
Using Layer Recurrent Neural Network to Generate
Pseudo Random Number Sequences

Veena Desai 1, Ravindra Patil2, Dandina Rao3

1Gogte Institute of Technology, Belgaum, India

 2Gogte Institute of Technology, Belgaum, India

3Jain College of Engineering, Belgaum, India

Abstract
Pseudo Random Number’s (PRN’s) are required for many
cryptographic applications. This paper proposes a new method
for generating PRN’s using Layer Recurrent Neural Network
(LRNN). The proposed technique generates PRN’s from the
weight matrix obtained from the layer weights of the LRNN.
The LRNN random number generator (RNG) uses a short
keyword as a seed and generates a long sequence as a pseudo
PRN sequence. The number of bits generated in the PRN
sequence depends on the number of neurons in the input layer
of the LRNN. The generated PRN sequence changes, with a
change in the training function of the LRNN .The sequences
generated are a function of the keyword, initial state of
network and the training function. In our implementation the
PRN sequences have been generated using 3 training
functions: 1) Scaled Gradient Descent 2) Levenberg-
Marquartz (TRAINLM) and 3) TRAINBGF. The generated
sequences are tested for randomness using ENT and NIST test
suites. The ENT test can be applied for sequences of small
size. NIST has 16 tests to test random numbers. The LRNN
generated PRN’s pass in 11 tests, show no observations for 4
tests, and fail in 1 test when subjected to NIST .This paper
presents the test results for random number sequence ranging
from 25 bits to 1000 bits, generated using LRNN.

Keywords: PRNG, Layer Recurrent Network, ENT, NIST

1. Introduction

Random number generation plays an important role in
cryptography and software testing. Pseudo-random
number generators are required for the generation of
random numbers to be used for the creation of random
data used in these areas of encryption, hashing and
watermarking.

Pseudo-randomness is fundamental to cryptography and
is essential to achieve any cryptographic function such
as encryption, authentication and identification. A
pseudorandom number generator (PRNG) is a
deterministic algorithm that on input of a short random
seed outputs a (typically much) longer sequence that is
computationally in-distinguishable from a uniformly
chosen random sequence.

Many different methods exist for generating pseudo-
random numbers. Blum-Blum-Shub [1], Mersenne
Twister algorithms [2] etc are widely used random
number generators based on in cryptographic
applications. A new approach of generating random
numbers has also been investigated in [3,4] since neural
networks are highly non-linear mathematical systems.
The authors of [4] use the dynamics of feed forward
neural networks with random orthogonal weight
matrices to generate random numbers. Neuronal
plasticity is used in [5] to generate pseudo-random
numbers.

In section 2 of the paper we discuss the structure of
recurrent neural network, implementation details and
comparison of different training functions. Section 3
provides the implementation details and the algorithm
for generating random numbers. In section 4 we present
and results for generating the pseudo random number
generator and section 5 tabulates the results and
analysis. We present our conclusions in section 6.

2. Background

The dynamic network used for our implementation is the
Layer Recurrent Network (LRN). An earlier simplified
version of this network was introduced by Elman as in
figure 1. The Elman network has only two layers. It uses
a tansig transfer function for the hidden layer and a
purelin transfer function for the output layer. It is trained
using an approximation to the back propagation
algorithm. We generated an Elman network using a input
keyword and a target vector. To create a Elman network
with 10 neurons in the hidden layer the following
command is used, where p is the keyword and t is the
target.
 net = newelm (p,t,10)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 324

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 Elman Network

Fig. 2 Layer Recurrent Network

In the LRN network, there is a feedback loop, with a
single delay, around each layer of the network except for
the last layer. The neweln command generalizes the
Elman network to have an arbitrary number of layers
and to have arbitrary transfer functions in each layer.
The default training function is the gradient-based
algorithms. Figure 2 represents the MATLAB model of
a two-layer LRN.

The recurrent layer can have any number of neurons.
However, as the complexity of the problem grows, more
neurons are needed in the recurrent layer for the network
to do a good job.

3. Implementation

The implementation is performed using MATLAB. A
keyword is used to generate a unique number sequence
p. The target sequence is t=func(p).
 p=func(key);
 Pseq=f (t,p);
 qseq=f(t,q);
 net=newlrn(n,p,t)
The generated layer recurrent network is trained for the
input sequence pseq and target sequence qseq

trainnetwork (pseq, qseq)
The initial weight matrix IWmat for generating the
pseudo random number.

A Layer Recurrent network is generated for the required
number of neurons n and p

newIWmat =abs(IWmat)-mean(IWmat)
PRNG =reshape (newIWmat)

3.1 Training of layer recurrent network

The training function BTF can be any of the
backpropagation training functions such as trainlm,
trainbfg, trainscg, trainbr, etc. The learning function
BLF can be either of the backpropagation learning
functions learngd or learngdm. The performance
function can be any of the differentiable performance
functions such as mse or msereg.

3.2 Selection of Training function

The network was initially trained using TRAINBGF
function using 5 neurons in the hidden layer and 100
epochs. The network size was gradually increased upto
75 neurons. Beyond this size the network did not
converge. Also the time taken to train the network was
found to be considerably large. Similar results were
observed by training the network using TRAINLM
function. Finally the network was trained using
TRAINSCG function .The network converged for sizes
of up to 2000 neurons in the hidden layer. Table 1a, 1b
and 1c help in comparing the time taken for training and
performance of the network using the three training
functions.

4. Results and plots obtained from the
training functions

Figures 3a provides the plot of performance and training
the LRN using trainscg. Figure 3b shows plots of the bit
pattern obtained for 1000 generated bits. Similarly
Figures 4a, 4b, 5a, 5b and 6a, 6b provide plots of
performance and training with TRAINSCG,
TRAINBFG, TRAINLM functions for 75 bits generated.
Table 1 compares the epoch, time, performance and
gradient for each of the above.

Table 1: Comparison of training functions
 TRAINSCG TRAINBFG TRAINLM
Number of
Neurons

75 75 75

Epochs
(Max 100)

100 51 8

Time 0:00:20 3:25:24 0:01:40
Performance 1.33e-05 6.64e-07 1.02e-30

Gradient 0.00587 0.000872 1.19e-14

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 325

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 3a Resulting plot of performance and training state of the LRN with 1000 neurons and trainscg function

Fig. 3b 1000 bits generated using trainscg

 Fig. 4a Resulting plot of performance and training state of the LRN with 75 neurons and trainscg function

 Fig. 4b Response graph after training.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 326

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5a Resulting plot of performance and training state of the LRN with 75 neurons and trainbfg function

Fig. 5b Response graph after training.

Fig. 6a Resulting plot of performance and training state of the LRN with 75 neurons and trainlm function

Fig. 6b Response graph after training.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 327

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. Testing for randomness

The randomness of a sequence is tested standard
software tests. There are several popular test
packages like DIEHARD, NIST test suite, CRYPT
X and ENT. They work similar, and usually
include common tests such as frequency test, long
run test, pattern test, correlation test, and so on.

These tests assign a property to the sequence, and
then test the sequence, comparing with the
properties of a sequence that don't have the
assumed property. To test the randomness of data
generated in this paper, ENT and NIST test
program is used. Additionally the Frequency test is
done which gives the count of 1’s generated.

There are several well known batteries of statistical
tests for random number generators such as the
Diehard test suite [4] developed by Marsaglia, John
Walker’s ENT[5] and Test01[6] designed by
L’Ecuyer and Simard. The most popular is the
NIST statistical test suite[1] developed by the
National Institute of Standards and Technology

 (NIST) as a result of a comprehensive theoretical
and experimental analysis and may be considered
as the state- of-the-art in randomness testing [8] for
cryptographic applications. The test suite has
become a standard stage in assessing the outcome
of random number generators shortly after its
publication. The NIST battery of tests is based on
statistical hypothesis testing and contains a total of
16 statistical tests specially designed to assess the
randomness required for cryptographic applications
(out of which two tests are currently disregarded
because of some problems found by NIST
and other researchers [2]).A hypothesis test is a
procedure for determining if a given assertion is
true, in this case the provided P-values determine
whether or not the tested sequence is random from
the perspective of the selected randomness statistic.
Each statistical test has a relevant randomness
statistic and is formulated to test a null hypothesis
(H0). The null hypothesis under test in case of the
NIST tests is that the sequence being testesd is
random, and the alternative hypothesis (Ha) is that
the tested sequence is not random.Mathematical
methods determine a reference distribution of the
selected statistic under the null hypothesis and a
critical value is selected. Each test derives a
decision based on the comparison between the
critical value and the test statistic value
computed on the sequence being tested and
according to this decision it accepts (test statistic
value < critical value) or rejects (test statistic value
> critical value) the null hypothesis and concludes
on whether the tested generator is or is not
producing random numbers.

5.1 NIST Tests
 The Frequency (Monobit) Test

The frequency test determines whether zero and
one bits appear in the tested sequence with
approximately the same probability. This simple
test can reveal the most obvious deviations from
randomness hence further tests depend on this
result.

 Frequency Test within a Block
The frequency test within a block is a
generalization of the Frequency (Monobit) test,
having the purpose of determining the frequency of
zeros and ones within M-bit blocks and thus
revealing whether zeros and ones are uniformly
distributed throughout the tested sequence.

 Runs Test
In order to determine whether transitions between
zeroes and ones in the sequence appear as often as
expected from a random sequence, the runs test
counts the total number of runs of various lengths.
A run consists of an uninterrupted sequence of
identical bits.

 Longest Run of Ones in a Block Test
In case of the longest run of ones in a block test,
the sequence is processed in M bit blocks with the
aim of determining whether the length of the
longest run of ones in a block is consistent with the
length expected from a random sequence.

 Non-overlapping Template Matching Test
The purpose of this test is to detect generators that
produce too many occurrences of a given non-
periodic pattern by searching for occurrences of
a given m-bit non-periodic pattern.

 Overlapping Template Matching Test
The overlapping template matching test is similar
to the non-overlapping template matching test, but
it extends the search criteria to overlapping
patterns.

 Linear Complexity Test
The purpose of this test is to determine the
linear complexity of the LFSR (Linear Feedback
Shift Register) that could generate the tested
sequence. If the complexity is not sufficiently high,
the sequence is non-random.

 Serial Test
In order to verify the uniformity of templates the
test counts the occurrences of every possible m-bit
overlapping patterns in the sequence. A high level
of uniformity–patterns occur with the same
probability indicates that the sequence is close to
random.

 Approximate Entropy Test
The purpose of the approximate entropy test is to
compare the frequency of overlapping patterns of
two consecutive lengths, m and m+1, against the
expected frequency in a true random sequence.

5.2 ENT and NIST results
The neural networks used in this paper are simple,
easy to implement and faster than other generators.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 328

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

We have used ENT [6] and NIST pseudo-random
number sequence test program on the generated
sequences. For each test, the ENT test suite
program generates entropy, chi-square value,
arithmetic mean value, Monte Carlo value for Pi
and finally Serial Correlation Coefficient.

It is well known that all PRNG’s in spite of good
performance on statistical test suites possess some
weakness. In this regard the neural network used in
this paper possesses potential advantages.
ENT pseudo-random sequence test program output
for a standard generator input (radioactive decay)
file is given below.

 Entropy = 7.980627 bits per character.
 Optimum compression would reduce the

size of this 51768 character file by 0
percent.

 Chi square distribution for 51768 samples
is 1542.26, and randomly would exceed
this value less than 0.01 percent of the
times.

 Arithmetic mean value of data bytes is
125.93 (127.5 = random).

 Monte Carlo value for Pi is 3.169834647
(error 0.90 percent).

 Serial correlation coefficient is 0.004249
(totally uncorrelated = 0.0).

The results of the neural network generator
implemented in this paper for a network with 100
neurons are,

 Entropy = 0.807589 bits per bit.
 Optimum compression would reduce the

size of this 2160 bit file by 19 percent.
 Chi square distribution for 2160 samples

is 550.05, and randomly would exceed this
value less than 0.01 percent of the times.

 Arithmetic mean value of data bits is
0.2477 (0.5 = random).

 Monte Carlo value for Pi is 4.000000000
(error 27.32 percent).

 Serial correlation coefficient is -0.058416
(totally uncorrelated = 0.0).

 Number of 1’s in the sequence of 100 bits
is 51 ie balanced output conditions.

NIST SP800-22 [7] has mentioned 16 tests and
their significance levels are considered as 1% as
well as some of the test need to be adjusting their
parameter settings. The NIST test suite also returns
p-values for its tests (including multiple iterations
of some tests).NIST requires a PRNG pass 16
statistical tests. The tests results are listed below.

6. ENT and NIST tests

Figures 7a. to 7d. provide plots for balanced
output, pi value, arithmetic mean and serial

correlation coefficient using the ENT test.
Comparison between numbers generated using
standard generator and Elman neural network are
provided in these plots.The plots from figure 8a to
8g provide the information for various parameters
using the NIST test conducted on numbers
generated using LRN network. The comparison
between SCG and BFG training functions are
presented in these plots. Table 2 presents ENT Test
results for ELMAN network. Table 3 compares
results with varying LRN network size using
TRAINSCG function. Table 4 provides comparison
of results with varying LRN network size using
TRAINBFG function. Table 5 gives the results of
non-parameterized and parameterized tests with
NIST.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

Number of neurons

B
al

an
ce

d
ou

tp
ut

standard

neural

Fig. 7a Plot of balanced output

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
on

te
 C

ar
lo

 v
al

ue
 f

or
 P

i

Number of neurons

standard

neural

Fig.7b Plot of Pi value

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 329

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ri

th
m

et
ic

 m
ea

n

Number of neurons

standard
neural

Fig.7c Plot of Arithmetic mean

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-0.1

-0.05

0

0.05

0.1

0.15

Se
ri

al
 c

or
re

la
tio

n
C

oe
ff

ic
ie

nt

Number of neurons

standard

neural

Fig. 7d Plot of Serial correlation coefficient

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Arithmetic mean

no of bits

A
rit

hm
et

ic
 m

ea
n

bfg

scg

Fig. 8a Plot of arithmetic mean

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Chi Square Value

no of bits

C
hi

 s
qu

ar
e

V
al

ue

bfg

scg

Fig. 8b Plot of chi-square value

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4
Monte Carlo value for Pi

no of bits

M
on

te
 C

ar
lo

 v
al

ue
 f

or
 P

i

bfg

scg

Fig. 8c Plot of Monte carlo value of Pi

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

18

20
% optimum compression

no of bits

%
 o

pt
im

um
 c

om
pr

es
si

on

bfg

scg

Fig. 8d Plot of % optimum compression

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 330

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

0 500 1000 1500 2000 2500 3000 3500 4000
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
serial corelation coefficient

no ob bits

se
ria

l c
or

el
at

io
n

co
ef

fic
ie

nt

scg

bfg

Fig. 8e Plot of serial correlation coefficient

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500
frequency test(number of ones)

no of bits

no
 o

 f
on

es

bfg

scg

Fig. 8f Frequency test plot

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 Entropy

no of bits

en
tr

op
y

Fig. 8g Entropy plot

Table 2: ENT Test results for ELMAN network

Network size(neurons) 100 200 500 1000 2000

bits generated 200 400 1000 2000 4000

Entropy 0.86616 0.85183 0.85526 0.86862 0.89051

Frequency test 104 211 477 1112 2254

Optimum compression 13% 15% 14% 13% 10%

Chi-Square value 576.56 1363 3103.3 5650.1 9466.5

Arithmetic mean value 0.2880 0.2694 0.2799 0.2899 0.3707

Monte Carlo value for
Pi

4.0000 4.0000 4.0000 4.0000 4.0000

Serial correlation
Coefficient

0.09901 0.05067 0.078348 0.10464 0.15105

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 331

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 3: Comparison of Results with varying LRN network size using TRAINSCG function

Network size

100 200 500 1000 1500 2000

Number of bits
generate d

100 200 500 1000 1500 2000

Frequency test(no
of 1's)

51 101 250 510 744 995

Entropy

0.807589 0.857678 0.85405 0.858015 0.856824 0.856947

Optimum
Compression

19% 14% 14% 14% 14% 14%

Chi-Square value 550.05 608.78 1621.33 3043.06 4602.29 6131.78

Arithmetic mean
value

0.2798 0.2816 0.2778 0.2819 0.2810 0.2811

Monte Carlo value
for Pi

4.000000 4.000000 4.000000 4.000000 4.000000 4.0000000

Serial Correlation
Coefficient

-0.058416 -0.082371 -0.079757 -0.083641 -0.081398 -0.081662

Table 4: Comparison of Results with varying LRN network size using TRAINBFG function
Network Size

5

100 200 500 1000 2000

Number of bits generated 10 200 400 1000 2000 4000

Frequency test(no of 1's) 5 104 211 477 1112 2254

Entropy

0.85520 0.86616 0.85183 0.85526 0.86862 0.89051

Optimum
Compression

14% 13% 15% 14% 13% 10%

Chi-Square value 32.60 576.56 1363 3103.34 5650.11 9466.56

Arithmetic mean value 0.2798 0.2880 0.2694 0.2799 0.2899 0.37077

Monte Carlo value for Pi 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000

Serial Correlation
Coefficient

-0.06347 -0.09901 -0.05067 -0.078348 -0.10464 -
0.15105

Table 5: Results of non-parameterized and parameterized tests with NIST

Network
Size

Non-
parameterized
test selection

P-Value Result
Network
Size

parameterized
test selection

P-Value Result

100
Cumulative
Sum

 0.115559 SUCCESS 1500

Overlapping
(Periodic)
Template
Matching

0.886589 SUCCESS

400 Runs 0.831359 SUCCESS 500

Non-
overlapping
(Aperiodic)
Template

1.000000 SUCCESS

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 332

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Matching

10000
Longest Run
of Ones in a
Block

---------- ---------- 2000 Serial

P1 =
0.498961
P2 =
0.498531

SUCCESS

1500 Rank 0.039105 SUCCESS 200
Block
Frequency

0.000001

FAILURE

100
Discrete
Fourier
Transform

 0.123812 SUCCESS 500
Approximate
Entropy

1.000000 SUCCESS

10000
Random
Excursions

----------- 500
Linear
Complexity

0.985610 SUCCESS

10000
Random
Excursions
Variant

------------ ----------- 38450 Universal

-

100
Lempel-Ziv
Complexity

1.000000

SUCCESS

100

Frequency 0.057780 SUCCESS

6. Conclusions

The conjugate gradient algorithms, in particular
trainscg, seem to perform well over a wide variety
of problems, particularly for networks with a large
number of weights. The SCG algorithm is almost
as fast as the LM algorithm on function
approximation problems (faster for large
networks). The conjugate gradient algorithms have
relatively modest memory requirements.

From our experiments we conclude that, the neural
networks with moderate sizes of 200 to 500
neurons produce satisfactory results for Optimum
compression, Serial Correlation Coefficient and
Frequency test. The Monte Carlo value for Pi
remains constant at 4.00000 irrespective of the
changes in the size of the network. Optimum
Compression is consistent for data as large as 2
million bits. The Arithmetic mean value increases
with the increase in the size of the network .So the
size of the network should be chosen for optimum
values of Arithmetic mean and Frequency test.
Because of computational limitations increasing the
network size beyond 2000 neurons was not
possible.

TRAINSCG requires less memory for computation
compared to TRAINBFG and TRAINLM.

After performing the 16 tests of NIST test suite we
concluded that, some tests like Random

Excursions, Random Excursions Variant and
Universal tests are not successful because they
require 2000 bits or more for satisfactory operation
and our implementations generate a maximum of
2000 bits.

References

[1] Yishai M. Elyada and David Horn: “ Can dynamic

neural filters produce pseudo- random sequences?”,
Artificial Neural Networks: Biological Inspirations –
ICANN 2005.

[2] Blum, Blum, and Shub, “A simple unpredictable
pseudo random number generator”, SIAM Journal
on Computing, 15(2):364–383, 1986.

[3] Matsumoto and Nishimura, Mersenne twister: “A
623-dimensionally equidis-tributed uniform pseudo-
random number generator”. ACM Transactions on
Modeling and Computer Simulation, 8(1):3–30,
1998.

[4] James M. Hughes: “Pseudo-random Number
Generation Using Binary Recurrent Neural
Networks”, A Technical Report submitted to
Kalamazoo College 2007.

[5] Abdi, “A neural network primer”, Journal of
Biological Systems, 1994.

[6] J.Walker,ENTTest suite.
http://www.fourmilab.ch/random/, Oct., 1998.

[7] Rukhin, Soto, Nechvatal, Smid, Barker, Leigh,
Levenson, Vangel, Banks, Heckert,Dray, and Vo.
“A statistical test suite for random and
pseudorandom number generators for cryptographic
applications”, NIST Special Publication 800-22,
2001.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 333

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[8] Oded Goldreich and Leonid A. Levin: “ A hard-
core predicate for all one-way functions”,
Proceedings of the twenty-first annual ACM
symposium on theory of computing, 1989.

[9] Pascal Junod: “Cryptographic secure pseudo-random
bits generation”, The blum- blum-shub generator.
Unpublished, 1999.

[10] Pierre L’Ecuyer, “Random number generation in
Handbook of Computational Statistics”, 2004.

Veena Desai, received her B.E in
Electronics and Communication
Engineering form Karnatak
University, Dharwad (1991), M.Tech
in Computer Network Engineering
from Visvesvaraya Technological
University, Belgaum. She has
published several papers in national

and international conferences. She is presently working as
Associate Professor at Gogte Institute of Technology. She
has research interest in cryptography, network security
and neural networks. She is a graduate student member
of IEEE, member ISTE, IETE, CSI, ACM and CRSI.

Ravindra Patil (b. June 06, 1987)
received his B.E in Computer
Science (2009), M.Tech in Digital
Communication and Networking
(2011) from Visvesvaraya
Technological University, Belgaum.

Dr. D.H. Rao has done his Ph.D. in
Engineering from University of
Saskatchewan, Canada and Ph.D.
in Management from University of
South Carolina, USA. He has more
than 100 research publications in
proceedings of international
conferences and reputed journals.
He has co-authored and edited 3

books. He has traveled extensively across the globe and
has chaired and delivered keynote addresses in many
international conferences. He has more than 3 decades of
academic and research experience. He is presently
working as Principal and Director of Jain College of
Engineering, Belgaum, India. Prior to joining Jain College
of Engineering, he was the Principal of Gogte Institute of
Technology, Belgaum, India. His research interests
include artificial intelligence, neural networks and context-
aware computing. He is a senior member of IEEE and
fellow of IETE. He is also a certified NLP (Neuro-Linguistic
Programming) Trainer.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 334

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

