
Efficient Design and Implementation of DFA Based Pattern
Matching on Hardware

Aakanksha Pandey1, Dr. Nilay Khare2 and Akhtar Rasool3

 1 M Tech Information Security, Maulana Azad National Institute of Technology
Bhopal, Madhya Pradesh 462003, India

2 Faculty of Computer Science Engineering, Maulana Azad National Institute of Technology
Bhopal, Madhya Pradesh 462003, India

3 Faculty of Computer Science Engineering, Maulana Azad National Institute of Technology
Bhopal, Madhya Pradesh 462003, India

Abstract
Pattern matching is a crucial task in several critical network
services such as intrusion detection. In this paper we present an
efficient implementation of the DFA with optimized area and
optimized memory by the introduction of state minimization
algorithm. By using minimized DFA the clock frequency reduces
to 40% of the original and the area also reduces to 30%. This
optimized architecture of DFA is simulated and synthesized using
VHDL on the Xilinx ISE 12.4..
Keywords: String Matching, DFA, VHDL.

1. Introduction

With the increased amount of data transferred by network
the amount of malicious packet also increased therefore it
is necessary to protect the network against malicious
attack. Intrusion Detection Systems (IDS) are emerging as
one of the most promising way of providing protection to
systems on the network against these malicious attacks.
Intrusion Detection System continuously monitors the
network traffic for suspicious pattern and informs the
administrator to take proper action. String matching is the
heart of IDS. String matching matches each incoming
packet against some stored patterns and identify the
suspicious activity. The pattern matching can be
implemented in both software and hardware. The main
motivation of implementing it into the hardware is the
performance gap. Hardware provides efficient and flexible
way of implementation. FPGA (field Programmable Gate
Array) provides flexibility and FPGA based pattern
matching increase the performance of software based
system by 600x for large patterns.

A deterministic finite automaton (DFA) is a simple
language recognition device. It can be seen as a machine

working to give an indication about strings which are
given

in input or it can be given a mathematical definition and
provide string matching. Most of the papers deal with the
string matching but none of them was able to present a
method which is fast as well as having optimized area .The
main problem of string matching is the area efficiency and
memory optimization. This paper deals with the use of
minimized DFA for pattern matching with reduced
memory requirement and optimized area. Our method used
as a optimization that reduce the number of transition,
memory size and area in DFA.

The rest of the paper is organized as follows section 1 is
the introduction part section 2 describe the related work in
this field and section 3 presents the background
information of the work, next section 4 deals with the
implementation and result and last section 5 is the
conclusion part.

2. Related Work

In the past few years numerous hardware based pattern
matching solution have been proposed. The main
techniques are CAM based architecture [5,9,12].This
architecture uses discrete comparator results higher
throughput with increased area and low efficiency, other
technique is hash function[2,6,11,12] that is used to
compress the string set find probable match and reduce the
total number of comparison , other one is regular
expression and finite automata based pattern matching
[1,2,3,4,5,11,13] results low throughput with increase the
area of implementation .the main aim of this paper is to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 286

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

reduce the area of implementation and resource used by
applying the state minimization algorithm.

Ioannis et al[10] has given the CAM based architecture
uses discrete comparator for pattern matching in which the
frequency of the pattern matched get increased but the
comparator required to implement the model increases
with number of patterns so they uses decoded CAM
architecture for better performance and to reduce area
density and pipelined CAM to increase processing speed
they conclude that pipelined DCAM is the best choice for
hardware implementation of pattern matching.

Recently Dhanpriya et al[11] have designed word split
hash algorithm in which on the basis of sub hash the
pattern is matched .So the malicious packet is detected at
the initial stage if so. This architecture reduces the total
number of comparison and also reduces the execution
time.

Sidhu and Prasanna[14] mapped the NFA into an FPGA
results the modest throughput with large area so
Karuppiah and Rajaram[1] recently mapped the regular
expression into DFA which reduces the number of states
used results the area efficiency.

3. Background

3.1 Regular Expression

It is the most common way to represent the pattern to
match. Full regular expressions are composed of two types
of characters .The special characters (like the * from the
filename analogy) are called metacharacters, while
everything else are called literal. Literal text acting as the
words and metacharacters as the grammar. The words are
combined with grammar according to a set of rules to
create an expression which generate patterns. Some
metacharacters are *,+,?,|,Repetition is specified with *,
for
zero or more, +, for one or more, and ?, for zero or one,
Alternation is specified with |. In regular expression if Σ is
an alphabet, then Σ+ denotes the set of all finite strings of
symbols in Σ. Any subset of Σ+ is a language over
Σ.Example of regular expression is

{^ (yes|YES|Yes)$}

This matches exactly “yes”, “Yes”, or “YES”. Regular
expressions have been used in a variety of practical
applications to specify regular languages in a perspicuous
way. The problem of deciding whether a given string
belongs to the language denoted by a particular regular

expression can be implemented efficiently using finite
automata. A regular expression is used for pattern
matching that matches one or more string of characters.
Regular expression is generated for every string in the rule
set and nondeterministic / deterministic finite automata are
generated that examines the one byte input at a time.
3.2 Nondeterministic Finite Automata

An NFA is represented formally by a 5-tuple, (Q, Σ, Δ, q0,
F), consisting of a finite set of states Q ,a finite set of input
symbols Σ, a transition relation Δ : Q × Σ → P(Q),an
initial
(or start) state q0 ∈ Q ,a set of states F distinguished as
accepting (or final) states F ⊆ Q. Here, P(Q) denotes the
power set of Q. Let w = a1a2 ... an be a word over the
alphabet Σ. The automaton M accepts the word w if a
sequence of states, r0,r1, ..., rn, exists in Q with the
following conditions:r0 = q0,ri+1 ∈ Δ(ri, ai+1), for i = 0,
..., n−1,rn ∈ F.

3.3 Deterministic Finite Automata

A deterministic finite automata is similar to the Non
Deterministic finite automata the only difference is in
transition function (δ : Q × Σ → Q) where Q is the only
one state instead of power set of Q. Let w = a1a2 ... an be
a
string over the alphabet Σ. The automata M accepts the
string w if a sequence of states, r0,r1, ..., rn, exists in Q
with the following conditions:r0 = q0,ri+1 = δ(ri, ai+1)(
for i = 0,..., n−1)and rn ∈ F.

DFA differ substantially from NFA in the way they
process data.An essential property of DFA is that at any
given point od time only one state is active ie for each
input symbol a single state needs to be processed .In
contrast , an NFA can have multiple active states at the
same time which all need to be processed when the next
input symbol is read.

3.4 State minimization Algorithm

Algorithm for Minimizing Number of States in DFA:
1. Remove states that are not reachable.
2. Group all non-final states together as indistinguishable
3. Group all final states together as indistinguishable
4. Repeat till no more states are distinguishable
(a) Apply symbol to a group and split group if states are
Distinguishable

A state s1∈Q is said to be inaccessible or unreachable if
there exists no string
w in Σ* such that δ(s,w)=s1(s1 ∉ (s2|w ∈ Σ*,δ (s1,w)=s2})

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 287

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Two states s1 and s2 are indistinguishable if for all w ∈Σ*
δ (s2,w) ∈ F) ⇒ δ*(s1,w) ∈ F
δ* (s1,w) ∉ F) ⇒ (s2,w) ∉ F

4.Implementation and Results

The state machine bubble diagram in the below fig 1
shows
the operation of a four-state machine that reacts to a single
input and matches all the patterns having at least one a.

Fig 1 DFA1 for the pattern having at least one a.

The set of literals are Σ=(a,b),Q=(0,1,2,3),q0=(0),F=(1).
As you can see in fig 1 DFA1 have only one unreachable
state ie state1 since there is no such state from where
state3 can be reached and state (0,2) is equivalent or
indistinguishable to state(0) so state(0) can be merge and
can call it as state(0,2). As you can see from the schematic
fig 2 of DFA1, XST has used two flip flops for
implementing the state machine and from Table 1 we can
see that this schematic needs 3 macrocels,4 product term,4
function block,2 registers and 5 pins.

Fig2 technology schematic1 of the DFA1 .

After applying the state minimization algorithm to the fig
1
the minimized DFA is DFA2(fig3).

Fig 3:DFA2,minimized DFA of fig1.

In fig 3 The set of literals are
Σ=(a,b),Q=((0,2),1),q0=(0,2),F=(1). As you can see that
state 3 has been removed because this was the only
unreachable state and indistinguishable states are also
combined and form one state (0,2) instead of two different
state 0 and 2. The technology schematic is shown in fig 4.

Fig4 technology schematic2 of the DFA2.

As you can see from the schematic of DFA, XST has used
one flip flop for implementing the state machine whereas
the schematic of DFA1 require 2 flip flops. And the other
resource summary of the technology schematic as we
cansee in table 2 the macrocels required is only 1 ,product
term is 2,the functional blocks are 3,registers used is 1 and
the total number of pins required are 5 .

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 288

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table1:Resource summary of DFA and Minimized DFA.

Comparing the results of resources of DFA1 and DFA2 we
can see that the macrocels required is 75% less for
minimized DFA, product term used is 50 % less, Function
block required are 5%less ,registers used are 50 % less and
pins used are is same as the original DFA so overall we
can conclude that the total area is very less as compare to
the original DFA.

4.1 Simulation Result

Fig 5 presents the simulation result for pattern “bba” and
fig 6 is the simulated waveform for pattern”bbabb”.The
graph can be easily interpreted.The first ccolumn shows
the signal names it also shows the mode(direction)of the
signals(the inward arrow shows the input and the outward
arrow shows the output).the second column has the value
of each signal in the position where the vertical cursor is
placed(in fig 5 the cursor is at 710 ns and in this position
the value of the output signal is 1 and all other are 0
similarly if fig 6 the cursor is at position 700 ns and in this
position the value of the input signal b and output signal is
1 and all other are 0.The third column shows the
simulation proper. The simulation result is same for the
DFA1 and DFA2 .

Fig5:Simulated Waveform of pattern “bba”

Fig6:Simulated Waveform of pattern “bbabb”

4.2 Performance Analysis

Table 2 presents the performance summary with the
comparison of Deterministic Finite Automata and
improvement of the DFA with state minimization. We can
see the difference of different clock period difference of
DFA and minimized DFA is 6.5 ns,the clock frequency is
46.6 Mz high for the minimized DFA,6.5 ns more clock to
setup time required for minimized DFA,to simulate the
apttren “bba ” DFA1 it require 4.39 ns and minimized
DFA require only 3.10 similarly memory usage for the
same pattern is also less in case of minimized DFA.

-Analysis- DFA Minimized
DFA

Min clock period 15.50
ns

9 ns

Max clock frequency 64.15
6Mz

111.11Mz

Clock to setup 15.50
ns

9 ns

CPU time to
completion(for “bba”)

4.39
sec

3.10 sec

Memory Usage(for’
bba’)

17236
KB

17186 KB

Table 2:Performance summary

Fig 7: memory size for the different value of p(simulation result)

DFA Minimized DFA

Used/Tota
l

% Used/Tota
l

%

Macrocels 3/36 8% 1/36 3%

Product Term 4/180 2% 2/180 1%

Function Block 4/108 4% 3/108 3%

Registers 2/36 6% 1/36 3%

Pins 5/34 15% 5/34 15%

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 289

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 8: CPU time(Y-axis in ms) for the different value of p (Xaxis):

simulation result

Fig 7 and fig 8 shows the comparison graph for the DFA
with the minimized DFA Fig 7 shows the memory size in
KB for the different value of p (p is the pattern size)
simulated is Xilinx 12.4 so you can compare memory
usage in KB . The smallest pattern (p=1)requires
17216KB
memory usage in case of DFA and 17122 KB memory
usage in case of minimized DFA. similarly fig 8 illustrate
the CPU simulation time in ms for the different size of
pattern p.The smallest pattern (p=1)requires 108 ms in
case of DFA and 93 ms in case of minimized DFA.

5. Conclusion

In this paper minimized DFA is implemented for pattern
matching which results the reduced area, better
performance, less number of resources. In general DFA
may require up to 2n states but after minimization the
equivalent DFA require n states. Number of resources also
reduced up to 40%.So the implementation in hardware
with state minimization is very apparent. The minimized
DFA is very much efficient than the original DFA. The
future scope of the work is to apply some technique to
process multiple literals of the pattern parallel at the same
time.

Acknowledgments

I would like to express my gratitude to my supervisor
Dr. Nilay Khare and Co-supervisor Akhtar rasool, for their
guidance, encouragement and support during my post
graduate study.

References
[1] A. Babu Karuppiah, Dr. S Rajaram “Deterministic Finite

Automata for Pattern Matching in FPGA for intrusion
Detection” in International Conference on Computer and

Electrical Technoogy-ICCCET 2011,18th & 19th
March,2011.”

[2] Jan Kastil, Jan Korenek Hardware Accelerated Pattern
Matching Based onDeterministic Finite Automata with
Perfect Hashing,IEEE 2010,p-149-152.

[3] Kai Wang, Yaxuan Q, Yibo Xue, Jun L Reorganized and
Compact DFA for Efficient Regular Expression
Matching,IEEE communication society

[4] Hiroki Nakahara,Tsutomu Sasao and Munehiro matsuura “A
Regular Expression Matching Using Non-Deterministic
Finite Automata” in IEEE 2010.

[5]Ivano Bonesana,Marco Paolieri,Marco D. Santambrogio “An
adaptable FPGA based system for regular expression
Matching” in IEEE 2008.

[6] Mother Aldwairi,Thomas Conte,Paul Franzon “Configurable
string Matching Hardware for Speeding up Intrusion
detection” inACM SIGARCH Computer Architecture News
in,Vol. 33,No. 1, March 2005.

[7]Ashok kumar Tummala and Parimal Patel”Distributed IDS
using Reconfigurable Hardware” in IEEE 2007.

[8]Hoang Le and Viktor K. Prasanna Ming Hsieh Department of
Electrical Engineering University of Southern California Los
Angeles, CA 90089, USA A Memory-Efficient and Modular
Approach for String Matching on FPGAs ,2010

[9]M. Dhanapriya,C. Vasanthanayaki “Hardware Based Pattern
Matching Technique for Packet Inspection of High Speed
Network” International Conference on
“Control,Automation,Communication and energy
Consevation- 2009 4th -6th june 2009.

[10] Ioannis Sourdis, Dionisios N.Pnevmatikatos, and Stamatis
Vassiladis,” Scalable Multigigabit Pattern Matching for
Packet Inspection,” in Proc. IEEE Symp. Field program.
Custom Comput. Feb. 2008.

[11] B. L. Hutchings and R. Franklin and D. Carver “Scalable
hardware implementation usonf Finite Automata”Department
of Electrical and Computer Engineering.

[12] J. Hasan, S. Cadambi, V. Jakkula and S. Chakradhar,
“Chisel: A Storage-efficient, Collision-free Hash-based
Network Processing Architecture,” 33rd International
Symposium on Computer Architecture,p.203-215.

[13]Reetinder Sidhu,Vikot K. Prasanna “Fast Regular Expression
Matching using FPGAs”9th Annual Symposium IEEE2001.

Aakanksha Pandey is a research scholar student of M. Tech.,
Maulana Azad National Institute of Technology, Bhopal, Madhya
Pradesh, India.

Dr Nilay Khare is a Head of the department of computer Science
and Engineering, Maulana Azad National Institute of Technology,
Bhopal, Madhya Pradesh, India.

Akhtar Rasool is a Faculty of computer Science and Engineering
Department, Maulana Azad National Institute of Technology,
Bhopal, Madhya Pradesh, India.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 2012
ISSN (Online): 1694-0814
www.IJCSI.org 290

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

