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1. Introduction 

The Concept  of a  bitopological space  (X,1 ,2)  
was first introduced by Kelly [1] , where  X is a non-

empty set and 1 ,2 are topologies on X.  The authors 
[3, 4] defined the notions of swg*-open sets and 
swg*-continuity. 

Pervin [6] investigated connectedness in 
bitopological space.  Khedr, El.Areefi and Noiri [2] 
defined pre-continuity and semi pre continuity in 
bitopological spaces.In this paper, we introduce and 
study the concepts of quasi SWG*- open and quasi- 
swg*-closed functions on bitopological spaces. 

Throughout this paper, (X, 1, 2) or simply X denote 
a bitopological space.  The intersection (resp.union) 

of all i - closed sets containing A (resp. i-open sets 

contained in A) is called the i-closure (resp. i-

interior) of A, denoted by i-cl (A) (resp. i-int (A)). 
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2. Perliminaries 

Definition 2.1: Let A be subset of a topological 

space (X,).  It is called semi weakly g*-closed [3] 

denoted by swg*- closed set if gcl (A)  U whenever 

AU and U is semi-open. 

Definition 2.2: Let X and Y be topological spaces.  

A map f: XY is said to be semi weakly g*-
continuous [4] (swg*-continuous), if the inverse 
image of every open set Y is swg*- open in X. 

Definition 2.3: Let (i, j) {1, 2} be fixed integers.  In 

a bitopological space (X, 1, 2)   a subset A X is 
said to be (i, j)-semi weakly g*- closed [5] (briefly   

(i,j)-swg*-closed), if j-gcl A  U whenever A U 

and Ui- semi-open. 

Definition 2.4: A space (X,1 ,2)   is said to be     

pairwise normal [7] ,  if for each 1-closed  set A and 

2-closed  set B disjoint from A, there is a 1-open set 

U containing A and a  2-open set V containing B 

such that U V= . 

3. (i, j)-QUASI SEMI WEAKLY g*- OPEN AND 
QUASI SEMI WEAKLY g*- CLOSED 

FUNCTIONS 

Definition 3.1: A function f : (X,1 ,2) (Y,1  ,2)  
is said to be (i,j) – quasi semi weakly g*-open if the 
image of every (i,j)- semi weakly g*-open set in X is 

i – open in Y. 

Remark 3.2:  It is clear that every (i, j)-quasi –swg*-
open function is both pairwise open and pairwise    
swg*-open.  The converse is   not true as seen from 
the following example. 

Example 3.3 :Let X= {a,b,c}, 1={X,,{a,b}},      

1= {Y,,{a},{a,b}}, and 2= {X,,{b,c}},                

2 = {Y,,{b,c},{c}}.  Clearly the function               

f: (X, 1, 2) (Y, 1, 2)   is pairwise open and 
pairwise swg*-open.  However,  f  is not quasi –(i,j)-
swg*-open  because  {a,b} is (2,1)-swg*-open  in 

(X,1 ,2) , but not 2-open. 

Theorem 3.4: Let f: (X, 1, 2) (Y, 1, 2) is a 
function.  Then the following are equivalent:   

(i)  f is (i,j) – quasi swg*- open; 

(ii) For each subset U of X, f ((i,j) –g int 

(U))  i – int (f(U)); 

(iii) For each xX and each  (i,j) – swg*- 
neighbourhood  U of x in X, there exists 

a  i- neighbourhood V of f(x) such that 

V  f(U). 

Proof :( i) (ii): Let f be an (i, j) - quasi – swg* -
open function.  Since (i,j)- g int (U) is an (i,j)- swg*- 
open set contained in U, we obtain that f((i,j)- g int 

(U)) f (U).  As  f ((i,j)- g int (U)) is  i – open, f 

((i,j)-g int (U))  i –int (f(U)). 

(ii)   (iii): Let x  X and U be an (i, j) –swg* - 
neighbourhood of x in X.  Then there exist  an  ( i,j) –

swg*-open set  V in X such that  x V  U .  Thus 

by  (ii) , we have  f(V) = f((i,j)- g int (V))  i- int 

(f(V)), and hence , f(V) = i- int (f(V)).  Therefore it 

follows that f (V) is i– open such that f(x)  f (V) f 
(U). 

(iii)  (i): Let U be an (i, j) –swg* -open set in X.  

Then by (iii), for each y f (U), there exists a i –

neighbourhood Vy of y such that Vy  f (U).  As Vy 

is a i –neighbourhood of y, there exists a i –open 

set Wy such that Y  Wy   Vy.  Thus f (U) =  Wy: 

Y  f (U) is i – open.  Hence, f is (i, j)-quasi – 
swg*-open. 

Theorem 3.5: A function f: (X,1 ,2) (Y,1  ,2)   
is ( i,j) –quasi –swg*-open ,if and only if for any 
subset B of Y and for any ( i,j) –swg*-closed set F in 

X such that f-1(B)  F,  there exists a i-closed set G 

containing B such that f-1(G)  F. 

Proof: Suppose that f is (i, j) - quasi swg*-open.  Let 

BY and F be an (i, j) - swg*- closed set in X such 

that   f-1 (B)  F.  Now, put G= Y- f (X-F).  It is clear 

that B  G as f-1 (B)  F, and that f-1 (G)  F.  Also 

G is i – closed, since f is ((i, j)-quasi – swg* -open.  
Conversely  , let U be an ((i,j)- swg* -open set in X,  
and put B=Y-f(U).Then X-U is an (i,j)-swg*-closed 

set in X  such that f-1 (B)  X-U.  By hypothesis, 

there exists a i closed set G such that BG and f-1 

(G)  X-U.  Hence, f (U)  Y-G .On the other hand, 

since BG, Y-G  Y-B= f (U).  Thus f (U) = Y-G is 

i -open, and hence, f is a (i, j) - quasi – swg*- open. 
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Theorem 3.6: Let f: (X, 1, 2) (Y, 1, 2)   be a 
function.  Then the following are equivalent: 

(i)  f is (i,j)-quasi swg*-open; 

(ii)  f-1 (i- cl (B))  (i,j)-gcl (f-1 (B)) for 
every subset  B of Y ; 

(iii)     (i,j)- g int (f-1 (B))   f-1 (i– int (B)) 
for every subset B of Y. 

Proof: (i) (ii):  Suppose that f is (i, j) - quasi swg*-

open.  Now for any subset B of Y, f-1 (B)  (i, j) - gcl         
(f-1(B)).  Therefore by Theorem 3.5 , there exists  a   

i – closed set G such that B  G and  f-1  (G)   (i,j)- 

gcl (f-1  (B)).  Hence, f-1 (i – cl (B))   f-1 (G)        
(i,j) - gcl (f-1 (B)). 

(ii)  (i): Let BY and F be an (i, j)-swg*- closed 

set in X such that f-1 (B)   F.  Put G= i – cl (B), 

then B  G, G is i – closed, and f-1 (G)   (i, j) - gcl 

(f-1 (B)) F.  Thus by theorem 3.5, f is (i, j) - quasi –
swg*-open. 

(ii) (iii):  It is Clear, because  f-1 (i- cl (B))  (i,j)-
gcl (f-1 (B)) for every subset  B of Y  is  equal to (i,j)- 

g int ( f-1 (B))   f-1 (i– int (B) ) for every subset B 
of Y. 

Theorem 3.7: Let f: (X,1 ,2) (Y,1  ,2)    and g : 

(Y,1  ,2)    (Z, 1  , 2)  be two functions  such 

that   gof  : X  Z  is (i,j)-quasi  swg* -open .  If g is a 
pairwise continuous injection, then f is (i, j) - quasi- 
swg*-open. 

Proof: Let U be an (i, j) - swg*-open set in X.  Then 

(gof (U) is i-open as  gof  is (i, j)-quasi –swg*-open.  
Since g is a pairwise continuous injection, f (U) = g-1 

(gof (U)) is i-open.  Hence, f is (i, j)-quasi –swg*-
open. 

Definition 3.8: A function f: (X,1 ,2) (Y,1  ,2) 
is said to be  (i,j)-quasi – swg* - closed if the image 

of each (i,j)-swg* -closed set in X is i-closed in Y. 

Remark 3.9: It is clear that every (i, j)-quasi- swg*-
closed function is both pair wise closed and pairwise 
swg*-closed.  The converse is not true as seen from 
the following example. 

Example 3.10: Let X= {a,b,c}, 1={X,,{c}},       

1= {Y,,{b,c},{c}},and 2= {X,,{a}},                    

2 = {Y,,{a},{a,b}}.  Clearly the function f: (X, 1, 

2) (Y, 1, 2)   is pairwise closed and pairwise 
swg*-closed.  However,  f  is not quasi –(i,j)-swg*-
closed   because  {c} is (2,1)-swg*-closed in       

(X,1 ,2) , but not 2-closed. 

Theorem 3.11: A function f: (X,1 ,2) (Y,1  ,2)  

is (i,j)-quasi swg*-closed  if and only if  i -cl (f(A)) 

     f ((i,j)-gcl (A)) for every subset A of X. 

Proof: Suppose that f is (i,j)-quasi –swg* -closed, 

there exist i –cl (f(A))  f ( (i,j)-gcl (A))  for every 

subset A of X.  Conversely  , every i- cl (f (A))  f 
((i,j)-gcl (A))  is (i,j)- quasi swg*-closed. 

Theorem 3.12: Let f: (X, 1, 2) (Y, 1, 2) be a 
function.  Then the following are equivalent: 

(i) f is (i,j)-quasi  swg*- closed ; 
(ii) For any subset B of Y and for any (i,j)- 

swg* -open set  G in X such that           

f-1 (B) G , there exists a i-open set U 

containing B such that f-1 (U) G; 

(iii) For  each y  Y and for any (i,j)-swg*-

open set G in X such that f-1 ({y}) G, 

there exists a i-open set U containing 

{y} such that  f-1 (U)  G. 

   Proof: 

 (i) (ii): Suppose f is (i, j)-quasi –swg* closed set.  
Now there exist for any subset B of Y and for (i,j)- 

swg*-open set G in X such that  f-1 (B)  G,there 

exist a  i- open set U containing B such that  f-1 (U) 

 G. 

(ii)  (iii) : For any subset B of Y and for any (i,j)- 

swg* -open set G in X such that f-1 (B)   G, there 

exists a  i-open set U containing B such that f-1 (V) 

 G,  Also there exist  for each y  Y and for any 

(i,j)- swg*-open set G in X such that f-1 ( y)   G, 

there exists a  i-open set  containing  y such that f-

1 (U)  G. 
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(iii)(i):For each y Y and for any (i,j)-swg*-open 

set G in X such that  f-1 ((Y))  G, there exists a i-

open set U containing B such that f-1(U)  G.  Then f 
is (i,j)- quasi swg*-closed. 

Definition 3.13: A function f: (X,1 ,2) (Y,1  ,2)  
is called pair wise swg**-closed if the image of every 
(i,j)-swg*-closed set in X is (i,j)-swg*-closed in Y. 

Theorem 3.14: Let f: (X, 1, 2) (Y, 1, 2) be a 
function.  Then the following as equivalent: 

(i) f is pair wise swg**- closed; 
(ii) For any subset B of Y and for any (i,j)- 

swg*-open set G in X such that f-1(B)  
G, there exists  an (i,j)-swg*-open set U  

in Y such that B  U and  f-1(U) G; 

(iii) For each y  Y and for any (i,j)-swg*-

open set G in X such that  f-1 ({Y})  G, 
there exists an  (i,j)-swg*-open set U in 

Y such that y U and f-1(U)  G; 

(iv) (i,j)-gcl (f (A))  f ((i,j)-gcl ((A)) for 
every subset A of X. 

Proof:  

(i)  (ii): Let f be an pair wise swg**-closed.  By 

definition 3.13. A function f: (X,1 ,2) (Y,1  ,2)   
is called pair wise swg**-closed if the image of every 
(i,j)-swg*-closed set in X is (i,j)-swg*-closed in Y, 
there exists for any subset B of Y and for any(i,j)-

swg* -open set G in X such that f-1(B)   G , there 

exists an (i,j)-swg*-open set U in Y,  such that B U 

and f-1 (U)  G. 

(ii)(iii):For any subset B of Y  and for any (i,j)- 

swg* -open set G in X such that f-1 (B) G, there 

exists an (i,j)- swg*open set U in Y such that B  U 

and  f-1 (U)  G.There exist for y Y and for any 

(i,j)-swg* -open set G in X.  Such that f-1 ({y})   G, 
Also there exists an (i, j) - swg* -open set U in Y 

such that y  U and f-1 (U) G. 

(iii)(iv) :Let  each yY and for any (i,j)-swg*-

open set G in X such that f-1({y})  G, there exists an 

(i,j)-swg*-open set U in Y such that y U  and f-1 

(U) G. That implies (i, j)-gcl (f (A))  f (i, j)-gcl 
(A)) for every subset   A of X. 

(iv) (i): Let (i, j)-gcl (f (A))  f ((i.j) – gcl (A)) for 
every subset A of X.  There exist a f is pair wise 
swg**-closed. 

Theorem 3.15: Let  f : (X,1 ,2) (Y,1  ,2)  and g: 

(Y,1  ,2)  (Z, 1  , 2) are two (i,j)-quasi –swg* -

closed functions  , then gof : (X,1 ,2) (Z, 1  , 2) 
is (i,j)-quasi swg*-closed. 

Proof: If  f : (X,1 ,2) (Y,1  ,2)  and                   

g: (Y,1  ,2)  (Z, 1 , 2) are two (i,j)-quasi –   
swg* -closed. Let U be an (i,j)-swg*-closed in X.  

Then (gof (U) is i-closed as  gof is (i, j) - quasi –
swg* -closed. 

Theorem  3.16: Let f : (X,1 ,2) (Y,1  ,2)  and    

g: (Y,1  ,2)  (Z, 1  , 2) be any two functions .  
Then if f is pairwise swg*-closed and g is                  
(i,j)-quasi –swg*-closed the gof  is pairwise closed. 

Proof: If f is pairwise swg* -closed and g is (i, j)-
quasi –swg*-closed then gof is pair wise closed. 

Theorem 3.17 : Let f : (X,1 ,2) (Y,1  ,2)  and   

g: (Y,1  ,2)  (Z, 1  ,  2) be any two functions .  
Then if f is pairwise swg**-closed and g is (i,j) - 
quasi –swg*-closed then gof is (i,j)-quasi –swg* -
closed. 

Proof: If f is pairwise swg**-closed and g is (i,j)-
quasi –swg*-closed then gof is (i, j)-quasi –swg*-
closed. 

Definition  3.18: A function  f : (X,1 ,2)        

(Y,1  ,2) is called pairwise swg*-irresolute,  if         

f-1 (V)  is (i,j)-swg*-open in  (X,1 ,2)  for every (i,j)- 
swg*-open set V in Y. 

Definition  3.19: A function f : (X,1 ,2)        

(Y,1  ,2)   is called pairwise swg*-continuous,  if    

f-1(V)   is (i,j)-swg* -open in   (X,1 ,2)  for every   

i-open set V in Y. 

Theorem 3.20: 

Let f : (X,1 ,2) (Y,1  ,2)  and g: 

(Y,1  ,2)  (Z, 1 ,  2)be  two 

functions such that  gof :  X  Z  is (i,j)-
quasi-swg*-closed . Then 
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(i)  If f is a pairwise swg*-irresolute 
surjection, then g is (i, j)-quasi –swg*-
closed. 

(ii) If g is a pairwise –swg* -continuous 
injection, then f is pair wise swg**-
closed. 

Proof:   (i) Suppose that F is (i, j)-swg*-closed set in 
Y.  Then f-1(F) is (i, j)-swg*-closed in X as f is pair 
wise swg*-irresolute.  Since   gof is (i, j) - quasi –
swg*-closed and f is subjective (gof (f

-1 (F))) = g (F) 

is i-closed.  Hence g is (i, j)-quasi-swg*-closed.          

(ii)Suppose that F is an (i, j) –swg*-closed set in X.  

Since gof is  (i,j)-quasi swg*-closed, (gof ) (F) is i- 
closed, but g is a pairwise swg*-continuous injection, 
so g-1  (gof (F)) = f(F) is (i,j)-swg*-closed in Y.  
Hence f is pairwise swg**-closed. 

Theorem 3.21: Let g: (Y, 1, 2)  (Z, 1, 2) be a 
function.  Then g is (i,j)-quasi –swg*-closed if and 

only  if  g(X) is i-closed , and g(V) – g (X-V) is i-
open in g(X) whenever V is (i,j)-swg*-open in X. 

Proof: Necessity: Let g is (i, j) - quasi swg*-closed.  

Then g(X) is  i- closed  as  X is  (i,j)- swg*-closed 

and g(V) –g (X-V)= g(X)-g(X-V) is  i-open in g(X) 
when  V is (i,j)-swg*-open in X. 

Sufficiency :Suppose that g(X) is i- closed and   

g(V) –g (X-V) is i-open is g (X) when V is (i,j)- 
swg* -open in X  , and let C be (i,j)-swg* - closed in 

X.  Then g (C) = g(X)-(g (X-C) –g(C)) is i- closed 

in g(X), and therefore, i-closed.  Hence, g is (i, j)-
quasi –swg* -closed. 

Corollary 3.22: Let g:  (X, 1, 2) (Y, 1, 2) be a 
surjection.  Then g is (i,j)    -quasi – swg* -closed if 

and only if g(V) –g (X-V)  is I –open whenever V is 
(i,j)- swg*- open in X. 

Definition 3.23: A Space (X,1 ,2) is said to be pair 

wise swg*- normal if for any disjoint  subset F1  

(1,2) SWG*C (X) and F2   (2,1)- SWG*C (X) ,  

there exist disjoint subsets U  1 and V  2  such 

that F1  U and F2V. 

Theorem 3.24: Let   (X,1 ,2) (Y,1  ,2)   be two 
spaces , where X is pairwise swg*-normal  and let         

Theorem 3.24: Let   (X,1 ,2) (Y,1  ,2)   be two 
spaces , where X is pairwise swg*-normal  and        

let g: (X,1 ,2) (Y,1  ,2)   be a pairwise swg*-
continuous, (i,j)- quasi swg*-closed surjection . Then 
Y is pair wise normal. 

Proof:  Let X is pair wise –swg*-normal.  Let K be 

1-closed and M be 2-closed disjoint subsets of Y.  

Then    g-1(K)  (1, 2) –SWG*C(X), g-1 (M)         

(2, 1) - SWG*C(X) and g-1 (K) g-1 (M) =.  Since X 
is     pair wise –swg* -normal , there exist disjoint  

sets  V  1 and  W 2 such that g-1 (K)  V and  g-1          

(M)  W .  Thus K   g (V) – g(X-V) and M  g 
(W) - g (X-W).  It follows also from corollary  3.22 

that                  g(V) – g (X-V)   1 and  g(W) – g(X-

W)   2, and clearly (g(V)-g (X-V))  (g (w) – g(X-

W)) =  because V  W= .    Hence, Y is pair wise 
normal. 

Theorem  3.25:Let (X,1 ,2) (Y,1  ,2)    be two 
spaces, where X is pairwise swg*-normal and let            

g: (X,1 ,2) (Y,1  ,2) be a pairwise swg*-
irresolute (i,j)-quasi swg*-closed surjection.  Then Y 
is pair wise swg*-normal. 

Proof:  Let X is pairwise swg*-normal.  Let K be    

1 – swg*-closed and M be 2 – swg*- closed 

disjoint subsets of Y.  Then g-1(K)  (1, 2) – 

SWG*C(X), g-1 (M) (2, 1)-SWG*C (X) and g-1 

(K)  g-1 (M) =.  Since X is pairwise  swg*-normal, 

there exists disjoint sets V 1 and W  2 such that 

g-1(K)  V and  g-1 (M)  W.Thus  K g(V) – g(X-

V) and M  g(W) –g(X-W).  It follows from 

corollary 3.22 that g(V)- g(X-V)  1 and g(W) –

g(X-W) 2, and clearly g(V) – g (X-V)  (g(W)-g 

(X-W) =  because V  W =  .  Hence Y is          
pairwise swg*-normal. 
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