security Module) has been
implemented and used in many projects and performance
of extensibility and modifiability of it experimentally has
proved.
With the full implementation of this pattern, database
administrators can dynamically manage all data access
layer functionalities. On the other hand extensibility and
modifiability is an essential principle for some of
methodologies such as agile methodologies like XP and
Scrum. So MVSDAP as a dynamic DAP can be used in
any three layered and agile projects.
Implementation of Security Module is one of the future
works of this paper. After full implementation, it can be
used in proposed framework in part 1 (introduction). The
idea of this paper can be used in other scope of computer
programming. For example we can combine this paper
with Modular thinking and provide a modular extensible
data access layer. By adding XML (eXtensible Markup
Language) as a protocol of communication, this pattern
can be used in Service Oriented scopes.

8. References

[1] Gomma, H., Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures,
Addison Wesley, 2004.

[2] Greenfield, J., Short K., Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools, John Wiley & Sons, 2004.

[3] Crawford W., Kaplan J., J2EE Design Patterns, O'Reilly,
2003.

[4] Lhotka R., Expert C# 2008 Business Objects, Apress,
2009.

[5] Carnegie Mellon University. The Software Engineering
Institute, Software Product Line, available online at:
http://www.sei.cmu.edu/productlines.

[6] Martin Fowler, David Rice, Matthew Foemmel, Edward
Hieatt, Robert Mee, Randy Stafford. Patterns of Enterprise
Application Architecture, Addison Wesley, 2002.

[7] Clifton Nock. Data Access Patterns: Database Interactions
in Object-Oriented Applications, Addison Wesley, 2003.

[8] Klaus Pohl, Günter B ِ◌ckle, Frank van der Linden,
Software Product Line Engineering, Springer, 2005.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 83

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[9] Java Persistence Layer Source Codes, available online at:
http://Java-source.net/persistence.

[10] C# Persistence Layer Source Codes, available online at:
http://Csharp-source.net/persistence.

[11] John Goodson, Robert A. Steward. The Data Access
Handbook, Achieving Optimal Database Application
Performance and Scalability, Pearson Education, 2009.

[12] George Reese. Java Database Best Practices, O'Reilly,
2003.

[13] Roland Barcia, Geoffrey Hambrick, Kyle Brown, Robert
Peterson, Kulvir Singh Bhogal. Persistence in the
Enterprise: A Guide to Persistence Technologies, IBM
Press, 2008.

[14] MVS Tools, Full source code available online at:
http://www.4shared.com/rar/fTXhRwkB/PayaMDT.html

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 84

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

