
Proposed Challenges and Areas of Concern in Operating System
Research and Development

 Plawan Kumar Rath1 , Anil G.N 2.

1 Department of Computer Science and Engineering, BMS Institute of Technology
Bangalore, Karnataka, India

2Department of Computer Science and Engineering, BMS Institute of Technology
Bangalore, Karnataka, India

ABSTRACT
Computers are a very important part of our lives and the major
reason why they have been such a success is because of the
excellent graphical operating systems that run on these powerful
machines. As the computer hardware is becoming more and more
powerful, it is also vital to keep the software updated in order to
utilize the hardware of the system efficiently and make it faster and
smarter. This paper highlights some core issues that if dealt with in
the operating system level would make use of the full potential of
the computer hardware and provide an excellent user experience.
Keywords: ASMP; authentication; memory; multiprocessing;
operating systems; paging; SMP; sharing; WIMP;

1. INTRODUCTION

Computer technology has made incredible progress in the
roughly 60 years since the first general purpose electronic
computer was created. For the evolution of computers from
being just a scientific tool to being a necessity in every
household the operating systems that run on them have
played a very vital role. Today we don’t call a computer
system by the manufacturer names; we rather call a system
to be a Mac PC or a Windows PC, etc. Although the
operating systems are becoming more and more dynamic
and classy yet there remains a lot of work to make them
utilize the full functionalities of the fast computer hardwares
of today. Here we will see some of the key issues that the
operating systems face and the unconquered challenges that
still remain in the world of operating system research and
development. We divide the rest of the paper into four
segments. In the first segment we talk about security, in
the next we talk about memory management, then we see
multiprocessor programming in operating systems and
related issues, and finally we will shift our focus onto the
smart devices and see the issues in user interface designs for
the same.

2. SECURITY

Security has been and still remains a major concern for
operating system developers and users alike. Informally
speaking, security is, keeping unauthorized entities from
doing things you don’t want them to do. Operating system
protection involves protection against unauthorized users as
well as protection of file systems. File permissions are based
on user identity, which in turn are based on user identity,
which in turn are based on authentication. Hence
authentication of users has to be highly secure such that
any unauthorized user doesn’t hack in along with proper

mechanism to let in genuine users. Various authentication
mechanisms have been and are being used in operating
systems, like the old-fashioned password authentication,
where a plaintext password is stored. This mechanism has
been proven to be easily hackable, so another technique that
provides an alternative is Hashed Passwords.

General Algorithm:

 Store f(Pw), where f is not

invertible

 When user enters Pw, calculate f(Pw) and
compare

Attackers can still use password-guessing algorithms;
therefore most operating systems use access control
mechanisms to protect the hashed passwords. Another
authentication mechanism used is the Challenge/Response
Authentication. Here what happens is the server knows
Pw and sends a random number N, both sides then
calculate f(Pw,N) where f is some encryption algorithm.
Although it must be noted that this mechanism is not very
famous with operating systems. The reason being that, even
in this case a person who guesses N or finds it out and
comes to know f(Pw,N) can run password-guessing
algorithms, so it is not that very different from the hashed-
password authentication in terms of security. These days
use of biometrics has become a major user authentication
mechanism. Such techniques include fingerprint readers,
iris scanner, etc. Although biometrics works fine if used
locally, yet even these methods are susceptible to spoofing
attacks. Hence we can infer that even the best and the most
hi-tech authentication has its limitations.

When talking about operating system security,
authentication attacks will make the bottom of priority
list. The major problems are attacks like, Trojan
Horses, Login spoofing and Buggy Software. Trojan
Horses are basically programs that are disguised programs,
meant to harm the system and its resources. Someone may
be tricked into running a program that may adversely affect
that user; his system or data. Although Linux, UNIX and
other Unix-like operating systems are generally regarded as
very protected, yet they are not immune to computer
viruses. For example, consider a virus program written in
C, which goes on creating new files and allocating space in
an infinite loop! Will Linux be safe in that case? Hence
viruses are a threat to all operating systems. Although it
must be noted that there has not yet been a widespread

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 409

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

linux malware (malware as in any malicious software)
threat of the type that Microsoft Windows softwares face;
this is mostly because of the following reasons:

 The user base of the Linux operating system is

smaller compared to Windows.
 The malwares’ lack root access.
 Fast updates for most Linux vulnerabilities.

Operating systems may use the following mechanisms to
avoid attacks of this type:

 Operating Systems can provide sandboxes:
Sandboxes are environments where a program can
execute but should not affect the rest of the
machine.

 The trick here is, permitting limited interaction
with outside while still providing the full
functionality of the operating system. Or in other
words the file system can be kept out of

unauthorized access and 3rd Party softwares may
be allowed minimum access to file-systems.

Race conditions can also be a critical security issue. To
illustrate such a situation, consider a privileged program that
checks if a file is readable and then tries to open it as root.
The attacker passes it a symbolic link, in the interval
between the two operations; the attacker removes the link
and replaces it with a link to a protected file. This would
give him direct access to the protected file area and into
the system. So here an attacker takes advantage of the race
condition between two operations to get access into the
protected area of the operating system. The only way to
overcome such attacks is to provide only atomic operations
to access files and strict restrictions on their access by other
users other than root.

Summing up the discussion above the following gives a brief
idea about the challenges that need to be overcome:

 A useful secure operating system should make it
easier to write secure applications.

 There is a need for more flexible permission
model. The models present today are either too
simple or too restrictive.

 The issue here is that, no commercial operating
system is secure enough.

 There will always be buggy code, but the trick is
to build an application and an operating system
that will mostly restrict attacks and will protect
the important assets of the system.

Security is not only an issue with the operating systems in
desktops and laptops; the operating systems of tablets
and cell-phones also have the same security issues but
these issues in phones are the most critical because if an
attacker gets into the operating system of a phone, the
attacker may get access to the personal data (viz. contacts,
messages, etc) of the victim. And moreover the user base
of these smaller devices like smart-phones and tablets in

increasing at an alarming rate and the amount of data
sharing between these devices is far more than that between
computers.

3. MEMORY MANAGEMENT

Managing the system memory is a very important function
of an operating system. Hence the success of any operating
system also depends to some extent on how well the
operating system manages the system memory. There have
been numerous mechanisms that have been researched
upon and implemented in this area of operating system
development. Today, an operating system has to execute
tasks on a huge amount of data but in the early days the
catch was that to operate on data, it had to be present in
the primary memory and primary memory cannot be as
much as the secondary memory. So the researchers and
developers started finding alternate ways of storage and
execution of data. During this time came a concept called
paging.

In operating systems, paging is one of the memory
management schemes by which the system can store and
retrieve data from the secondary storage for use in the main
memory. In this scheme, the operating system retrieves
data from secondary storage in same size blocks called
pages. The main function of paging is performed when a
program tries to access pages that are not currently mapped
to the RAM. This situation is known as a page fault. When
page fault occurs, an operating system has to perform the
following tasks:

 Determine the location of data in auxiliary storage.
 Obtain an empty page frame in RAM to use as a

container for data.

 Load the requested data into the available page
frame.

 Update the page table to show the new data.

 Return control to the program, transparently
retrying the instruction that caused the page fault.

Until there is not enough RAM to store all the data needed,
the process of obtaining an empty page frame does not
involve removing another page from RAM. If all page
frames are non-empty, obtaining an empty page frame
requires choosing a page frame containing data to empty. If
the data in that page frame has been modified since it
was read into RAM, it must be written back to its location
in secondary storage before being freed; otherwise, the
contents of the page's page frame in RAM are the same as
the contents of the page in secondary storage, so it does not
need to be written back to secondary storage. If a reference
is then made to that page, a page fault will occur, and an
empty page frame must be obtained and the contents of the
page in secondary storage again read into that page frame.
Efficient paging systems must determine the page frame
to empty by choosing one that is least likely to be
needed within a short time. There are various page
replacement algorithms that try to do this. Most operating
systems use some approximation of the least recently
used (LRU) page replacement algorithm (the LRU itself
cannot be implemented on the current hardware) or a

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 410

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

working set-based algorithm.

Paging is a very important feature for memory management
and is made use of by most of the commercially available
operating systems. For example, consider paging in
Windows. Almost all memories in windows can be paged
out to disks. This is where page file comes into play; its
where most pages are placed when they are not resident
in the physical memory. However, not everything gets
written into page files, they get written to specific
mapped files. Better than that, the pages only get written if
they have been modified. If they have not been altered since
they were read from the file, windows doesn’t have to write
the pages back out; it can just discard them. If it ever needs
the pages again, they can be safely re-read from the files.
Although paging is a very efficient mechanism yet
challenges still exist in this area, that need to be overcome if
the performance of the system has to be increased.

Operating systems today have taken paging to the next level,
by allowing sharing of pages between different processes.
This technique has an important advantage, that is, it avoids
duplication of pages for multiple processes. Or in other
words, if pages were not shared between processes, then
each process would have had to acquire its own copy of a
page that is being used by another process. Hence by
allowing sharing of pages, the execution time of instructions
goes down, in turn making the operating system run faster.
This memory sharing is useful, especially in low-memory
systems, but the current technique present for sharing of
pages, has its limitations; major one being that the operating
system only shares memory that corresponds to memory
mapped files. That is because this is the only time that the
operating system knows that pages are identical. For
regular data there is no page sharing.

A new scheme for page sharing is going to be implemented
by vendors. Here, the system will periodically scan memory,
and when it finds two pages that are identical, it will share
them, reducing the memory usage. If a process then tries to
modify the shared page, it will be given its own private
copy, ending the sharing. This mechanism will have a huge
effect on virtualization. When virtualizing, the same
operating system may be running multiple times, meaning
that the same executable files are loaded several times over.
So the traditional memory-mapped file approach to memory
sharing cannot kick in here. Each virtual operating system
is loading its own files from its own disk image. This is
where memory de duplication is useful; it can see that the
pages are all identical, and hence it can allow sharing even
between virtual machines.

This is another technique that is used by some operating
systems (Mac OSX) for memory management. As per this
method, when the operating system needs memory it will
push something that isn’t currently being used into a swap
file for temporary storage. When it needs access to that
data again, it will read the data from the swap file and back
into memory. In a sense this can create unlimited memory,
but it is significantly slower since it is limited by the speed
of the hard disk, versus the near immediacy of reading data
from RAM. Even this mechanism has a flaw. For example,
consider that processes A, B, C are to be executed one after

the other wherein A and C need same resources but B
needs totally different resources. Another assumption here
is that there is no memory left in the RAM. So here once
process A is finished, process B will have to run, but since
B needs different resources and resources of A are not
required anymore for now, they are shifted into swap file
and resources for B are loaded in place of that. Now when
C is to be executed, again the resources that had been
shifted to swap file has to be shifted back to the RAM.
So here we see how redundant swapping of data takes
place and this results in slow processing speed.

The following points sum up the areas of concern for an
operating system to obtain more efficient memory
management:

 The operating systems today use some
approximation of the LRU (least recently used)
algorithm as the LRU itself has not been
completely implemented on any present machine.

 To increase responsiveness, paging systems must
employ better strategies to predict which page will
be needed soon. Such systems will attempt to load
pages into main memory preemptively, before a
program references them.

 Operating systems will need better methods of
page sharing, such that page sharing for regular
data and not only for memory-mapped data can be
achieved.

 If swapping mechanism is to be used for memory
management, then proper measures need to be
taken to avoid redundant sharing of data as much
as possible.

4. MULTIPROCESSOR PROGRAMMING

Now a days usage of more than one processors in a
computing system has become a common occurrence.
Operating systems should have efficient mechanism to
support more than one processors and the ability to schedule
tasks between them. There are many variants of this
basic theme and the definition of multiprocessing may vary
with context.

In a multiprocessing system, all CPUs may be equal, or
some may be reserved for special purposes. A combination
of hardware and OS software design considerations
determine the symmetry or lack of it in a given system. For
example, hardware or software considerations may require
that only one CPU respond to all hardware interrupts,
whereas all other work in the system may be distributed
equally among CPUs; or execution of kernel-mode code
may be restricted to only one processor at a time whereas
user-mode code may be executed in any combination of
processors. Multiprocessing systems are often easier to
design if such restrictions are imposed, but they tend to be
less efficient than systems in which all CPUs are utilized.
Systems that treat all CPUs equally are called Symmetric
Multiprocessing Systems (SMP). In systems where CPUs
are not equal, system resources may be divided in a number

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 411

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

of ways including Asymmetric Multiprocessing Systems
(ASMP), Non-Uniform Memory Access (NUMA)
multiprocessing systems and Clustered Multiprocessing
Systems.

In computing, SMP involves a multiprocessor computer
architecture where two or more identical processors can
connect to a single shared main memory. Most common
multiprocessor systems today use SMP architecture. In case
of multi-core processors, the SMP architecture applies to the
cores, treating them as separate processors. SMP systems
allow any processor to work on any task no matter where the
data for that task is located in the memory. With proper OS
support SMP systems can easily move tasks between
processes to balance the workload efficiently.

Asymmetric multiprocessing varies greatly from the
standard processing model that we see in the personal
computers today. Due to the complexity and unique nature
of this architecture it was not adopted by many vendors
during a brief stint. While SMP treats all of the processing
elements in the system identically, an ASMP system assigns
certain tasks only to certain processors. Although
hardware level ASMP may not be in use, the idea and
logical process is still commonly used in applications that
are multiprocessor intensive. Unlike SMP applications
which run there threads on multiple processors, ASMP
application will run on one processor but outsource smaller
tasks to other processors. The operating systems may also
make use of ASMP architecture for critical tasks like the
tasks that may make use of system files. Operating systems
can dedicate one processor called the Master processor to
implementation of tasks required on the system files while
smaller related tasks may be delegated to other processors
called the Slave Processors. Although the basic architecture
will still be SMP yet for critical tasks the ASMP architecture
may be used.

Modern CPUs operate considerably faster than the main
memory they use. In the early days of computing and data
processing the CPU generally ran slower than its memory.
The performance lines crossed in the 1960s with the advent
of high speed computing. Since then, CPUs increasingly
“starved for data”, have had to stall while they wait for
memory accesses to complete. Limiting the amount of
memory access provides the key to extracting high
performance from a modern day computer. For commodity
processors this means installing an ever increasing amount
of high speed cache memory and very sophisticated
algorithm to avoid cache misses. But dramatic increases in
size of the operating systems make the problem
considerably worse. Now a system can starve several
processors at the same time, notably because only one
processor can access memory at a time. NUMA attempts to
address this problem by providing separate memory for
each processor, avoiding performance hit when several
processors attempt to address the same memory. Of course
not all data ends up confined to a single task, which means
that more than one processor may require the same data. To
handle these cases, NUMA systems include additional
hardware or software to move data between banks. This
operation slows the processors attached to those banks, so
the overall speed increase due to NUMA depends heavily

on the exact nature of tasks that are running. This
architecture can substantially increase the performance but
for that there has to be proper hardware and the operating
system must provide some mechanism to efficiently
schedule the access to multiple processor memory. If
NUMA architecture is implemented successfully both in
the hardware and in the OS level then it could go a long
way in speeding up processing with multiple processors.

The following points highlight the areas of research and
development for efficient multiprocessor programming by
modern day operating systems:

 Although most of the operating systems today
use SMP architecture yet with proper operating
system support SMP systems can move tasks
between processors more freely and thus
balance the workload effectively.

 Operating Systems can implement a hybrid of
SMP and ASMP architectures wherein, while all
the tasks can be delegated using SMP
architecture, the tasks that make use of system
files can make use of ASMP architecture to
implement that part.

 NUMA architecture can be seriously looked upon
during future operating system design such that a
way to integrate this architecture into the system
is reached. If this happens, it could go a long way
in speeding up the processing with multiple
processors.

5. User Interface Design

Let’s start this segment by saying that the future is mobile,
and there is a little dispute about this. Desktop machines
will only be used for very heavy specialized purposes, the
same way trucks are used today. Most of the people will just
own fast-enough mobile, portable devices rather than
desktops. Basically, anything bigger than a 5” screen will be
too much to carry. In time carrying a 10” tablet will seem no
different than the way we today feel about 1981’s
businessman, carrying around the Osborn 1.

In human-computer interaction WIMP stands for
“Windows, Icons, Menus and Pointers”; denoting a style of
interaction using these elements. WIMPs are systems where
a window will run a self-contained program isolated within
that window from other programs running at the same time.
Icons act as shortcuts to the actions to be performed by the
system, Menus are text or icon based selection systems to
select and execute programs or sub-programs and finally,
Pointer is an on-screen symbol that represents the movement
of a physical device to allow the user to select elements on
an output device such as a monitor. User interfaces base on
WIMP are very good at abstracting workspaces, documents
and their actions. Their basic representations as rectangular
regions on 2D flat screens make them a good fit for system
programmers. Generality makes them very suitable for
multi-tasking work environments.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 412

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

However researchers consider this to be a sign of stagnation
in user interface design as the path of least resistance forces
developers to follow a particular way of interaction. There
are applications for which WIMP is not well suited, they
argue, and the lack of technical support increases difficulty
for development of interfaces not based on WIMP style.
This includes any application requiring devices that provide
continuous input signals, showing 3D models or simply
portraying an interaction for which there are no defined
standard widgets. WIMPs are usually pixel-hungry. So
given limited screen real-estate, they can distract attention
from the task at hand. Thus custom interfaces can better
encapsulate workspaces, action and other objects from
specific complex tasks. Interface based on these
considerations now called post-WIMP are making their way
to the general public.

The following points highlight the issues of WIMP from a
touch-GUI perspective:

 Pointers- We cannot have any sort of pointer

indicators when touching the screen.
 Windows- From a touch perspective, Windows are

almost completely useless. Moving, resizing,
minimizing, maximizing, closing are all things that
are just plain too hard to do and only create extra
overhead on the small display screen.

 Menus- Traditional window menus are super useful
things to have in computers. But that said, they are
tiny and hard to manage with fingers and if one
bumps up the size of the fonts more, he might as
well throw away a third of the screen real-estate.

In short, there are just too many fundamental issues with the
WIMP to just tweak. It’s not a matter of size, weight, power
or probability of the devices that matter- the core under-
printing of WIMP based interface is just incompatible with
touch usability and everything is going to need to be re-
written from ground-up. Moreover, since the researchers
and developers now are talking about one operating system
for all the devices, hence this transition from the traditional
WIMP will soon be needed for all major operating systems.

Putting together the entire discussion the following points
highlight the challenges in development of the user interface
for operating systems:

 Since the devices are getting smaller and smaller, a
way has to be found to port the traditional WIMP
applications for these smaller devices.

 Major changes will have to be made to the
operating systems and the applications such that
they can run in both our traditional desktops and
the smaller touch devices (smart-phones and
tablets) such that we may achieve a level where one
operating system could be used in all the devices.
To fully achieve this we will also have to find a
way as to how the WIMP applications could be
used with modern touch devices.

6. CONCLUSION

As the user awareness of technology is increasing so is there
expectations. Hence although operating systems have
progressed a lot, yet still there is a lot of ground to cover in
this field. Operating systems research is a very vast field and
the reason for this is mostly because the hardware is
becoming stronger and faster by the day and hence there is a
race for the operating systems to keep up. The key issues
pointed out in this paper if addressed, will make our
computation even more wonderful than the present.

7. REFERENCES

[1] Galen C. Hunt, James R. Larus, David Tarditi and Ted

Wobber. Brand New OS Research: Challenges and
Opportunities, UNISEX.

[2] Schneider, F.B. Enforceable Security Policies. ACM
Transactions on Information and System Security(TISSEC).

[3] Abraham Silberschatz, Peter Bear Galvin and Gary Gagne.
Operating System Concepts.

[4] C. Kaner and D.L. Pels. Bad Software: What To Do When
Software Fails.

[5] http://www.wikipedia.org/
[6] Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, L. M.

Houston and P. Hanrahan. Brooks for GPUs: stream
computing on graphics hardware. Proc. Of the 2004
SIGGRAPH Conference, pp. 777-786, 2004.

[7] S. Chaki, S. K. Rajamani and J. Rehof. Types as Models:
Model Checking Message Passing Programs. Proc of the 29th
ACM Symposium on Principles of Programming Languages,
pp. 45-57, 2002.

[8] J. DeTreville, Making System Configuration more
Declarative. Proc. Of Hot OSX: The 10th Workshop on Hot
Topics in Operating Systems, June 2005.

Mr. Plawan Kumar Rath is currently perusing his Bachelor’s degree
in BMS Institute of Technology, Department of CSE, Bangalore. He
is in the final year of his Bachelor’s degree and is scheduled to be
associated with IBM India Software Labs after completion of his
bachelor’s degree in summer of 2012. He has a keen interest in
research and development mostly in the field of operating systems
and system softwares.

Mr. Anil G. N. is currently working as Associate Professor in the
Department of CSE in BMS Institute of Technology. He has a vast
teaching experience in the field of Computer Sciences. He has
published a number of papers in National and International
Conferences and Journals and won numerous accolades.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 413

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

