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Abstract 

A new technique to implement digital interpolation filter is 
presented in this paper. The technique employs a sample 
calculation functional block which reduces the hardware 
required to realize the filter by orders of magnitude. The 
filter is realized with 80X160 μm2 using 65 nm CMOS 
technology. Over Sampling Rate of up to 256 is achieved 
for 16-bit digital data sampled at 705,600 bps. The filter 
dissipates 77.68 mW when operating at frequency of 833.3 
MHz. 
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1. Introduction 

Interpolation filter is used in many digital signal processing 
(DSP) applications. Delta-Sigma based Digital-to-Analog 
converters (Δ-Σ DAC) employ an up-sample and interpolation 
filter to obtain high precision by speeding up the conversion 
processing over less number of bits [1]-[3]. Shown in Fig. 1(a) 
is up-sampling and interpolation filter which is performed by 
inserting zeros (known as zero-stuffing) to the in-between 
over-sampled data samples followed by a digital Low Pass 
Filter (LPF). This technique is widely used to 
oversample/interpolate digital signal [2]-[4]. Digital low pass 
filters (LPF) require large computational blocks. Discrete 
Fourier Transform (DFT) and Fast Fourier Transform (FFT) 
are used to reduce the computational cost of the filter. Yet, 
FFT requires tens, if not hundreds, of multipliers to be 
implemented [5]-[10]. In addition to the high cost in terms of 
hardware, stability is another factor which adds to the 
complexity of using DFT [11]-[13]. In this paper a new 
multiplier-free technique, as shown in Fig. 1(b), to implement 
digital interpolation filter is presented. The technique could be 
used to interpolate digital data represented in either fixed 
point or floating point number format. The presented 
technique uses Finite Impulse Response (FIR) and requires 
much less hardware to realize the interpolation filter. 

Oversampled digital data could be interpolated using different 
interpolation techniques. Hold interpolation is the simplest of 
all. The up-samples hold the value of the slow samples in the 
region between input samples. Up-sampling in Δ-Σ 
modulators is based on reducing the difference between the 
samples which makes hold interpolation less attractive (for Δ-
Σ modulators). Non-linear interpolation requires storing input 
samples over long period to determine the over-sampled 
sequence. However, linear interpolation requires less 
hardware since only two samples are sufficient to determine 
the output sequence. Linear interpolation is sufficient when 
high Over-Sampling Rate (OSR) is used. Since widely used in 
DSP, linear interpolation is adopted in the proposed 
interpolation filter.  
 

 
Fig. 1. Digital up-sample and interpolation filter. (a) conventional technique 

with LPF. (b) sample calculation technique. 

 

The paper is organized as follows. In section 2, the theory 
behind the sample calculation of the interpolation filter is 
described. Some circuit implementation issues are described in 
section 3. In section 4, simulation results are presented. Some 
conclusions are provided in section 5. 

 

2. Sample Calculation Techniques  

 Sample calculation interpolation technique is presented in this 
section. In section 2.1, sample calculation interpolation technique 
for fixed point number representation is described. 

Upsampler LPFxS[n] yOS [m]

Sample calculationxS[n] yOS [m]

(a)

(b)
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The technique is extended to include floating point numbers in 
section 2.2. In section 2.3, the technique to evenly distribute the 
calculated samples is provided. 

2.1 Fixed-Point Number Representation  

Fixed point number representation is assumed to represent 
the input data samples xs[n], however, the methodology could 
be generalized to include both fixed point and floating point 
number representation as described in section II.B. Fixed 
point number representation dedicates k bits out of the total 
number of bits l to the integer part and (l-k) bits to the fraction 
part. Without lose of generality, the decimal point is shifted 
right (l-k) bits to convert the number to integer x[n] to simplify 
the sample calculation process. The decimal point of the 
output y[m] is shifted back left (l-k) bits to maintain the format 
of the number representation of the oversampled output 
yos[m]. 
   Every two successive samples of the integer input data 
sequence x[n] and x[n+1] are used to determine the 
oversampled and interpolated output y[m]. The output y[m] 
(referred to by y[n,j]) is produced at the OSR, where m=(n,j) is 
two dimensional index shown in Fig. 2, j is index changing 
from 0 to Ns-1, and Ns=OSR. In sample calculation 
interpolation filter, the value of the output sequence y[n,j] is 
determined by direct calculation of the samples to avoid using 
digital LPF which is needed in the conventional techniques. 
Since x[n] is integer, y[n,j] is expected to be an integer 
possessing the same precision (number of bits l) of x[n]. 

 
Fig. 2 Input and output sequence of sample calculation linear interpolation 

filter. 

 
The difference between two successive integer (fixed point 

number with shifted decimal point) input samples x[n] and 
x[n+1], Δ is integer as well, 

           
              (1)    

 
For ideal linear interpolation, the ideal output yid[n,j] is 

determined by,  
 

                 (2)  
given 

Step=                                           (3)  

Since y[n,j] is integer and Step could be fraction, (2) could 
not be used to determine y[n,j]. The output y[n,j] could be 
either   

 
       (4) 

 
Note that for perfect linear interpolation,  

 
                                     (5) 

                     (6) 
 

    In order to satisfy (3)-(6), non-ideal interpolation is used. 
For DSP applications such as (Δ-∑ DAC), non-ideal 
interpolation is tolerable since the reduction in hardware 
complexity could be orders of magnitude. Furthermore, 
quantization error, always exists in DSP. Moreover, for high 
OSR, non-ideal interpolation is acceptable. 
    The number of output sequence samples y[n,j] in-between 
two successive input samples x[n] and x[n+1] equals Ns. In the 
ideal case each output sequence should be incremented by 
Step= Δ/Ns.  Rather than using fraction number to represent 
the output samples either the ceiling or the floor of the Step is 
used. In order to ensure that all output sequence samples are 
integer the output samples are divided into two sets of outputs 
yc[n,j] and yf[n,j], where 
 

 ,                          (7) 
,                   (8) 

            (9)  

                    (10) 

The output sequence 
 

 (11)  
             

	
The set of indices of the output samples which take the value 
yc [n,j],  and which take the value yf[n,j],  is 

determined in section II.C. 
    In order to satisfy (5)-(8), the number of samples which 
take the value yf [n,j], p and the number of samples which take 
the value yc [n,j], q are to be determined to satisfy,  
 

                                                     (12) 
         (13) 

 
Given Δ and Ns, p and  q are determined by solving  (12) and 
(13) simultaneously, 

                  (14) 
                           (15) 

  
   In order to reduce computational complexity in most DSP 
applications, modulo-2 OSR is used. Since only floor and 
ceiling of division by Ns are to be determined, simple r-bit left 
shift, where r = log2 Ns, is sufficient to realize (9) and (10). 
Also multiplication in (14) and (15) is realized by simple r-bit 
shift right, significantly reducing the hardware needed to 
calculate the samples and simplify the implementation of the 
samples calculation technique. Note that, no multipliers or 
divisors are needed to implement the filter. 

2.2 Floating-Point Number Representation  

In section II.A fixed point number representation was 
assumed for the input sequence x[n]. The presented technique 
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is generalized to include floating point numbers in this 
section. It is to be noted that equations (9), (10), (14), and (15) 
are the equations needed to realize the filter. The output 
samples are determined by simple addition in (7) and (8). 
Simple floating point addition/subtraction is needed to realize 
the filter. The output samples are determined by simple 
addition in (7) and (8). In addition, multiplication and division 
by Ns are to be implemented. Under the assumption of having 
OSR modulo-2, multiplication and division is performed on 
floating point numbers by simple addition and subtraction of 
the exponent of the number, respectively. Without lose of 
accuracy, in case of underflow or overflow in the exponent, 
the mantissa of the floating point number is treated like the 
integer number in section II.A. The technique could be used 
for both fixed point and floating point number representation 
without lose in accuracy. Once again multiplication and 
division are completely eliminated.    

2.3 Uniform Distributed of Calculated Samples  

It is shown in section II.A that the output sequence is 
divided into two sets of output samples; the samples which are 
incremented by N, yf[n,j] and the samples which are 
incremented by N1, yc[n,j]. The number of output samples, 
which take the value yf[n,j], p and the number of output 
samples, which take the value yc[n,j], q are provided in (14) 
and (15) respectively. In order to obtain linear interpolation, 
the samples which take the values yf[n,j] and yc[n,j] are evenly 
distributed along the output samples sequence. Depending on 
solving (14) and (15), if p q; whither p > q or p < q, the 
majority of y[n,j] take either the value of yf[n,j] or yc[n,j], 
respectively. Among the Ns output samples, majority samples 
yMaj appears NMaj times in the output samples and minority 
samples yMin appears NMin times in the output samples, where  

  
               (16) 

,                (17) 
           if ,                      (18) 

          and       ,                      (19) 
           if ,    ,                        (20)  

and      .                        (21)       
 

The distribution of the samples yMaj and yMin is based on one of 
two patterns Patn1 or Patn2 as shown in Fig. 3. 
 
 
 
 

  
Sample index 0 1 2 ... … … OSR-1 

Output sample yMaj yMin yMaj … … … yMin 

(a) 
 

Sample index 0 1 2 ... … … OSR-1 

Output sample yMaj yMaj yMaj … … … yMaj 

(b) 
Fig. 3.  The distribution of the minority and majority samples 

in the output sequence a) pattern Patn1 b)  pattern Patn2. 
 
Pattern Patn1 is used when NMin ≥ NMaj/2. Minority 

sample is assumed to exist after each majority sample in this 
pattern. The difference between the number of majority 
samples and minority samples, D = NMaj - NMin is determined. 
A number of minority samples equals D/2 is replaced in the 
pattern Patn1 with majority samples to satisfy (12), (16), and 
(17). The special case of p=q is included in this patterns when 
NMin=NMaj. In order to evenly distribute the majority and 
minority samples, the index of the minority samples which are 
replaced with majority samples,  is determined by, 

 
     (22) 

where, 
               

        
             i = 1,2,3,4,5,…C 

 
For NMin < NMaj/2, pattern Patn2 is used to distribute the 

samples. In Patn2 all samples are assumed to be majority 
samples. A number of majority samples equals NMin is 
replaced in the pattern with minority samples to satisfy (12), 
(16), and (17). In order to evenly distribute the majority and 
minority samples, the index of the majority samples which are 
replaced with minority samples,  is determined by, 

 

   (23) 

where , 
i = 1,2,3,4,5,… NMin 

 
This distribution technique guarantees even distribution for 

the minority samples along the majority samples. The 
interpolated sequence is closest to linear under the digital 
nature of the output sequence. The linearity of the 
interpolation filter is demonstrated in section IV. 

3. Circuit Implementation  

    The presented technique reduces the hardware required to 
realize the interpolation filter. Different techniques were 
considered to achieve further reduction in transistor count and 
power dissipation. A special case for the input sequence is to 
have no difference between two successive input samples (Δ = 
0). In this case, all output samples yos[m] take the value of the 
input sample xs[n] reducing the power dissipation by 
eliminating the activity in the computation block. Also, 
division in (22) and (23) is implemented by iterative addition. 
Ns is divided by two first (before performing the division) to 
reduce the number of iterations of the division block. 
     In order to satisfy (12), D must be an even number. C is 
realized by single shift right operation. Binary shift and 
addition were also sufficient to realize (9), (14), and (15).  
Division used in calculating O(i) in (22) and (23) is done 
using addition and subtraction operation to calculate the floor 
value of the quotient. Some simulation results are included in 
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section IV. 

4. Simulation Results  

   Some simulation results are provided in this section. In 
subsection IV.A, the interpolation algorithm is demonstrated. 
Simulation results for circuit implementation are summarized 
is subsection IV.B. 

4.1 Interpolation Algorithm  

The sample calculation interpolation algorithm is 
implemented using Matlab7.0. OSR of 64 is assumed. The 
over-sampled and interpolated output sequence is determined 
to demonstrate the accuracy of linear interpolation. Different 
input sequences are assumed. The output sequence is shown in 
Fig. 4 (a), (b), (c), and (d) for Δ =0, Nmin > Nmaj/2, Nmin < 
Nmaj/2, and p < q, respectively. Under the digital nature of the 
output sequence, highly linear and accurate interpolation is 
achieved as shown in the figure for different cases.   

In Fig. 4(a), Δ=0, consequently no interpolation is needed 
and the new samples have the same value of the original 
samples. In this case, both x[n] and x[n+1]=100, p=64, q=0, 
and consequently p is assigned to NMaj and q to NMin. In Fig 
4(b), p > q; the number of samples incremented by N is 
greater than that incremented by N1. Also, NMin ≥ NMaj/2, 
Patn1 is used to calculate the index of the output samples 

. For x[n]=50 and x[n+1]=20, p=34, q=30, p is assigned 

to NMaj and q to NMin.. In Fig 4(c), p > q, NMin < NMaj/2, Patn2 
is used to calculate the index of the output samples . In 
this case x[n]=50, x[n+1]=120, p=58, and q=6. Consequently 
p is assigned to NMaj and q to NMin. In Fig. 4(d), p < q; the 
number of samples incremented by N1 is greater than that 
incremented by N, in this case x[n]=20, x[n+1]=70,  p=14 and  
q=50. Consequently q is assigned to NMaj and p to NMin. High 
linearity is demonstrated in different cases in Fig. 4. 

4.2 Interpolation Filter   

   The new interpolation filter is implemented using 65 nm CMOS 
technology. The sample rate of compact disc digital audio system 
of 44.1 KHz is used. For 16-bit data sample, input data sequence 
of 705,600 bps is assumed. The OSR is determined for the 
required performance. Linear interpolation with OSR up to 256 is 
achieved with the implemented technique. The filter occupies an 
area of 80X160 μm2. SPICE simulation is used to estimate the 
power dissipation of the circuit. The filter dissipates 77.68 mW 
when operating at 833.3 MHz. The filter specifications are 
summarized in Table 1. 

5. Conclusions 

   In A new technique to implement digital interpolation filter is 
presented. The technique employs a sample calculation functional 
block, avoiding using multipliers in the filter and reducing the 
hardware to implement the filter. The filter is realized with 
80X160 μm2 using 65 nm CMOS technology. Over Sampling 
Rate of up to 256 is achieved for 16-bit digital data sampled at 

705,600 bps. The filter dissipates 77.68 mW when operating at 
frequency of 833.3 MHz. The presented sample calculation 
technique reduces the hardware required to realize the filter by 
orders of magnitude while achieving higher Over Sampling Rate 
as compared to FIR technique. 
 

References 
[1] Bernard Sklar, Digital Communication Fundamentals and Application; 
Second Edition, Prentice Hall, 2004. 
[2] Tzu-Chiek Kue; Kwentus, A.; Willson, A.N., “ A Programmable 
Interpolation filter for Digital Communications Applications”, IEEE 
International Symposium on Circuits and Systems, Vol. 2, pp.97-100, May 
1998. 
[3] Udo Zolzer, Digital Audio Signal Processing, John Wiley & Sons, 1997. 
 [4] Richard G. Lyons, Understanding Digital Signal Processing; Second 
Edition, Pearson Education, 2004. 
[5] John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing, 
Principles, Algorithms, and Applications; Fourth Edition, Prentice Hall, 2007. 
[6] C. J. Pan, “A Low Power Digital Filter for Decimation and Interpolation 
using Approximation processing”, IEEE International Solid-State Circuits 
Conference, pp 102-103, 439, February 1997. 
[7]H.K. Kwan, “High-Order Tunable Passive Digital Filters”, IEEE 
International Symposium in Circuits and Systems, Vol. 2, pp II.700-II.703, 
May 2002. 
[8] I.R. Khan, M. Okuda, and R. Ohba, “New Designs of Frequency Selective 
FIR Digital Filters”, IEEE International Symposium on Circuits and Systems, 
Vol. 4, pp. IV.185-IV.188, May 2003. 
[9] M. Vollmer and H. Kopmann, “A Novel Approach to an IIR Digital Filter 
Bank with Approximately Linear Phase, “IEEE International Symposium on 
Circuits and Systems, Vol. 2, pp.II.512-II.515, May 2002. 
[10] M. Bhattacharya and T. Saramaki,” Allpass Structures for Multiplierless 
Realization of Recursive Digital filter, “IEEE International Symposium on 
Circuits and Systems, Vol. 4, pp. IV 237-IV.240, May 2003. 
[11] Steven r.Norsworthy, Richard Schreier, Gabor c. Temes, “Delta-Sigma 
Data Converters Theory, Design, Simulation.” IEEE Press, 1997. 
[12] Robert S.Balog, “Topics In DSP: Interpolation & Delta Sigma 
Quantization”, Prentice Hall, 1996. 
[13] Peter Kiss, Jesus Arias, Dandan Li, and Vito Boccuzzi, “Stable High-
Order Delta-Sigma Digital-to-Analog Converters”, IEEE transactions on 
Circuits and Systems, Vol. 51, no.1, Jan 2004. 
 
  
 
 
 
 
 
 
 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 99

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 
 
 
 
 
 

 
                                         (a)                                                                                                               (b) 
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Fig. 4, Matlab simulation results for the interpolation filter. a) ∆=0, no interpolation required, all output samples are equal .  

b) p>q, NMin > NMaj/2; Patn1 is used. c) p>q, NMin < NMaj/2; Patn2 is used.  d)  p<q. 
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