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Abstract 
Efficient task partitioning plays a crucial role in achieving high 
performance at multiprocessor platforms. This paper addresses 
the problem of energy-aware static partitioning of periodic real-
time tasks on heterogeneous multiprocessor platforms. A Particle 
Swarm Optimization variant based on Min-min technique for task 
partitioning is proposed. The proposed approach aims to 
minimize the overall energy consumption, meanwhile avoid 
deadline violations. An energy-aware cost function is proposed to 
be considered in the proposed approach. Extensive simulations 
and comparisons are conducted in order to validate the 
effectiveness of the proposed technique. The achieved results 
demonstrate that the proposed partitioning scheme significantly 
surpasses previous approaches in terms of both number of 
iterations and energy savings.  
Keywords: Task Partitioning, Task Assignment, Heterogeneous 
Multiprocessors, Particle Swarm Optimization, Min-min. 

1. Introduction 

Nowadays, embedded systems are involved in most details 
of our life such as smart phones, pocket PCs, Personal 
Digital Assistants (PDAs), multimedia devices, ... etc. As 
the applications on these devices are being complicated, 
there is a need to increase the performance while keeping 
the energy consumption of these devices in accepted levels 
especially for the portable battery-powered ones. So, 
minimizing energy consumption to prolong the battery life 
while achieving higher performance is a critical issue in 
the design of portable embedded systems.  
 
As the processor is one of the most important power 
consumers in any computing system, today’s chip 
multiprocessor (CMP) or multiprocessor system on chip 

(MPSoC) platforms can deliver a higher performance at 
the cost of lower power consumption than uniprocessor 
systems. 
 
Embedded systems today are often implemented upon 
platforms comprised of different kinds of processing units, 
such as CPU's, DSP chips, graphics co-processors, math 
co-processors, etc., with each kind of processing unit 
specialized to perform a different function most 
efficiently. Such platforms are commonly referred to as 
heterogeneous platforms [1]. TI’s OMAP™ [2] mobile 
processors are good example of these heterogeneous 
platforms. 
 
The multiprocessor scheduling of recurrent real-time tasks 
can be generally carried out under the partitioned scheme 
or under the global scheme. In the partitioned scheme, the 
tasks are statically partitioned among the processors and 
all instances (jobs) of a task are executed on the same 
processor and no job is permitted to migrate among 
processors. In the global scheme, a task can migrate from 
one processor to another during the execution of different 
jobs. Furthermore, an individual job of a task that is 
preempted from some processor, may resume execution in 
a different processor. Nevertheless, in both schemes, 
parallelism is prohibited, i.e., no job of any task can be 
executed at the same time on more than one processor.  
 
This paper considers the partitioned scheduling scheme. 
The main advantage of the partitioned scheduling is that 
after partitioning the tasks among processors, the 
multiprocessor scheduling problem is reduced to a set of 
traditional uniprocessor ones. 
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The problem of partitioning tasks among processors, 
sometimes [3, 8] referred to as Task Assignment Problem 
(TAP), is an intractable NP-Hard problem [1] even if the 
processors are homogeneous [4]. So, approximation 
algorithms and heuristic techniques are used to solve this 
problem. This paper proposes a Particle Swarm 
Optimization (PSO) variant based on Min-min technique 
for energy-aware task partitioning on heterogeneous 
multiprocessor platforms. 
 
The rest of this paper is organized as follows: Section 2 
reviews existing research on task partitioning upon 
heterogeneous platforms and related areas. Section 3 
defines the problem and describes task, processor, and 
power models used in this paper. Section 4 describes PSO 
and Min-min techniques for task partitioning and 
introduces our proposed approach. Section 5 presents 
simulation results for the proposed algorithm and 
discusses these results. Section 6 summarizes our 
conclusions. 

2. Related Work  

Baruah [1] proved that task partitioning among 
heterogeneous multiprocessors is intractable (strongly NP-
hard), represented the problem as an equivalent Integer 
Linear Programming (ILP) problem, and designed a 2-step 
approximation algorithm for solving this problem. The 
idea of LP relaxations to ILP problems is used in the first 
step to map most tasks, while in the second step the 
algorithm maps the remaining tasks using exhaustive 
enumeration. This two-step algorithm takes time 
polynomial in the number of tasks, and exponential in the 
number of processors. The same author [5] then used tree-
partitioning in the second step instead of exhaustive 
enumeration to make the algorithm takes time polynomial 
in the number of tasks, and polynomial in the number of 
processors.  
 
In [6], Braun et. al. compared 11 heuristics for mapping a 
set of independent tasks onto heterogeneous distributed 
computing systems. The best one that has minimum 
makespan, that is defined as the maximum completion 
time for the whole processors, was the Genetic Algorithm 
(GA) followed by Min-min algorithm. 
 
Chen and Cheng [7] applied the Ant Colony Optimization 
(ACO) algorithm. They proved that ACO outperforms 
both GA and LP-based approaches in terms of obtaining 
feasible solutions as well as processing time. 
 
In [3], Abdelhalim presented a modified algorithm based 
on the Particle Swarm Optimization (PSO) for solving this 
problem and showed that his approach outperforms the 

major existing methods such as GA and ACO methods. 
Then, his PSO approach is developed to can further 
optimize the solution to reduce the energy consumption by 
minimizing average utilization of processors (without 
using any energy or power model). Finally, a tradeoff 
between minimizing the design makespan as well as 
energy consumption is obtained. 
 
Visalakshi and Sivanandam [8] presented a hybrid PSO 
method for solving the task assignment problem. Their 
algorithm has been developed to dynamically schedule 
heterogeneous tasks onto heterogeneous processors in a 
distributed setup. It considers load balancing and handles 
independent non-preemptive tasks. The hybrid PSO yields 
a better result than the normal PSO when applied to the 
task assignment problem. The results are also compared 
with GA. The results infer that the PSO performs better 
than the GA. 
 
In [9], Omidi and Rahmani used PSO for task scheduling 
in multiprocessor systems as an important step for 
efficient utilization of resources. They considered 
independent tasks on homogeneous multiprocessor 
systems. 
 
Apart from all these efforts, this paper integrates the PSO 
approach with a polynomial-time partitioning technique; 
Min-min. The proposed approach takes into account 
energy efficiency during task partitioning among 
heterogeneous cores in MPSoCs. 

3. System Model 

This paper considers the problem of power-aware task 
partitioning on heterogeneous multiprocessor platforms. 
So, models of task, processor, and power are presented. 

3.1 Task Model 

A periodic real-time task τi generates an infinite sequence 
of task instances (jobs). Each job executes for C time units 
at most, be generated every T time units, and has a relative 
deadline D time units after its arrival. 
 
This paper considers a periodic task set n ,...,, 21

 of n 

independent real-time tasks. A task τi is represented as 3-
tuple ),,( iiiji TDC  where Ci,j is the Worst-Case 

Execution Time (WCET) of task τi on processor j, D is the 
relative deadline, and T is the period. Implicit deadlines 
are considered in this paper, i.e., the relative deadline is 
assumed to be the same as the period. Each task τi has a 
utilization 

iijij TCu /  on processor j.  
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An mn  utilization matrix as in [1] can be defined where 
each row represents a task and each column represents a 
processor. 

3.2 Processor Model 

A heterogeneous multiprocessor platform with m 
preemptive processors based on CMOS technology is 
defined as  mPPP ,...,, 21 . 

 
This paper considers Dynamic Voltage/Frequency Scaling 
(DVFS) processors that supports variable frequency 
(speed) and voltage levels continuously, i.e., DVFS 
processors can operate at any speed/voltage in its range 
(ideal). Of course, practical DVFS processors supports 
discrete speed/voltage levels (non ideal). So, the desired 
speed/voltage of the ideal DVFS processor is rounded to 
the nearest higher speed/voltage level the practical DVFS 
processor supports.  
 
The time (energy) required to change the processor speed 
is very small compared to that required to complete a task. 
It is assumed that the speed/voltage change overhead, 
similar to the context switch overhead, is incorporated in 
the task execution time. In this work, it is assumed that the 
processor’s maximum speed (frequency) is 1 and all other 
speeds are normalized with respect to the maximum speed. 
 
When MPSoCs platforms are considered, there are the per-
core and full-chip DVFS techniques [10]. In the per-core 
DVFS, each core operates at individual frequency/voltage, 
and has no operating frequency constraint. On the other 
hand, the practical full-chip DVFS designs restrict that all 
the cores in one chip operate at the same clock 
frequency/voltage. 
 
For each processor, the tasks are scheduled according to 
Earliest Deadline First (EDF) scheduling algorithm. So, a 
processor utilization Uj which is the sum of the utilizations 
of tasks assigned to this processor can not exceed 1, i.e., 

 
i

ijj uU 1. 

3.3 Power Model 

The power consumption in CMOS circuits has two main 
components: dynamic and static power. The dynamic 
power consumption which arises due to switching activity 
can be represented as [11]: 
 

fVCP ddeffdynamic .. 2                             (1) 

 
Where Ceff is the effective switching capacitance, Vdd is the 
supply voltage, and f is the processor clock frequency 

(speed) which can be expressed in terms of a constant k, 
supply voltage Vdd and threshold voltage Vth as follows:  
 

ddthdd VVVkf /).( 2                        (2) 

 
The static power consumption is primarily occurred due to 
leakage currents (Ileak) [12], and the static (leakage) power 
(Pleak) can be expressed as: 
 

ddleakleak VIP .                                       (3) 

 
When the processor is idle, a major portion of the power 
consumption comes from the leakage. Currently, leakage 
power is rapidly becoming the dominant source of power 
consumption in circuits and persists whether a computer is 
active or idle [12].  
So, lowering supply voltage is one of the most effective 
ways to reduce both dynamic and leakage power 
consumption. As a result, it reduces energy consumption 
where the energy consumption is the power dissipated 
over time. 
 
For simplicity reasons, Eq. (1) is reduced to a simplified 
power model P= f 3 using normalized values where f is the 
processor speed (frequency). Then, a simplified energy 
model E= f 2 (using normalized values) can be used. 

4. The Proposed Approach 

Before introducing our proposed approach in this paper, a 
background on PSO and Min-min techniques will be 
presented. 

4.1 PSO 

Kennedy and Eberhart [13] developed the PSO algorithm 
simulating the behavior of swarms in the nature, such as 
birds, fish, etc. In PSO, the potential solutions, called 
particles, fly through the problem space by following the 
current optimum particles. PSO has been successfully applied 
in many scientific areas and there are many variants of the 
algorithm. A survey of PSO methods and applications could 
be found in [14]. 
 
At the beginning, a set (swarm) of random solutions 
(particles) is used to initialize the PSO algorithm that starts 
iterations looking for optimal solution. During every 
iteration, each particle is updated by two best values. The 
first one is the personal best pbest that the particle has 
achieved so far. The second is the global best gbest 
obtained by any particle in the swarm. After finding the 
two best values, the particle updates its velocity and 
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position according to equations (4) and (5) respectively. 
The typical procedure of PSO is shown in figure 1. 
 
initialize the population randomly. 
DO 
{ 
For each particle. 
{ 
Calculate fitness value If the fitness value is better than the best 
fitness value (pbest) in history then set current value as the new 
pbest. 
} 
Choose the particle with the best fitness value of all particles as 
the gbest. 
For each particle. 
{ 
Calculate new velocity: 

Vnew= W.Vo1d +C1.R1.(pbest - X) + C2.R2.(gbest-X)                 (4) 

(Where W is inertia constant, R1 and R2 are random values. C1 
and C2 are constant values and X is particle position. ) 
Update particle position: 

Xnew = Xold + Vnew                                                                   (5) 
} 
} 
Until termination criterion is met. 

Fig. 1  The typical procedure of PSO [9]. 

The random numbers R1 and R2 are generated uniformly 
between 0 and 1 and the constants C1 (self-knowledge 
factor) and C2 (social-knowledge factor) are usually in the 
range from 1.5 to 2.5. Finally, the inertia factor W can be 
fixed or varied with a decreasing value as the algorithm 
proceeds [8] or it may be restarted as in [3]. 
 
PSO has been applied to solve the problem of task 
partitioning for homogeneous multiprocessor as in [9] and 
also for heterogeneous multiprocessors [3, 8]. 
 
Considering a system consisting of m processors and n 
tasks. A possible solution (particle) is a vector of n 
elements, where each element is associated to a given task. 
Each element takes an integer value i where mi 1  
and represents the processor that the task is assigned to. 

Thus, the search space size is nm   
There are k particles in the swarm that form swarm 
(population) size; these particles are initialized randomly. 

4.2 Min-min 

The Min-min [6] algorithm is originally designed for 
mapping tasks in heterogeneous computing systems and 
does not consider real-time tasks. It first finds the 
minimum completion time of all unmapped tasks, where 
the completion time of a task on a machine equals task’s 

execution time on that machine plus execution times of  all 
tasks mapped to that machine. Next, the task which has 
minimum completion time is selected, similar technique 
called Max-min selects the task with maximum completion 
time, and mapped to the machine. Finally, the newly 
mapped task is removed and the process repeats until all 
tasks are mapped. 
 
To handle real-time tasks on multiprocessor system, task 
utilization is considered instead of execution time and 
completion utilization is used. Of course, tasks that make 
the processor’s utilization exceeds 1 are unaccepted. If 
there is no accepted alternative, then the task set is 
unfeasible. 

4.3 The Proposed Min-min based PSO Approach 

The Min-min based PSO approach, proposed in this paper, 
simply modifies the initialization step in the PSO 
procedure by incorporating a Min-min solution (particle) 
in the randomly generated population. This approach gives 
the PSO algorithm a push to start from a good solution and 
then the PSO goes on trying to optimize the solution 
resulting in the Min-min solution in the worst case. 
 
Firstly, A cost function favoring makespan (maximum 
processor accumulative utilization) minimization is 
proposed. Then, a penalty is added to the infeasible 
solutions that exceed the processing capacity of any 
processor. In other words, the cost is represented as 
follows [3]: 
 
Cost = Max(Uj) + Penalty            for j = 1,2, .. , m      (6) 
 
Penalty = Sum(Uj > 1)                 for j = 1,2, .. , m      (7) 
 
Next, the cost function is developed to incorporate energy 
where the proposed PSO approach tries to find energy-
efficient solutions. Aydin and Yang [4] considered energy-
aware task partitioning for homogeneous multiprocessors 
and introduced some helpful proofed theorems and 
propositions. Some of them are presented here. 
 
Proposition 1 [4] For a single processor system and a set 
of periodic real-time tasks with total utilization ≤ 1. The 
optimal speed to minimize the total energy consumption 
while meeting all the deadlines is constant and equal to 
total utilization. 
 
Proposition 2 [4] A task assignment that evenly divides 
the total load among all the processors, if it exists, will 
minimize the total energy consumption for any number of 
tasks. 
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So, minimizing the makespan will minimize energy 
consumption especially when full-chip DVFS 
multiprocessor platforms are considered, the makespan 
cost function, Eq. (6), will be used as all processors on the 
chip have to operate at the same frequency which is the 
maximum processor utilization. 
 
On the other hand, if per-core DVFS multiprocessor 
platforms are assumed, an energy-aware cost function 
needs to be proposed. An energy-aware cost function 
introduced in [3] depends on average utilization of 
processors, but it does not give an accurate measure for 
energy consumption. Then, a trade off between average 
and maximum utilization is introduced.  
 
This paper introduces an energy-aware cost function 
considering simplified energy model as follows 
 
Cost = Sum(Uj

2) / m + Penalty      for j = 1,2, .. , m      (8) 
 
When applying PSO, the parameters used are the swarm 
size k = 100, No. of iterations=100, C1 = C2 = 2 [3], and 
the inertia W = 1 that, according to the PSO variant used, 
may be fixed or may decrease linearly until reaching 0 or 
it may be then restarted (re-excited) to 1 to decrease 
linearly again. 

5. Results and Discussion  

The approaches have been implemented using 
MATLABTM. Utilization matrices have been uniformly 
generated of light tasks with utilization ranges from 0.05 
to 0.25 and medium tasks with utilization ranges from 
0.25 to 0.5. The implemented approaches are Min-min, 
Max-min, PSO with fixed inertia (PSO-fi), PSO with 
varied inertia (PSO-vi), PSO with re-excited inertia (PSO-
re), and our proposed Min-min based PSO approach (PSO-
m). Executive experiments have been done to verify the 
proposed approach.  
 
With relatively small search spaces, all PSO variants show 
good results with reasonable number of iterations. But, 
when search spaces grow, so much iterations are needed to 
get good results using PSO approaches.  
 
PSO variants using variable inertia such as PSO-vi and 
PSO-re show better performance than PSO with fixed 
inertia (PSO-fi) with the same number of iterations and the 
same problem instances.  
 
Figures 2 and 3 below show comparisons among Min-min, 
Max-min, and PSO variants with 200 iterations for light 
tasks scheduled on 4 and 10 cores respectively.  
 

 

Fig. 2  A comparison of partitioning methods with light tasks partitioned 
upon 4 processors. 

 

 

Fig. 3  A comparison of partitioning methods with light tasks partitioned 
upon 10 processors. 

 

Our proposed approach gives the PSO algorithm a push 
toward the best solution using a particle (solution) 
obtained by Min-min. This makes PSO gives better results 
with reasonable number of iterations. In the worst case, 
our proposed approach gives Min-min performance if it 
could not optimize the solution. 
 
Figures 4 and 5 show the performance of our proposed 
approach with 100 iterations and light tasks assigned to 4 
and 10 cores respectively. It is obvious that our proposed 
approach behaves so better when the search space grows. 
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Fig. 4  A comparison among Min-min, PSO-vi, and PSO-m techniques 
with light tasks partitioned upon 4 processors. 

 

 

Fig. 5  A comparison among Min-min, PSO-vi, and PSO-m techniques 
with light tasks partitioned upon 10 processors. 

 
When medium tasks are used, the proposed approach 
behaves the same way and shows better performance 
especially with large search spaces. Figures 6 and 7 show 
the case when medium tasks are partitioned on 8 and 16 
processors respectively. 
 

 

Fig. 6  A comparison among Min-min, PSO-vi, and PSO-m techniques 
with medium tasks partitioned upon 8 processors. 

 

 

Fig. 7  A comparison among Min-min, PSO-vi, and PSO-m techniques 
with medium tasks partitioned upon 16 processors. 

 

As mentioned earlier, when full-chip DVFS is considered 
the makespan cost function is used. If per-core DVFS is 
considered, the introduced energy-aware cost function, Eq. 
(8), is taken into account. Figures 8 and 9 show the case of 
partitioning light tasks on per-core DVFS platforms of 4 
and 10 cores respectively.  
It is clear that using makespan cost function, Eq. (6), 
increases the feasibility (schedulability) of the task set 
more than using Eq. (8) as a cost function which is more 
energy efficient. 
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Fig. 8  A comparison among PSO-fi, PSO-vi, and PSO-m techniques with 
light tasks partitioned upon 4 processors. 

 

 

Fig. 9  A comparison among PSO-fi, PSO-vi, and PSO-m techniques with 
light tasks partitioned upon 10 processors. 

 

It is worth to be noted that another Max-min particle 
(solution), in addition to Min-min particle, may be added 
to the population in the initialization step when the task set 
nature requires that, i.e., when Max-min gives better 
solutions than Min-min. This occurs when task utilizations 
are diverse, e.g., when there is a long task in a short-task 
task set. 

6. Conclusions 

This paper considered the problem of power-aware task 
partitioning on heterogeneous multiprocessor platforms.  

 
The paper proposed a PSO variant based on Min-min that 
outperformed its counterparts in less number of iterations 
for the same problem instance. Also, the energy-aware 
cost function is addressed in this paper and it 
differentiated between the full-chip and per-core DVFS 
processors. 
 
As a future work, any verified polynomial-time 
partitioning technique can be added as a particle to the 
population in the initialization step to give the PSO 
algorithm a forward push to get better solutions. 
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