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Abstract 
Pseudo Random Number’s (PRN’s) are required for many 
cryptographic applications. This paper proposes a new method 
for generating PRN’s using Layer Recurrent Neural Network 
(LRNN). The proposed technique generates PRN’s from the 
weight matrix obtained from the layer weights of the LRNN. 
The LRNN random number generator (RNG) uses a short 
keyword as a seed and generates a long sequence as a pseudo 
PRN sequence. The number of bits generated in the PRN 
sequence depends on the number of neurons in the input layer 
of the LRNN. The generated PRN sequence changes, with a 
change in the training function of the LRNN .The sequences 
generated are a function of the keyword, initial state of 
network and the training function. In our implementation the 
PRN sequences have been generated using 3 training 
functions: 1) Scaled Gradient Descent 2) Levenberg-
Marquartz (TRAINLM) and 3) TRAINBGF. The generated 
sequences are tested for randomness using ENT and NIST test 
suites. The ENT test can be applied for sequences of small 
size. NIST has 16 tests to test random numbers. The LRNN 
generated PRN’s pass in 11 tests, show  no observations for 4 
tests, and fail in 1 test when subjected to NIST .This paper 
presents the test results for random number sequence ranging 
from 25 bits to 1000 bits, generated using LRNN.  
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1. Introduction 

Random number generation plays an important role in 
cryptography and software testing. Pseudo-random 
number generators are required for the generation of 
random numbers to be used for the creation of random 
data used in these areas of encryption, hashing and 
watermarking.  
 
Pseudo-randomness is fundamental to cryptography and 
is essential to achieve any cryptographic function such 
as encryption, authentication and identification. A 
pseudorandom number generator (PRNG) is a 
deterministic algorithm that on input of a short random 
seed outputs a (typically much) longer sequence that is 
computationally in-distinguishable from a uniformly 
chosen random sequence. 

Many different methods exist for generating pseudo-
random numbers. Blum-Blum-Shub [1], Mersenne 
Twister algorithms [2] etc are widely used random 
number generators based on in cryptographic 
applications. A new approach of generating random 
numbers has also been investigated in [3,4] since neural 
networks are highly non-linear mathematical systems. 
The authors of [4] use the dynamics of feed forward 
neural networks with random orthogonal weight 
matrices to generate random numbers. Neuronal 
plasticity is used in [5] to generate pseudo-random 
numbers. 
 
In section 2 of the paper we discuss the structure of 
recurrent neural network, implementation details and 
comparison of different training functions. Section 3 
provides the implementation details and the algorithm 
for generating random numbers. In section 4 we present 
and results for generating the pseudo random number 
generator and section 5 tabulates the results and 
analysis. We present our conclusions in section 6. 

2. Background  

The dynamic network used for our implementation is the 
Layer Recurrent Network (LRN). An earlier simplified 
version of this network was introduced by Elman as in 
figure 1. The Elman network has only two layers. It uses 
a tansig transfer function for the hidden layer and a 
purelin transfer function for the output layer. It is trained 
using an approximation to the back propagation 
algorithm. We generated an Elman network using a input 
keyword and a target vector. To create a Elman network 
with 10 neurons in the hidden layer the following 
command is used, where p is the keyword and t is the 
target. 
 net = newelm (p,t,10) 
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Fig. 1 Elman Network 

Fig. 2 Layer Recurrent Network 

In the LRN network, there is a feedback loop, with a 
single delay, around each layer of the network except for 
the last layer. The neweln command generalizes the 
Elman network to have an arbitrary number of layers 
and to have arbitrary transfer functions in each layer. 
The default training function is the gradient-based 
algorithms. Figure 2 represents the MATLAB model of 
a two-layer LRN. 
 
The recurrent layer can have any number of neurons. 
However, as the complexity of the problem grows, more 
neurons are needed in the recurrent layer for the network 
to do a good job. 

3. Implementation 

The implementation is performed using MATLAB. A 
keyword is used to generate a unique number sequence 
p. The target sequence is t=func(p). 
 p=func(key); 
 Pseq=f (t,p);  
 qseq=f(t,q); 
 net=newlrn(n,p,t) 
The generated layer recurrent network is trained for the 
input sequence pseq and target sequence qseq 

trainnetwork (pseq, qseq) 
The initial weight matrix IWmat for generating the 
pseudo random number. 

A Layer Recurrent network is generated for the required 
number of neurons n and p  

newIWmat =abs(IWmat)-mean(IWmat) 
PRNG =reshape (newIWmat)  

3.1 Training of layer recurrent network 

The training function BTF can be any of the 
backpropagation training functions such as trainlm,  
trainbfg, trainscg, trainbr, etc. The learning function 
BLF can be either of the backpropagation learning 
functions learngd or learngdm. The performance 
function can be any of the differentiable performance 
functions such as mse or msereg. 

3.2 Selection of Training function 

The network was initially trained using TRAINBGF 
function using 5 neurons in the hidden layer and 100 
epochs. The network size was gradually increased upto 
75 neurons. Beyond this size the network did not 
converge. Also the time taken to train the network was 
found to be considerably large. Similar results were 
observed by training the network using TRAINLM 
function. Finally the network was trained using 
TRAINSCG function .The network converged for sizes 
of up to 2000 neurons in the hidden layer. Table 1a, 1b 
and 1c help in comparing the time taken for training and 
performance of the network using the three training 
functions. 

4. Results and plots obtained from the 
training functions 

Figures 3a provides the plot of performance and training 
the LRN using trainscg. Figure 3b shows plots of the bit 
pattern obtained for 1000 generated bits. Similarly 
Figures 4a, 4b, 5a, 5b and 6a, 6b provide plots of 
performance and training with TRAINSCG, 
TRAINBFG, TRAINLM functions for 75 bits generated. 
Table 1 compares the epoch, time, performance and 
gradient for each of the above.  
 

Table 1: Comparison of training functions 
 TRAINSCG TRAINBFG TRAINLM 
Number of 
Neurons 

75 75 75 

Epochs    
(Max 100) 

100 51 8 

Time 0:00:20 3:25:24 0:01:40 
Performance 1.33e-05 6.64e-07 1.02e-30

Gradient 0.00587 0.000872 1.19e-14
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Fig. 3a Resulting plot of performance and training state of the LRN with 1000 neurons and trainscg function  

Fig. 3b 1000 bits generated using trainscg 

  Fig. 4a Resulting plot of performance and training state of the LRN with 75 neurons and trainscg function  

  Fig. 4b  Response graph after training. 
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Fig. 5a Resulting plot of performance and training state of the LRN with 75 neurons and trainbfg function  

Fig. 5b Response graph after training. 

Fig. 6a Resulting plot of performance and training state of the LRN with 75 neurons and trainlm function  

Fig. 6b Response graph after training. 
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5. Testing for randomness 

The randomness of a sequence is tested standard 
software tests. There are several popular test 
packages like DIEHARD, NIST test suite, CRYPT 
X and ENT. They work similar, and usually 
include common tests such as frequency test, long 
run test, pattern test, correlation test, and so on.  
 
These tests assign a property to the sequence, and 
then test the sequence, comparing with the 
properties of a sequence that don't have the 
assumed property. To test the randomness of data 
generated in this paper, ENT and NIST test 
program is used. Additionally the Frequency test is 
done which gives the count of 1’s generated. 
 
There are several well known batteries of statistical 
tests for random number generators such as the 
Diehard test suite [4] developed by Marsaglia, John 
Walker’s ENT[5] and Test01[6] designed by 
L’Ecuyer and Simard. The most popular is the 
NIST statistical test suite[1] developed by the 
National Institute of Standards and Technology  
 
 (NIST) as a result of a comprehensive theoretical 
and experimental analysis and may be considered 
as the state- of-the-art in randomness testing [8] for 
cryptographic applications. The test suite has 
become a standard stage in assessing the outcome 
of random number generators shortly after its 
publication. The NIST battery of tests is based on 
statistical hypothesis testing and contains a total of 
16 statistical tests specially designed to assess the 
randomness required for cryptographic applications 
(out of which two tests are currently disregarded 
because   of   some   problems   found   by   NIST   
and   other researchers [2]).A hypothesis test is a 
procedure for determining if a given assertion is 
true, in this case the provided P-values determine 
whether or not the tested sequence is random from 
the perspective of the selected randomness statistic. 
Each statistical test has a relevant randomness 
statistic and is formulated to test a null hypothesis 
(H0). The null hypothesis under test in case of the 
NIST tests is that the sequence being testesd is 
random, and the alternative hypothesis (Ha) is that 
the tested sequence is not random.Mathematical 
methods determine a reference distribution of the 
selected statistic under the null hypothesis and a 
critical value is selected. Each test derives a 
decision based on the comparison  between  the  
critical  value  and  the  test  statistic value 
computed on the sequence being tested and 
according to this decision it accepts (test statistic 
value < critical value) or rejects (test statistic value 
> critical value) the null hypothesis and  concludes 
on whether  the  tested  generator  is or  is not 
producing  random  numbers. 

5.1 NIST  Tests 
 The Frequency (Monobit) Test 

The frequency test determines whether zero and 
one bits appear in the tested sequence with 
approximately the same probability. This simple 
test can reveal the most obvious deviations from 
randomness hence further tests depend on this 
result. 

 Frequency Test within a Block 
The frequency test within a block is a 
generalization of the Frequency (Monobit) test, 
having the purpose of determining the frequency of 
zeros and ones within M-bit blocks and thus 
revealing whether zeros and ones are uniformly 
distributed throughout the tested sequence. 

 Runs Test 
In order to determine whether transitions between 
zeroes and ones in the sequence appear as often as 
expected from a random sequence, the runs test 
counts the total number of runs of various lengths. 
A run consists of an uninterrupted sequence of 
identical bits. 

 Longest Run of Ones in a Block Test 
In case of the longest run of ones in a block test, 
the sequence is processed in M bit blocks with the 
aim of determining whether the length of the 
longest run of ones in a block is consistent with the 
length expected from a random sequence. 

 Non-overlapping Template Matching Test 
The purpose of this test is to detect generators that 
produce too many occurrences of a given non-
periodic pattern by searching  for  occurrences  of  
a  given  m-bit  non-periodic pattern. 

 Overlapping Template Matching Test 
The overlapping template matching test is similar 
to the non-overlapping template matching test, but 
it extends the search criteria to overlapping 
patterns. 

 Linear Complexity Test 
The  purpose  of  this  test  is  to  determine  the  
linear complexity of the LFSR (Linear Feedback 
Shift Register) that could generate the tested 
sequence. If the complexity is not sufficiently high, 
the sequence is non-random. 

 Serial Test 
In order to verify the uniformity of templates the 
test counts the occurrences of every possible m-bit 
overlapping patterns in the sequence. A high level 
of uniformity–patterns occur with the same 
probability indicates that the sequence is close to 
random. 

 Approximate Entropy Test 
The purpose of the approximate entropy test is to 
compare the frequency of overlapping patterns of 
two consecutive lengths, m and m+1, against the 
expected frequency in a true random sequence. 
 
5.2 ENT and NIST results 
The neural networks used in this paper are simple, 
easy to implement and faster than other generators. 
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We have used ENT [6] and NIST pseudo-random 
number sequence test program on the generated 
sequences. For each test, the ENT test suite 
program generates entropy, chi-square value, 
arithmetic mean value, Monte Carlo value for Pi 
and finally Serial Correlation Coefficient. 
 
It is well known that all PRNG’s in spite of good 
performance on statistical test suites possess some 
weakness. In this regard the neural network used in 
this paper possesses potential advantages. 
ENT pseudo-random sequence test program output 
for a standard generator input (radioactive decay) 
file is given below. 

 Entropy = 7.980627 bits per character. 
 Optimum compression would reduce the 

size of this 51768 character file by 0 
percent. 

 Chi square distribution for 51768 samples 
is 1542.26, and randomly would exceed 
this value less than 0.01 percent of the 
times. 

 Arithmetic mean value of data bytes is 
125.93 (127.5 = random). 

 Monte Carlo value for Pi is 3.169834647 
(error 0.90 percent). 

 Serial correlation coefficient is 0.004249 
(totally uncorrelated = 0.0). 

 
The results of the neural network generator 
implemented in this paper for a network with 100 
neurons are, 

 Entropy = 0.807589 bits per bit. 
 Optimum compression would reduce the 

size of this 2160 bit file by 19 percent.                
 Chi square distribution for 2160 samples 

is 550.05, and randomly would exceed this 
value less than 0.01 percent of the times. 

 Arithmetic mean value of data bits is 
0.2477 (0.5 = random). 

 Monte Carlo value for Pi is 4.000000000 
(error 27.32 percent). 

 Serial correlation coefficient is -0.058416 
(totally uncorrelated = 0.0). 

 Number of 1’s in the sequence of 100 bits 
is 51 ie balanced output conditions. 

 
NIST SP800-22 [7] has mentioned 16 tests and 
their significance levels are considered as 1% as 
well as some of the test need to be adjusting their 
parameter settings. The NIST test suite also returns 
p-values for its tests (including multiple iterations 
of some tests).NIST requires a PRNG pass 16 
statistical tests. The tests results are listed below. 

6. ENT and NIST tests 

Figures 7a. to 7d.  provide plots for balanced 
output, pi value, arithmetic mean and serial 

correlation coefficient using the ENT test. 
Comparison between numbers generated using 
standard generator and Elman neural network  are 
provided in these plots.The  plots from figure 8a to 
8g  provide the information for various parameters 
using the NIST test  conducted on numbers 
generated using LRN network. The comparison 
between SCG and BFG training functions are 
presented in these plots. Table 2 presents ENT Test 
results for ELMAN network. Table 3 compares 
results with varying LRN network size using 
TRAINSCG function. Table 4 provides comparison 
of results with varying LRN network size using 
TRAINBFG function. Table 5 gives the results of 
non-parameterized and parameterized tests with 
NIST. 
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Table 2: ENT Test results for ELMAN network 

Network size(neurons) 100 200 500 1000 2000 

bits generated 200 400 1000 2000 4000 

Entropy 0.86616 0.85183 0.85526 0.86862 0.89051 

Frequency test 104 211 477 1112 2254 

Optimum compression 13% 15% 14% 13% 10% 

Chi-Square value 576.56 1363 3103.3 5650.1 9466.5 

Arithmetic mean value 0.2880 0.2694 0.2799 0.2899 0.3707 

Monte Carlo value for 
Pi 

4.0000 4.0000 4.0000 4.0000 4.0000 

Serial correlation 
Coefficient 

0.09901 0.05067 0.078348 0.10464 0.15105 
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Table 3: Comparison of Results with varying LRN network size using TRAINSCG function 

Network  size  
                

100 200 500 1000 1500 2000 

Number of  bits 
generate d 

100 200 500 1000 1500 2000 

Frequency test(no 
of 1's) 

51 101 250 510 744 995 

Entropy 
 

0.807589 0.857678 0.85405 0.858015 0.856824 0.856947 

Optimum  
Compression 

19% 14% 14% 14% 14% 14% 

Chi-Square value 550.05 608.78 1621.33 3043.06 4602.29 6131.78 

Arithmetic mean 
value 

0.2798 0.2816 0.2778 0.2819 0.2810 0.2811 

Monte Carlo value 
for Pi 

4.000000 4.000000 4.000000 4.000000 4.000000 4.0000000 

Serial Correlation 
Coefficient 

-0.058416 -0.082371 -0.079757 -0.083641 -0.081398 -0.081662 

Table 4: Comparison of Results with varying LRN network size using TRAINBFG function 
Network Size 
 
 

5 
 

100 200 500 1000 2000 

Number of bits generated 10 200 400 1000 2000 4000 

Frequency test(no of 1's) 5 104 211 477 1112 2254 

Entropy 
 

0.85520 0.86616 0.85183 0.85526 0.86862 0.89051 

Optimum  
Compression 

14% 13% 15% 14% 13% 10% 

Chi-Square value 32.60 576.56 1363 3103.34 5650.11 9466.56 

Arithmetic mean value 0.2798 0.2880 0.2694 0.2799 0.2899 0.37077 

Monte Carlo value for Pi 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000 

Serial Correlation 
Coefficient 

-0.06347  -0.09901 -0.05067 -0.078348 -0.10464 -
0.15105 

 

Table 5: Results of non-parameterized and parameterized tests with NIST 

Network 
Size 
 

Non-
parameterized 
test selection 

P-Value Result 
Network 
Size 
 

parameterized 
test selection 

P-Value Result 

100 
Cumulative 
Sum 

 0.115559 SUCCESS 1500 

Overlapping 
(Periodic) 
Template 
Matching 
 

0.886589 SUCCESS 

400 Runs  0.831359 SUCCESS 500 

Non-
overlapping 
(Aperiodic) 
Template 

1.000000 SUCCESS 
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Matching 
 

10000 
Longest Run 
of Ones in a 
Block 

---------- ---------- 2000 Serial 

P1 = 
0.498961 
P2 = 
0.498531 

SUCCESS 

1500 Rank  0.039105 SUCCESS 200 
Block 
Frequency 

0.000001 
 

FAILURE 

100 
Discrete 
Fourier 
Transform 

 0.123812 SUCCESS 500 
Approximate 
Entropy 
 

1.000000 SUCCESS 

10000 
Random 
Excursions 

------------ 
 

----------- 500 
Linear 
Complexity 
 

0.985610 SUCCESS 

10000 
Random 
Excursions 
Variant 

------------ ----------- 38450 Universal 
 -----------
- 

------------- 

100 
Lempel-Ziv 
Complexity 

        
1.000000 
 

SUCCESS     

100 
 

Frequency  0.057780 SUCCESS     

6. Conclusions 

The conjugate gradient algorithms, in particular 
trainscg, seem to perform well over a wide variety 
of problems, particularly for networks with a large 
number of weights. The SCG algorithm is almost 
as fast as the LM algorithm on function 
approximation problems (faster for large 
networks). The conjugate gradient algorithms have 
relatively modest memory requirements. 
 
From our experiments we conclude that, the neural 
networks with moderate sizes of 200 to 500 
neurons produce satisfactory results for Optimum 
compression, Serial Correlation Coefficient and 
Frequency test. The Monte Carlo value for Pi 
remains constant at 4.00000 irrespective of the 
changes in the size of the network. Optimum 
Compression is consistent for data as large as 2 
million bits. The Arithmetic mean value increases 
with the increase in the size of the network .So the 
size of the network should be chosen for optimum 
values of Arithmetic mean and Frequency test. 
Because of computational limitations increasing the 
network size beyond 2000 neurons was not 
possible.  
 
TRAINSCG requires less memory for computation 
compared to TRAINBFG and TRAINLM. 
 
After performing the 16 tests of NIST test suite we 
concluded that, some tests like Random  

 
Excursions, Random Excursions Variant and 
Universal tests are not successful because they 
require 2000 bits or more for satisfactory operation 
and our implementations generate a maximum of 
2000 bits. 
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