(i,j)-Quasi Semi Weakly g*-Closed Functions in Bitopological Spaces

1 C.Mukundhan †

Department of Mathematics

Assistant Professor, Faculty of Science, L.N.V. College of Arts and Science,

Podanur, Coimbatore - 641 201, Tamil Nadu, India.

2 N.Nagaveni ‡

Associate Professor, Department of Mathematics

Coimbatore Institute of Technology,

Coimbatore. Tamil Nadu, India.

Abstract

The primary purpose of this paper is to introduce and study two new types of functions on bitopological spaces called (i,j)- quasi semi weakly g*-open and (i,j)- quasi semi weakly g*-closed.

Mathematical subject classification: Primary 54 A10, 54 C10; Secondary 54 C08, 54 D 15.

Key Words : Bitopological spaces, (i,j)- semi weakly g*-open , (i,j)- quasi semi weakly g* -closed, Pairwise open, Pairwise closed, Pairwise –semi weakly g* -closed, Pairwise semi weakly g**- closed, Pairwise continuous , Pairwise semi weakly g*- irresolute, Pairwise normal, Pairwise semi weakly g*-normal, Pairwise semi weakly g**- normal.

1. Introduction

The Concept of a bitopological space (X,τ_1,τ_2) was first introduced by Kelly [1], where X is a nonempty set and τ_1, τ_2 are topologies on X. The authors [3, 4] defined the notions of swg*-open sets and swg*-continuity.

Pervin [6] investigated connectedness in bitopological space. Khedr, El.Areefi and Noiri [2] defined pre-continuity and semi pre continuity in bitopological spaces.In this paper, we introduce and study the concepts of quasi SWG*- open and quasiswg*-closed functions on bitopological spaces.

Throughout this paper, (X, τ_1, τ_2) or simply X denote a bitopological space. The intersection (resp.union) of all τ_i - closed sets containing A (resp. τ_i -open sets contained in A) is called the τ_i -closure (resp. τ_i interior) of A, denoted by τ_i -cl (A) (resp. τ_i -int (A)).

2. Perliminaries

Definition 2.1: Let A be subset of a topological space (X,τ) . It is called semi weakly g*-closed [3] denoted by swg*- closed set if gcl (A) \subseteq U whenever A \subseteq U and U is semi-open.

Definition 2.2: Let X and Y be topological spaces. A map f: $X \rightarrow Y$ is said to be semi weakly g*continuous [4] (swg*-continuous), if the inverse image of every open set Y is swg*- open in X.

Definition 2.3: Let $(i, j) \in \{1, 2\}$ be fixed integers. In a bitopological space (X, τ_1, τ_2) a subset $A \subseteq X$ is said to be (i, j)-semi weakly g*- closed [5] (briefly (i,j)-swg*-closed), if j-gcl $A \subseteq U$ whenever $A \subseteq U$ and $U \in i$ - semi-open.

Definition 2.4: A space (X,τ_1,τ_2) is said to be pairwise normal [7], if for each τ_1 -closed set A and τ_2 -closed set B disjoint from A, there is a τ_1 -open set U containing A and a τ_2 -open set V containing B such that $U \cap V = \phi$.

3. (i, j)-QUASI SEMI WEAKLY g*- OPEN AND QUASI SEMI WEAKLY g*- CLOSED FUNCTIONS

Definition 3.1: A function $f : (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be (i,j) – quasi semi weakly g*-open if the image of every (i,j)- semi weakly g*-open set in X is σ_i – open in Y.

Remark 3.2: It is clear that every (i, j)-quasi –swg*open function is both pairwise open and pairwise swg*-open. The converse is not true as seen from the following example.

Example 3.3 :Let $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{a,b\}\}, \sigma_1 = \{Y,\phi,\{a\},\{a,b\}\}, and \tau_2 = \{X,\phi,\{b,c\}\}, \sigma_2 = \{Y,\phi,\{b,c\},\{c\}\}.$ Clearly the function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise open and pairwise swg*-open. However, f is not quasi –(i,j)-swg*-open because $\{a,b\}$ is (2,1)-swg*-open in (X,τ_1,τ_2) , but not σ_2 -open.

Theorem 3.4: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a function. Then the following are equivalent:

(i) f is (i,j) – quasi swg*- open;

- (ii) For each subset U of X, f ((i,j) –g int (U)) $\subset \sigma_i$ – int (f(U));
- (iii) For each $x \in X$ and each $(i,j) swg^*$ neighbourhood U of x in X, there exists a σ_i - neighbourhood V of f(x) such that $V \subset f(U)$.

Proof :(i) \Rightarrow (ii): Let f be an (i, j) - quasi – swg^{*} - open function. Since (i,j)- g int (U) is an (i,j)- swg^{*}-open set contained in U, we obtain that f((i,j)- g int (U)) \subset f (U). As f ((i,j)- g int (U)) is σ_i – open, f ((i,j)-g int (U)) \subset σ_i –int (f(U)).

(ii) \Rightarrow (iii): Let $x \in X$ and U be an (i, j) -swg^{*} neighbourhood of x in X. Then there exist an (i,j) swg^{*}-open set V in X such that $x \in V \subset U$. Thus by (ii), we have $f(V) = f((i,j)-g \text{ int } (V)) \subset \sigma_i$ - int (f(V)), and hence, $f(V) = \sigma_i$ - int (f(V)). Therefore it follows that f(V) is σ_i - open such that $f(x) \in f(V) \subset f(U)$.

(iii) \Rightarrow (i): Let U be an (i, j) -swg* -open set in X. Then by (iii), for each $y \in f(U)$, there exists a σ_i – neighbourhood Vy of y such that $V_y \subset f(U)$. As V_y is a σ_i -neighbourhood of y, there exists a σ_i -open set W_y such that $Y \in W_y \subset V_y$. Thus $f(U) = \bigcup \{W_y:$ $Y \in f(U)\}$ is σ_i - open. Hence, f is (i, j)-quasi – swg*-open.

Theorem 3.5: A function f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is (i,j) –quasi –swg*-open ,if and only if for any subset B of Y and for any (i,j) –swg*-closed set F in X such that $f^1(B) \subset F$, there exists a σ_i -closed set G containing B such that $f^1(G) \subset F$.

Proof: Suppose that f is (i, j) - quasi swg*-open. Let $B \subset Y$ and F be an (i, j) - swg*- closed set in X such that $f^1(B) \subset F$. Now, put G = Y- f (X-F). It is clear that $B \subset G$ as $f^1(B) \subset F$, and that $f^1(G) \subset F$. Also G is σ_i – closed, since f is ((i, j)-quasi – swg* - open. Conversely , let U be an ((i,j)- swg* - open set in X, and put B = Y-f(U).Then X-U is an (i,j)-swg*-closed set in X such that $f^1(B) \subset X$ -U. By hypothesis, there exists a σ_i closed set G such that $B \subset G$ and $f^1(G) \subset X$ -U. Hence, f (U) $\subset Y$ -G.On the other hand, since $B \subset G$, Y- $G \subset Y$ -B = f (U). Thus f (U) = Y-G is σ_i -open, and hence, f is a (i, j) - quasi – swg*- open.

Theorem 3.6: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function. Then the following are equivalent:

- (i) f is (i,j)-quasi swg*-open;
- (ii) $f^1(\sigma_i \text{-} cl(B)) \subset (i,j)\text{-}gcl(f^1(B))$ for every subset B of Y;
- (iii) (i,j)- g int $(f^{1}(B)) \subset f^{1}(\sigma_{i}-int(B))$ for every subset B of Y.

Proof: (i) \Rightarrow (ii): Suppose that f is (i, j) - quasi swg^{*}open. Now for any subset B of Y, f¹ (B) \subset (i, j) - gcl (f¹(B)). Therefore by Theorem 3.5, there exists a σ_i – closed set G such that B \subset G and f¹ (G) \subset (i,j)gcl (f¹ (B)). Hence, f¹ (σ_i – cl (B)) \subset f¹ (G) \subset (i,j) - gcl (f¹ (B)).

(ii) \Rightarrow (i): Let B \subset Y and F be an (i, j)-swg*- closed set in X such that f¹ (B) \subset F. Put G= σ_i - cl (B), then B \subset G, G is σ_i - closed, and f¹ (G) \subset (i, j) - gcl (f¹ (B)) \subset F. Thus by theorem 3.5, f is (i, j) - quasi – swg*-open.

(ii) \Leftrightarrow (iii): It is Clear, because $f^1(\sigma_{i-} cl(B)) \subset (i,j)$ -gcl ($f^1(B)$) for every subset B of Y is equal to (i,j)-g int ($f^1(B)$) $\subset f^1(\sigma_{i-} int(B))$ for every subset B of Y.

Theorem 3.7: Let f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be two functions such that $g_0f: X \rightarrow Z$ is (i,j)-quasi swg*-open. If g is a pairwise continuous injection, then f is (i, j) - quasi-swg*-open.

Proof: Let U be an (i, j) - swg*-open set in X. Then $(g_of(U) \text{ is } \eta_i\text{-open as } g_of \text{ is } (i, j)\text{-quasi} -\text{swg*-open.}$ Since g is a pairwise continuous injection, $f(U) = g^{-1}$ $(g_of(U))$ is $\sigma_i\text{-open.}$ Hence, f is (i, j)-quasi -swg*-open.

Definition 3.8: A function f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is said to be (i,j)-quasi – swg* - closed if the image of each (i,j)-swg* -closed set in X is σ_i -closed in Y.

Remark 3.9: It is clear that every (i, j)-quasi- swg*closed function is both pair wise closed and pairwise swg*-closed. The converse is not true as seen from the following example. **Example 3.10:** Let $X = \{a,b,c\}, \tau_1 = \{X,\phi,\{c\}\}, \sigma_1 = \{Y,\phi,\{b,c\},\{c\}\}, and \tau_2 = \{X,\phi,\{a\}\}, \sigma_2 = \{Y,\phi,\{a\},\{a,b\}\}.$ Clearly the function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise closed and pairwise swg*-closed. However, f is not quasi –(i,j)-swg*-closed because $\{c\}$ is (2,1)-swg*-closed in (X,τ_1,τ_2) , but not σ_2 -closed.

 $\begin{array}{l} \textbf{Proof:} \ Suppose \ that \ f \ is \ (i,j)-quasi \ -swg^* \ -closed, \\ there \ exist \ \sigma_i \ -cl \ (f(A)) \subset f \ (\ (i,j)-gcl \ (A)) \ for \ every \\ subset \ A \ of \ X. \ Conversely \ , \ every \ \sigma_i\ -cl \ (f \ (A)) \subset f \\ ((i,j)-gcl \ (A)) \ is \ (i,j)\ -quasi \ swg^*\ -closed. \end{array}$

Theorem 3.12: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function. Then the following are equivalent:

- (i) f is (i,j)-quasi swg*- closed ;
- (ii) For any subset B of Y and for any (i,j)swg* -open set G in X such that $f^{-1}(B) \subset G$, there exists a σ_i -open set U containing B such that $f^{-1}(U) \subset G$;
- $\begin{array}{ll} (iii) & \mbox{For each } y \in Y \mbox{ and for any } (i,j)\mbox{-swg}^*\mbox{-} \\ & \mbox{open set } G \mbox{ in } X \mbox{ such that } f^1\left(\{y\}\right) \mbox{-} G, \\ & \mbox{there exists a } \sigma_i\mbox{-} \mbox{open set } U \mbox{ containing} \\ & \{y\} \mbox{ such that } f^1(U) \mbox{-} G. \end{array}$

Proof:

(i) \Rightarrow (ii): Suppose f is (i, j)-quasi –swg* closed set. Now there exist for any subset B of Y and for (i,j)swg*-open set G in X such that $f^1(B) \subset G$,there exist a σ_i - open set U containing B such that $f^1(U) \subset G$.

(ii) \Rightarrow (iii) : For any subset B of Y and for any (i,j)swg* -open set G in X such that $f^1(B) \subset G$, there exists a σ_i -open set U containing B such that $f^1(V) \subset G$, Also there exist for each $y \in Y$ and for any (i,j)- swg*-open set G in X such that $f^1(\{y\}) \subset G$, there exists a σ_i -open set containing $\{y\}$ such that $f^1(U) \subset G$. (iii) \Rightarrow (i):For each $y \in Y$ and for any (i,j)-swg*-open set G in X such that $f^1((Y)) \subset G$, there exists a σ_i open set U containing B such that $f^1(U) \subset G$. Then f is (i,j)- quasi swg*-closed.

Definition 3.13: A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called pair wise swg**-closed if the image of every (i,j)-swg*-closed set in X is (i,j)-swg*-closed in Y.

Theorem 3.14: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function. Then the following as equivalent:

- (i) f is pair wise swg**- closed;
- (ii) For any subset B of Y and for any (i,j)-swg*-open set G in X such that f⁻¹(B) ⊂
 G, there exists an (i,j)-swg*-open set U in Y such that B ⊂ U and f⁻¹(U)⊂ G;
- (iii) For each $y \in Y$ and for any (i,j)-swg*open set G in X such that $f^{-1}(\{Y\}) \subset G$, there exists an (i,j)-swg*-open set U in Y such that $y \in U$ and $f^{-1}(U) \subset G$;
- (iv) (i,j)-gcl (f (A)) \subset f ((i,j)-gcl ((A)) for every subset A of X.

Proof:

(i) \Rightarrow (ii): Let f be an pair wise swg**-closed. By definition 3.13. A function f: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called pair wise swg**-closed if the image of every (i,j)-swg*-closed set in X is (i,j)-swg*-closed in Y, there exists for any subset B of Y and for any(i,j)-swg* -open set G in X such that $f^1(B) \subset G$, there exists an (i,j)-swg*-open set U in Y, such that $B \subset U$ and $f^1(U) \subset G$.

(ii)⇒(iii):For any subset B of Y and for any (i,j)swg* -open set G in X such that $f^1(B) \subset G$, there exists an (i,j)- swg*open set U in Y such that B ⊂ U and $f^1(U) \subset G$.There exist for $y \in Y$ and for any (i,j)-swg* -open set G in X. Such that $f^1(\{y\}) \subset G$, Also there exists an (i, j) - swg* -open set U in Y such that $y \in U$ and $f^1(U) \subset G$.

(iii) \Rightarrow (iv) :Let each $y \in Y$ and for any (i,j)-swg*open set G in X such that $f^1(\{y\}) \subset G$, there exists an (i,j)-swg*-open set U in Y such that $y \in U$ and f^1 (U) \subset G. That implies (i, j)-gcl (f (A)) \subset f (i, j)-gcl (A)) for every subset A of X. (iv) \Rightarrow (i): Let (i, j)-gcl (f (A)) \subset f ((i,j) – gcl (A)) for every subset A of X. There exist a f is pair wise swg^{**}-closed.

Theorem 3.15: Let $f: (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ are two (i,j)-quasi –swg* – closed functions , then $g_0f: (X,\tau_1,\tau_2) \rightarrow (Z,\eta_1,\eta_2)$ is (i,j)-quasi swg*-closed.

Proof: If $f : (X,\tau_1, \tau_2) \rightarrow (Y,\sigma_1, \sigma_2)$ and g: $(Y,\sigma_1, \sigma_2) \rightarrow (Z,\eta_1, \eta_2)$ are two (i,j)-quasi – swg* -closed. Let U be an (i,j)-swg*-closed in X. Then $(g_0f (U) \text{ is } \sigma_i\text{-closed as } g_0f \text{ is } (i, j) \text{ - quasi }$ swg* -closed.

Theorem 3.16: Let $f : (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and g: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be any two functions. Then if f is pairwise swg*-closed and g is (i,j)-quasi-swg*-closed the $g_o f$ is pairwise closed.

Proof: If f is pairwise swg^* -closed and g is (i, j)quasi $-swg^*$ -closed then g_0f is pair wise closed.

Theorem 3.17 : Let $f : (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g: (Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ be any two functions . Then if f is pairwise swg**-closed and g is (i,j) - quasi –swg*-closed then g_of is (i,j)-quasi –swg* - closed.

Proof: If f is pairwise swg^{**} -closed and g is (i,j)-quasi $-swg^{*}$ -closed then $g_{o}f$ is (i, j)-quasi $-swg^{*}$ -closed.

Definition 3.18: A function $f : (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called pairwise swg*-irresolute, if $f^1(V)$ is (i,j)-swg*-open in (X,τ_1,τ_2) for every (i,j)-swg*-open set V in Y.

Definition 3.19: A function $f : (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called pairwise swg*-continuous, if $f^1(V)$ is (i,j)-swg* -open in (X,τ_1,τ_2) for every σ_i -open set V in Y.

Theorem 3.20:

Let $f: (X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ and $g: (Y,\sigma_1,\sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be two functions such that $g_0 f: X \rightarrow Z$ is (i,j)-quasi-swg*-closed. Then

- (i) If f is a pairwise swg*-irresolute surjection, then g is (i, j)-quasi -swg*closed.
- (ii) If g is a pairwise -swg* -continuous injection, then f is pair wise swg**closed.

Proof: (i) Suppose that F is (i, j)-swg*-closed set in Y. Then $f^{1}(F)$ is (i, j)-swg*-closed in X as f is pair wise swg*-irresolute. Since $g_{0}f$ is (i, j) - quasi – swg*-closed and f is subjective $(g_{0}f (f^{1} (F))) = g (F)$ is η_{i} -closed. Hence g is (i, j)-quasi-swg*-closed.

(ii)Suppose that F is an (i, j) -swg*-closed set in X. Since g_of is (i,j)-quasi swg*-closed, (g_of) (F) is η_i closed, but g is a pairwise swg*-continuous injection, so g^{-1} (g_of (F)) = f(F) is (i,j)-swg*-closed in Y. Hence f is pairwise swg**-closed.

Theorem 3.21: Let g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \sigma_1, \sigma_2)$ be a function. Then g is (i,j)-quasi –swg*-closed if and only if g(X) is σ_i -closed , and g(V) – g (X-V) is σ_i -open in g(X) whenever V is (i,j)-swg*-open in X.

Proof: Necessity: Let g is (i, j) - quasi swg*-closed. Then g(X) is σ_i - closed as X is (i,j)- swg*-closed and g(V) -g (X-V)= g(X)-g(X-V) is σ_i -open in g(X) when V is (i,j)-swg*-open in X.

Sufficiency :Suppose that g(X) is σ_i - closed and g(V) -g(X-V) is σ_i -open is g(X) when V is (i,j)-swg* -open in X, and let C be (i,j)-swg* - closed in X. Then g(C) = g(X)-(g(X-C) - g(C)) is σ_i - closed in g(X), and therefore, σ_i -closed. Hence, g is (i, j)-quasi –swg* -closed.

Corollary 3.22: Let g: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a surjection. Then g is (i,j) -quasi – swg* -closed if and only if g(V) - g(X-V) is σ_I –open whenever V is (i,j)- swg*- open in X.

Definition 3.23: A Space (X,τ_1,τ_2) is said to be pair wise swg^{*}- normal if for any disjoint subset $F_1 \in$ (1,2) SWG^{*}C (X) and $F_2 \in (2,1)$ - SWG^{*}C (X), there exist disjoint subsets $U \in \tau_1$ and $V \in \tau_2$ such that $F_1 \subset U$ and $F_2 \subset V$.

Theorem 3.24: Let $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be two spaces , where X is pairwise swg*-normal and let

Theorem 3.24: Let $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be two spaces , where X is pairwise swg*-normal and let g: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a pairwise swg*-continuous, (i,j)- quasi swg*-closed surjection . Then Y is pair wise normal.

Theorem 3.25:Let $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be two spaces, where X is pairwise swg*-normal and let g: $(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a pairwise swg*-irresolute (i,j)-quasi swg*-closed surjection. Then Y is pair wise swg*-normal.

Proof: Let X is pairwise swg*-normal. Let K be $\sigma_1 - swg^*$ -closed and M be $\sigma_2 - swg^*$ - closed disjoint subsets of Y. Then $g^{-1}(K) \in (1, 2) - SWG^*C(X)$, $g^{-1}(M) \in (2, 1)$ -SWG*C (X) and $g^{-1}(K) \cap g^{-1}(M) = \phi$. Since X is pairwise swg*-normal, there exists disjoint sets $V \in \tau_1$ and $W \in \tau_2$ such that $g^{-1}(K) \subset V$ and $g^{-1}(M) \subset W$. Thus $K \subset g(V) - g(X-V)$ and $M \subset g(W) - g(X-W)$. It follows from corollary 3.22 that g(V)- $g(X-V) \in \sigma_1$ and $g(W) - g(X-W) \in \sigma_2$, and clearly $g(V) - g(X-V) \cap (g(W)-g(X-W) = \phi$ because $V \cap W = \phi$. Hence Y is pairwise swg*-normal.

References

- (1) J.C.Kelly, (1963), Bitopological spaces, proc. London math.soc.3, 71-89.
- (2) F.H.Khedr, S.M.El-Areefi and T.Noiri, (1992), Pre-continuity and Semi pre-continuity in bitopological spaces, Ind.J.Pure Appl.math.23 (9), 625 – 633.

- (3) C.Mukundhan and N.Nagaveni, (2011), A Weaker form of a generalized closed set Int.J.contemp.Math.Sciences., Vol –b, No.20, 949-961.
- (4) C.Mukundhan and N.Nagaveni, (III may 2011), on semi weakly g*-continuous functions in topological spaces Int.J.of Math. Sciences & Engg. Appls. (IJMSEA) Vol.5.No. pp 361-370.
- (5) C.Mukundhan and N.Nagaveni, (2012), (i, j) semi weakly g*-closed sets in bitopological spaces, Advances in Applied Mathematical Analysis, Vol.7 No.1, pp-11-21.
- (6) W.J.Pervin, (1967) Connectedness in bitopological spaces, Indag.math., 29,369 -372.
- (7) I.L.Reily , (1972) On Bitopological separation properties , nanta math.,(2), (5), 14-25