
High-Performance Low-Power Digital Linear Interpolation
Filter

Magdy El-Moursy1, Member IEEE and Ahmed G. Radwan2

 1 Mentor Graphics Corporation, Cairo, Egypt
Electronics Research Institute, Cairo, Egypt

2 Institute for Electronics Engineering, University of Erlangen, Nuremberg, Gernamy

Abstract

A new technique to implement digital interpolation filter is
presented in this paper. The technique employs a sample
calculation functional block which reduces the hardware
required to realize the filter by orders of magnitude. The
filter is realized with 80X160 μm2 using 65 nm CMOS
technology. Over Sampling Rate of up to 256 is achieved
for 16-bit digital data sampled at 705,600 bps. The filter
dissipates 77.68 mW when operating at frequency of 833.3
MHz.

Keywords: Digital interpolation, Oversampling, Digital Low
Pass Filters, DAC, Delta-Sigma Modulators, FFT, FIR, DSP

1. Introduction

Interpolation filter is used in many digital signal processing
(DSP) applications. Delta-Sigma based Digital-to-Analog
converters (Δ-Σ DAC) employ an up-sample and interpolation
filter to obtain high precision by speeding up the conversion
processing over less number of bits [1]-[3]. Shown in Fig. 1(a)
is up-sampling and interpolation filter which is performed by
inserting zeros (known as zero-stuffing) to the in-between
over-sampled data samples followed by a digital Low Pass
Filter (LPF). This technique is widely used to
oversample/interpolate digital signal [2]-[4]. Digital low pass
filters (LPF) require large computational blocks. Discrete
Fourier Transform (DFT) and Fast Fourier Transform (FFT)
are used to reduce the computational cost of the filter. Yet,
FFT requires tens, if not hundreds, of multipliers to be
implemented [5]-[10]. In addition to the high cost in terms of
hardware, stability is another factor which adds to the
complexity of using DFT [11]-[13]. In this paper a new
multiplier-free technique, as shown in Fig. 1(b), to implement
digital interpolation filter is presented. The technique could be
used to interpolate digital data represented in either fixed
point or floating point number format. The presented
technique uses Finite Impulse Response (FIR) and requires
much less hardware to realize the interpolation filter.

Oversampled digital data could be interpolated using different
interpolation techniques. Hold interpolation is the simplest of
all. The up-samples hold the value of the slow samples in the
region between input samples. Up-sampling in Δ-Σ
modulators is based on reducing the difference between the
samples which makes hold interpolation less attractive (for Δ-
Σ modulators). Non-linear interpolation requires storing input
samples over long period to determine the over-sampled
sequence. However, linear interpolation requires less
hardware since only two samples are sufficient to determine
the output sequence. Linear interpolation is sufficient when
high Over-Sampling Rate (OSR) is used. Since widely used in
DSP, linear interpolation is adopted in the proposed
interpolation filter.

Fig. 1. Digital up-sample and interpolation filter. (a) conventional technique

with LPF. (b) sample calculation technique.

The paper is organized as follows. In section 2, the theory
behind the sample calculation of the interpolation filter is
described. Some circuit implementation issues are described in
section 3. In section 4, simulation results are presented. Some
conclusions are provided in section 5.

2. Sample Calculation Techniques

 Sample calculation interpolation technique is presented in this
section. In section 2.1, sample calculation interpolation technique
for fixed point number representation is described.

Upsampler LPFxS[n] yOS [m]

Sample calculationxS[n] yOS [m]

(a)

(b)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 96

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The technique is extended to include floating point numbers in
section 2.2. In section 2.3, the technique to evenly distribute the
calculated samples is provided.

2.1 Fixed-Point Number Representation

Fixed point number representation is assumed to represent
the input data samples xs[n], however, the methodology could
be generalized to include both fixed point and floating point
number representation as described in section II.B. Fixed
point number representation dedicates k bits out of the total
number of bits l to the integer part and (l-k) bits to the fraction
part. Without lose of generality, the decimal point is shifted
right (l-k) bits to convert the number to integer x[n] to simplify
the sample calculation process. The decimal point of the
output y[m] is shifted back left (l-k) bits to maintain the format
of the number representation of the oversampled output
yos[m].
 Every two successive samples of the integer input data
sequence x[n] and x[n+1] are used to determine the
oversampled and interpolated output y[m]. The output y[m]
(referred to by y[n,j]) is produced at the OSR, where m=(n,j) is
two dimensional index shown in Fig. 2, j is index changing
from 0 to Ns-1, and Ns=OSR. In sample calculation
interpolation filter, the value of the output sequence y[n,j] is
determined by direct calculation of the samples to avoid using
digital LPF which is needed in the conventional techniques.
Since x[n] is integer, y[n,j] is expected to be an integer
possessing the same precision (number of bits l) of x[n].

Fig. 2 Input and output sequence of sample calculation linear interpolation

filter.

The difference between two successive integer (fixed point

number with shifted decimal point) input samples x[n] and
x[n+1], Δ is integer as well,

 (1)

For ideal linear interpolation, the ideal output yid[n,j] is

determined by,

 (2)
given

Step= (3)

Since y[n,j] is integer and Step could be fraction, (2) could
not be used to determine y[n,j]. The output y[n,j] could be
either

 (4)

Note that for perfect linear interpolation,

 (5)

 (6)

 In order to satisfy (3)-(6), non-ideal interpolation is used.
For DSP applications such as (Δ-∑ DAC), non-ideal
interpolation is tolerable since the reduction in hardware
complexity could be orders of magnitude. Furthermore,
quantization error, always exists in DSP. Moreover, for high
OSR, non-ideal interpolation is acceptable.
 The number of output sequence samples y[n,j] in-between
two successive input samples x[n] and x[n+1] equals Ns. In the
ideal case each output sequence should be incremented by
Step= Δ/Ns. Rather than using fraction number to represent
the output samples either the ceiling or the floor of the Step is
used. In order to ensure that all output sequence samples are
integer the output samples are divided into two sets of outputs
yc[n,j] and yf[n,j], where

 , (7)
, (8)

 (9)

 (10)

The output sequence

 (11)

	
The set of indices of the output samples which take the value
yc [n,j], and which take the value yf[n,j], is

determined in section II.C.
 In order to satisfy (5)-(8), the number of samples which
take the value yf [n,j], p and the number of samples which take
the value yc [n,j], q are to be determined to satisfy,

 (12)
 (13)

Given Δ and Ns, p and q are determined by solving (12) and
(13) simultaneously,

 (14)
 (15)

 In order to reduce computational complexity in most DSP
applications, modulo-2 OSR is used. Since only floor and
ceiling of division by Ns are to be determined, simple r-bit left
shift, where r = log2 Ns, is sufficient to realize (9) and (10).
Also multiplication in (14) and (15) is realized by simple r-bit
shift right, significantly reducing the hardware needed to
calculate the samples and simplify the implementation of the
samples calculation technique. Note that, no multipliers or
divisors are needed to implement the filter.

2.2 Floating-Point Number Representation

In section II.A fixed point number representation was
assumed for the input sequence x[n]. The presented technique

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 97

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

is generalized to include floating point numbers in this
section. It is to be noted that equations (9), (10), (14), and (15)
are the equations needed to realize the filter. The output
samples are determined by simple addition in (7) and (8).
Simple floating point addition/subtraction is needed to realize
the filter. The output samples are determined by simple
addition in (7) and (8). In addition, multiplication and division
by Ns are to be implemented. Under the assumption of having
OSR modulo-2, multiplication and division is performed on
floating point numbers by simple addition and subtraction of
the exponent of the number, respectively. Without lose of
accuracy, in case of underflow or overflow in the exponent,
the mantissa of the floating point number is treated like the
integer number in section II.A. The technique could be used
for both fixed point and floating point number representation
without lose in accuracy. Once again multiplication and
division are completely eliminated.

2.3 Uniform Distributed of Calculated Samples

It is shown in section II.A that the output sequence is
divided into two sets of output samples; the samples which are
incremented by N, yf[n,j] and the samples which are
incremented by N1, yc[n,j]. The number of output samples,
which take the value yf[n,j], p and the number of output
samples, which take the value yc[n,j], q are provided in (14)
and (15) respectively. In order to obtain linear interpolation,
the samples which take the values yf[n,j] and yc[n,j] are evenly
distributed along the output samples sequence. Depending on
solving (14) and (15), if p q; whither p > q or p < q, the
majority of y[n,j] take either the value of yf[n,j] or yc[n,j],
respectively. Among the Ns output samples, majority samples
yMaj appears NMaj times in the output samples and minority
samples yMin appears NMin times in the output samples, where

 (16)

, (17)
 if , (18)

 and , (19)
 if , , (20)

and . (21)

The distribution of the samples yMaj and yMin is based on one of
two patterns Patn1 or Patn2 as shown in Fig. 3.

Sample index 0 1 2 ... … … OSR-1

Output sample yMaj yMin yMaj … … … yMin

(a)

Sample index 0 1 2 ... … … OSR-1

Output sample yMaj yMaj yMaj … … … yMaj

(b)
Fig. 3. The distribution of the minority and majority samples

in the output sequence a) pattern Patn1 b) pattern Patn2.

Pattern Patn1 is used when NMin ≥ NMaj/2. Minority

sample is assumed to exist after each majority sample in this
pattern. The difference between the number of majority
samples and minority samples, D = NMaj - NMin is determined.
A number of minority samples equals D/2 is replaced in the
pattern Patn1 with majority samples to satisfy (12), (16), and
(17). The special case of p=q is included in this patterns when
NMin=NMaj. In order to evenly distribute the majority and
minority samples, the index of the minority samples which are
replaced with majority samples, is determined by,

 (22)

where,

 i = 1,2,3,4,5,…C

For NMin < NMaj/2, pattern Patn2 is used to distribute the

samples. In Patn2 all samples are assumed to be majority
samples. A number of majority samples equals NMin is
replaced in the pattern with minority samples to satisfy (12),
(16), and (17). In order to evenly distribute the majority and
minority samples, the index of the majority samples which are
replaced with minority samples, is determined by,

 (23)

where ,
i = 1,2,3,4,5,… NMin

This distribution technique guarantees even distribution for

the minority samples along the majority samples. The
interpolated sequence is closest to linear under the digital
nature of the output sequence. The linearity of the
interpolation filter is demonstrated in section IV.

3. Circuit Implementation

 The presented technique reduces the hardware required to
realize the interpolation filter. Different techniques were
considered to achieve further reduction in transistor count and
power dissipation. A special case for the input sequence is to
have no difference between two successive input samples (Δ =
0). In this case, all output samples yos[m] take the value of the
input sample xs[n] reducing the power dissipation by
eliminating the activity in the computation block. Also,
division in (22) and (23) is implemented by iterative addition.
Ns is divided by two first (before performing the division) to
reduce the number of iterations of the division block.
 In order to satisfy (12), D must be an even number. C is
realized by single shift right operation. Binary shift and
addition were also sufficient to realize (9), (14), and (15).
Division used in calculating O(i) in (22) and (23) is done
using addition and subtraction operation to calculate the floor
value of the quotient. Some simulation results are included in

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 98

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

section IV.

4. Simulation Results

 Some simulation results are provided in this section. In
subsection IV.A, the interpolation algorithm is demonstrated.
Simulation results for circuit implementation are summarized
is subsection IV.B.

4.1 Interpolation Algorithm

The sample calculation interpolation algorithm is
implemented using Matlab7.0. OSR of 64 is assumed. The
over-sampled and interpolated output sequence is determined
to demonstrate the accuracy of linear interpolation. Different
input sequences are assumed. The output sequence is shown in
Fig. 4 (a), (b), (c), and (d) for Δ =0, Nmin > Nmaj/2, Nmin <
Nmaj/2, and p < q, respectively. Under the digital nature of the
output sequence, highly linear and accurate interpolation is
achieved as shown in the figure for different cases.

In Fig. 4(a), Δ=0, consequently no interpolation is needed
and the new samples have the same value of the original
samples. In this case, both x[n] and x[n+1]=100, p=64, q=0,
and consequently p is assigned to NMaj and q to NMin. In Fig
4(b), p > q; the number of samples incremented by N is
greater than that incremented by N1. Also, NMin ≥ NMaj/2,
Patn1 is used to calculate the index of the output samples

. For x[n]=50 and x[n+1]=20, p=34, q=30, p is assigned

to NMaj and q to NMin.. In Fig 4(c), p > q, NMin < NMaj/2, Patn2
is used to calculate the index of the output samples . In
this case x[n]=50, x[n+1]=120, p=58, and q=6. Consequently
p is assigned to NMaj and q to NMin. In Fig. 4(d), p < q; the
number of samples incremented by N1 is greater than that
incremented by N, in this case x[n]=20, x[n+1]=70, p=14 and
q=50. Consequently q is assigned to NMaj and p to NMin. High
linearity is demonstrated in different cases in Fig. 4.

4.2 Interpolation Filter

 The new interpolation filter is implemented using 65 nm CMOS
technology. The sample rate of compact disc digital audio system
of 44.1 KHz is used. For 16-bit data sample, input data sequence
of 705,600 bps is assumed. The OSR is determined for the
required performance. Linear interpolation with OSR up to 256 is
achieved with the implemented technique. The filter occupies an
area of 80X160 μm2. SPICE simulation is used to estimate the
power dissipation of the circuit. The filter dissipates 77.68 mW
when operating at 833.3 MHz. The filter specifications are
summarized in Table 1.

5. Conclusions

 In A new technique to implement digital interpolation filter is
presented. The technique employs a sample calculation functional
block, avoiding using multipliers in the filter and reducing the
hardware to implement the filter. The filter is realized with
80X160 μm2 using 65 nm CMOS technology. Over Sampling
Rate of up to 256 is achieved for 16-bit digital data sampled at

705,600 bps. The filter dissipates 77.68 mW when operating at
frequency of 833.3 MHz. The presented sample calculation
technique reduces the hardware required to realize the filter by
orders of magnitude while achieving higher Over Sampling Rate
as compared to FIR technique.

References
[1] Bernard Sklar, Digital Communication Fundamentals and Application;
Second Edition, Prentice Hall, 2004.
[2] Tzu-Chiek Kue; Kwentus, A.; Willson, A.N., “ A Programmable
Interpolation filter for Digital Communications Applications”, IEEE
International Symposium on Circuits and Systems, Vol. 2, pp.97-100, May
1998.
[3] Udo Zolzer, Digital Audio Signal Processing, John Wiley & Sons, 1997.
 [4] Richard G. Lyons, Understanding Digital Signal Processing; Second
Edition, Pearson Education, 2004.
[5] John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing,
Principles, Algorithms, and Applications; Fourth Edition, Prentice Hall, 2007.
[6] C. J. Pan, “A Low Power Digital Filter for Decimation and Interpolation
using Approximation processing”, IEEE International Solid-State Circuits
Conference, pp 102-103, 439, February 1997.
[7]H.K. Kwan, “High-Order Tunable Passive Digital Filters”, IEEE
International Symposium in Circuits and Systems, Vol. 2, pp II.700-II.703,
May 2002.
[8] I.R. Khan, M. Okuda, and R. Ohba, “New Designs of Frequency Selective
FIR Digital Filters”, IEEE International Symposium on Circuits and Systems,
Vol. 4, pp. IV.185-IV.188, May 2003.
[9] M. Vollmer and H. Kopmann, “A Novel Approach to an IIR Digital Filter
Bank with Approximately Linear Phase, “IEEE International Symposium on
Circuits and Systems, Vol. 2, pp.II.512-II.515, May 2002.
[10] M. Bhattacharya and T. Saramaki,” Allpass Structures for Multiplierless
Realization of Recursive Digital filter, “IEEE International Symposium on
Circuits and Systems, Vol. 4, pp. IV 237-IV.240, May 2003.
[11] Steven r.Norsworthy, Richard Schreier, Gabor c. Temes, “Delta-Sigma
Data Converters Theory, Design, Simulation.” IEEE Press, 1997.
[12] Robert S.Balog, “Topics In DSP: Interpolation & Delta Sigma
Quantization”, Prentice Hall, 1996.
[13] Peter Kiss, Jesus Arias, Dandan Li, and Vito Boccuzzi, “Stable High-
Order Delta-Sigma Digital-to-Analog Converters”, IEEE transactions on
Circuits and Systems, Vol. 51, no.1, Jan 2004.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 99

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 (a) (b)

 (c) (d)

Fig. 4, Matlab simulation results for the interpolation filter. a) ∆=0, no interpolation required, all output samples are equal .

b) p>q, NMin > NMaj/2; Patn1 is used. c) p>q, NMin < NMaj/2; Patn2 is used. d) p<q.

Magdy A. El-Moursy was born in Cairo, Egypt in 1974. He
received the B.S. degree in electronics and communications
engineering (with honors) and the Master's degree in computer
networks from Cairo University, Cairo, Egypt, in 1996 and 2000,
respectively, and the Master's and the Ph.D. degrees in electrical
engineering in the area of high-performance VLSI/IC design from
University of Rochester, Rochester, NY, USA, in 2002 and 2004,
respectively. In summer of 2003, he was with STMicroelectronics,
Advanced System Technology, San Diego, CA, USA. Between
September 2004 and September 2006 he was a Senior Design
Engineer at Portland Technology Development, Intel Corporation,
Hillsboro, OR, USA. During September 2006 and February 2008
he was assistant professor in the Information Engineering and
Technology Department of the German University in Cairo (GUC),
Cairo, Egypt. Dr. El-Moursy is currently Staff Engineer in the
Mentor Graphics Corporation, Cairo, Egypt. His research interest
is in Networks-on-Chip, interconnect design and related circuit
level issues in high performance VLSI circuits, clock distribution
network design, and low power design. He is the author of more
than 30 papers, four book chapters, and one book in the fields of
high speed and low power CMOS design techniques and high
speed interconnect.

Ahmed Abdellatif was born in Cairo, Egypt, in 1986. He received
his B.Sc. from the German university in Cairo, Egypt in 2008,
M.Sc. from the University of Ulm, Germany in 2010. From 2008 to
2009, he worked as a teaching assistant in the German university
in Cairo. From 2009 to 2010, he worked as a student scientist in
university of Ulm, on amplifiers for Retinal implants. Currently, he is
working on his Ph.D. in Friedrich-Alexander University Erlangen-
Nuremberg, where his main research point is designing MMIC's for
broadband operation up to 100 GHz for radar and medical
applications.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 100

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

