
Improve and Compact Population in XCSFCA using
Polynomial Equation

Saeid Goodarzian1, Ali Hamzeh2 and Sattar Hashemi3

1CE School, CSE and IT Department, Shiraz University, Shiraz, Iran

2 CE School, CSE and IT Department, Shiraz University, Shiraz, Iran

3 CE School, CSE and IT Department, Shiraz University, Shiraz, Iran

Abstract

XCS is a rule-based evolutionary online learning system.
XCSFCA is an extension of XCS where compute continuous
actions directly from input states. In XCSFCA, computed actions
of a classifier, demonstrated as a straight lines. But in very
problems, the desired best action curves are not linear and there
are arched; therefore a system with linear action computation
needs a large population. This paper studies a new method for
compute continuous actions directly from input states. In new
proposed method action computes by polynomial equation.
Consequently, each classifier represents a nonlinear action curve
and the classifiers are more generalized. In comparison with
XCSFCA, our method proves to be more efficient and smaller
population size.

Keywords: XCSF, XCSFCA, continuous action, polynomial
equation.

1. Introduction

Learning classifier systems define a new online model of
genetic based machine learning where do not create a
single solution while create multiple solutions, collected
into a population, called classifiers (rules). Classifiers
adaptively change to new classifiers, to make more
accurate decisions in return for inputs. The description in
[4], describes three major machine learning problem types
that learning classifier systems can solve them. In
optimization problems, learning classifier system search
problem landscape to find the best solution at hand. In
classification problems, LCSs provide class labels to
partition the given input patterns into different classes.
Moreover, in reinforcement learning problems [17], LCSs
propose an action for a situation and after the receipt of the
reward, they apply reward back-propagation method to
updated and improve classifiers.

Each classifier cl in learning classifier systems consists of
a Condition cl.C part, an Action cl.A part and a Reward
Prediction cl.R value. Classifier cl predicts reward cl.R
given its condition cl.C is satisfied, and given further that
action cl.A is executed.

Learning classifier system as an online method, in each
time step, senses a situation of problem environment and
then checks all classifiers in its population [P] to find
which classifier condition can satisfy the current situation,
called matching. All matched classifiers are inserted into a
list called match set [M], and then according to their
eligibility, one action would be selected and performed on
the environment, the involved classifiers are inserted into
another list called action set [A]. Regarding to the action
effects, the payoff value is received and used to update the
parameters of the classifiers in the action set [A].

XCS [20] is one of the most well-known Learning
Classifier Systems which attracted many researchers
nowadays [11]. At 2002, as a mail stone, Wilson has
introduced one of the most promising extensions to XCS,
called XCSF, in [23]. The most important modification in
XCSF with respect to XCS is its ability to compute the
environmental payoff using an approximation method
instead of tuning a real number. The overall architecture of
XCSF is based on XCS and is very similar to XCSI [22]; a
version of XCS with continuous classifier condition. In
XCSI, each classifier has interval condition instead of
traditional binary ones.

Considering current researches in XCS realm, it can be
said that condition and prediction parts are two basic
components which are mostly been improved and
investigated [5, 12, 13, 14, 15 and 21]. However, in recent
researches, the action part becomes more popular due to its
importance role that can directly affect very large
application area such as classification, approximation,
simulation, control etc. [7, 8, 9 and 16]. Briefly, it must be
noted that almost in all proposed architecture for a learning
classifier system, the action part consists of an integer
indicating particular class or effects in the environment
among a limited list of candidates. However, in a newly
introduced classifier system called Generalized Classifier
System [25], a novel representation for the action part,
named the continuous actions, is introduced. This scheme
is able to compute the action instead of selecting it and
therefore extends the range of possible actions from a
limited discrete set to a continuous range. To describe in

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 84

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

brief, it is worth mentioning that the structured of each
classifier in GCS is formed as:

,ݔሺݐ ܽሻ ⇒ ,ݔሺ ܽሻ (1)

Where ݐሺݔ, ܽሻ is the condition part of a particular rule and
,ݔሺ ܽሻ is its payoff prediction. In this paper, some
improvements in XCSFCA will be investigated with the
aim of increasing the performance and compacting the
resulted population. Here, the classifier action is computed
as a polynomial combination of the input and a vector of
tuned coefficients.

The rest of this paper is organized as follows: in the next
section we describe XCSF in brief, and then some relevant
works on continuous action are reviewed. Then we
described our proposed method and benchmark problems.
At last, new method's results are presented and discussed.

2. XCSF in brief

XCSF [23] is a model of Learning Classifier System that
extends the typical concepts of classifiers through the
introduction of a computed classifier prediction. To
develop XCSF, XCS has to be modified in three respects:
(i) classifier conditions are extended for numerical inputs,
as done in XCSI [22]; (ii) classifier are extended with a
vector of weightsݓሬሬԦ, that are used to compute the classifier
prediction; finally, (iii) The original update of the classifier
prediction must be modified so that the weights are
updated instead of the classifier prediction. These three
modifications result in a version of XCS, XCSF [23] that
maps numerical input into actions with an associated
calculation prediction.

Classifiers: In XCSF, classifiers consist of a condition, an
action and four main parameters. The condition specifies
which input states the classifier matches; as in XCSI [22],
it is represented by a concatenation of interval predicates,
inti	 ൌ	 ሺli,	 uiሻ,	 where li (“lower”) and ui	 ሺ“upper”ሻ	 are	
integers,	 though	 they	 might	 be	 also	 real.	 The	 action	
specifies	 the	 action	 for	which	 the	 payoff	 is	 predicted.	
The	 four	 parameters	 are:	 ሺiሻ	 The	 weightݓሬሬԦ,	 used	 to	
compute	 the	 classifier	 prediction	 as	 a	 function	 of	 the	
current	input;	ሺiiሻ	The	prediction	error	ε, that estimates
the error affecting the classifier prediction; (iii) The fitness
F that estimates the accuracy of the classifier prediction;
(iv) The numerosity num, a counter used to represent
different copies of the same classifier. The weight vector
 for each possible input and anݓ ሬሬԦ has one weightݓ
additional weight ݓ corresponding to a constant inputݔ,
which is set as a parameter of XCSF.

Performance Component: XCSF works as XCS. At each
time step t, XCSF builds a match set [M] containing the
classifiers in the population [P] whose condition matches

the current sensory input ݏ௧; if [M] contains less than ߠ
actions, covering takes place and creates a new classifier
that matches the current inputs and has a random action.
Each interval predicates݅݊ݐ ൌ ሺ݈; ሻ in the condition of aݑ
covering classifier is generated as ݈ ൌ ௧ሺ݅ሻݏ െ
ݑ and	ሻݎଵሺ݀݊ܽݎ	 ൌ ௧ሺ݅ሻݏ െ	݀݊ܽݎଵሺݎሻ , where ݏ௧ሺ݅ሻ is
the input value of state ݏ௧ matched by the interval [0,ݎ]
with ݎ fixed integer. The weight vector ݓሬሬԦ of covering
classifiers is initialized with zero values (note in the
original paper, weight are initialized with values in [0, 1]);
all the other parameters are initialized as in XCS [20]. For
each action ܽ in [M], XCSF computes the system
prediction that estimates the payoff that XCSF expects
when action ܽis performed. As in XCS, in XCSF the
system prediction of action a is computed by the fitness
weighted average of all matching classifiers that specify
action a. However, in contrast with XCS, in XCSF the
classifier prediction is computed as a function of the
current state ݏ௧ and the classifier weight vectorݓሬሬԦ.
Accordingly, in XCSF system prediction is a function of
both the current state	ݏ and the action a. Following a
notation similar to [6], the system prediction for action a in
state ݏ௧, P(ݏ௧;a), is defined as equation 2:

ܲሺݏ௧; ܽሻ ൌ
∑ ݈ܿ. ௧ሻݏሺ ൈ ݈ܿ. ܨ ∈ሾெሿೌ

∑ ݈ܿ. ሾெሿೌ	∈	ܨ

(2)

Where ݈ܿ is a classifier, ሾܯሿ represents the subset of
classifiers in [M] with action ܽ, ݈ܿ. ;݈ܿ is the fitness of ܨ
݈ܿ. ௧. Inݏ ௧ሻ is the prediction of cl computed in the stateݏሺ
particular, ݈ܿ. ௧ሻ is computed as equation3ݏሺ

݈ܿ. ௧ሻݏሺ ൌ ݈ܿ. ݓ ൈ ݔ 	݈ܿ. ݓ ൈ ௧ሺ݅ሻݏ
௧வ

 (3)

Where ݈ܿ. is a constantݔ of ݈ܿ andݓ is the weightݓ
input.The values of ܲሺݏ௧; ܽሻ form the prediction array.
Next, XCSF select s an action to perform. The classifiers
in [M] that advocate the selected action are put in the
current action set [A]; the selected action in sent to the
environment and a reward r is returned to the system
together with next input state ݏ௧ାଵ.

Reinforcement Component: XCSF uses the incoming
reward r to update the parameters of classifiers in action
set [A]. First, the reward r is used to update the weight
vector ݓሬሬԦ using a modified delta rule [19] as follows for
each classifier	݈ܿ ∈ ሾܣሿ, each weight 	݈ܿ. is adjusted by aݓ
quality ∆ݓ computed as equation (4):

ݓ∆ ൌ
ߟ

Ԧ௧ିଵ‖ଶݔ‖
൫ݎ െ ݈ܿ. ௧ିଵሺ݅ሻݔ௧ିଵሻ൯ݏሺ

(4)

Where ߟ is a correction rate and ݔԦ௧ିଵ is defined as the
input state vector ݏ௧ିଵ augmented by a constant ݔ
(i.e.ݔ௧ିଵ ൌ 	 ,ݔ〉 ,௧ିଵሺ1ሻݏ ,௧ିଵሺ2ሻݏ … , ௧ିଵሺ݊ሻ〉) andݏ

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 85

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Ԧ௧ିଵ for further details referݔ Ԧ௧ିଵ‖ଶ is the norm of vectorݔ‖
to [23]. The values ∆ݓare used to update the weights of
classifier cl as equation 5.

݈ܿ. ݓ 	← ݈ܿ. ݓ (5)ݓ∆

Then the prediction error ߝis updated as equation 6:

݈ܿ. 	ߝ ← 	݈ܿ. ߝ ݎ|ሺߚ	 െ ݈ܿ. |௧ିଵሻݏሺ െ 	݈ܿ. ሻߝ (6)

Where ߚ is the learning rate. Classifier fitness is updated
as in XCS. First, the raw accuracy ߢ of the classifiers in
[A] is computed as equation 7.

݈ܿ. ߢ ൌ 	ቐ
1															݂݅ ݈ܿ. ߝ ൏ ߝ

ሺߙ
݈ܿ. ߝ
ߝ

ሻିఔ		݁ݏ݅ݓݎ݄݁ݐ		
 (7)

Where ߝ is a constant that controlled the acceptable
values of prediction error	ߝ. If ݈ܿ. the errorߝ is less than ߝ
is accepted and classifier is accurate (݈ܿ. ߢ ൌ 1ሻ, otherwise
the accuracy of classifier ݈ܿ is controlled by parameters ߙ
and	ߥ. For represent efficient accuracy of each classifier,
݈ܿ. ᇱcalculated respect to other classifier accuracies andߢ
repetition, so the raw accuracy ߢis used to calculate the
relative accuracy ߢᇱ as equation 8.

݈ܿ. ′ߢ ൌ 	
݈ܿ. 	ߢ ൈ ݈ܿ. ݉ݑݑ

∑ ܿ ݈.∈ሾሿ 	ߢ ൈ 	ܿ ݈. ݉ݑ݊
 (8)

Finally, the relative accuracy ߢ′is used to update the
classifier fitness as equation 9.

݈ܿ. ܨ ൌ 	݈ܿ. ܨ .ሺ݈ܿߚ	 ᇱߢ െ 	݈ܿ. ሻ (9)ܨ

An algorithmic description of the overall update procedure
is reported in [13].

Discovery Component: The genetic algorithm in XCSF
[23] works as in XCSI [22]. On a regular basis depending
on the parameterீߠ, the genetic algorithm is applied to
classifiers in [A]. It selects two classifiers with probability
proportional to their fitness, copies them, and with
probability ߯ performs crossover on the copies; then, with
probability ߤ it mutates each allele. Crossover and
mutation work as in XCSI [22]. The resulting offspring are
inserted into the population, if the population size is
exceeding the maximum size of population, deletion
method performed to delete the excessive classifiers.

3. Related works on continuous actions in
LCS

In LCSs, actions are typically fixed, discrete, and encoded
by a set of symbols, e.g. {0, 1}, {“Left”, “Right”, and
“Top”, “Down”}, {“12”,”15”…”63”}. However,
continuous real-valued actions are desirable in many

applications especially where fine reactions are more
important. This is very complicated for a LCS with
discrete actions to handle the continuous real-valued action
range; therefore, LCSs that can generate the actions
according to sensory inputs are interested. This section
reviews two notable investigations in this area.

3.1 Generalized Classifier System (GCS)

In [25], Wilson described three distinct classifier system
architectures for continuous action. Generalized classifier
system (GCS) is more applicable and remarkable
architecture in comparison with the other one. Many basic
parts of GCS inherited from XCSF however extensions
where permit continuous action describes here. Each
classifier in GCS structured in format of:

,ݔሺݐ ܽሻ ⇒ ,ݔሺ ܽሻ (10)
Where ݐሺݔ, ܽሻ is the condition part of a particular rule, and
,ݔሺ ܽሻ is its payoff prediction computed as a linear
combination of weight vectorݓሬሬԦ and collected vector of
input x, action a and a constant value namedx0. Satisfying
,ݔሺݐ ܽሻ is related to both values x and a. since for each
time step t best action for each satisfied classifier is
desirable, equation (11) was used to compute the best
action:

ܽ∗ሺݔሻ ൌ ∈ݔܽ݉ ܲሺݔ, ܽሻ|	ݐሺݔ, ܽሻ ൌ ݁ݑݎݐ (11)

Where ܽ∗ሺݔሻ is the best action for input x and A is a
continuous range for valid actions.

In GCS, author inspired the idea from an investigation on
XCSF where the condition parts of classifiers are
represented as general hyper-ellipsoidal [5].

Satisfying ݐሺݔ, ܽሻ is depends on the values of x and a. So,
although to form the match set [M] the values of both x
and a are needed, the action a is the system output and not
available yet. So in exploration phase a random action a
generated, but in exploitation phase a different
methodology is used to find the abest (the best action of a
particular classifier) which is desirable for the learner. In
exploitation phase, a classifier would be a member of [M]
if its condition part matches the input x and has any value
of ܽ ∈ Suppose thatܽ andܽ௨is the minimum and .ܣ
maximum value ofܽ ∈ ,ݔሺ,Since .ܣ ܽሻis computed
linearly. Thus, it is clear that through all possible values of
a either ܽ orܽ௨can lead to maximizeሺݔ, ܽሻ, in other
words one of ሺݔ, ܽሻ or ሺݔ, ܽ௨ሻ have the highest
prediction value. So, either ܽ orܽ௨ will be selected as the
abest. Finally, forܽ∗, the system picksthe best of all abest that
yield higher prediction among the others.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 86

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3.2 XCSF with computing continuous actions
(XCSFCA)

XCSFCA is an extension of XCSF that can be applied on
the environments where the action could be assumed as a
computable function with respect to the environmental
input. However, in the recent GCS [25], actions are
selected from a continuous range; also in XCSFCA,
actions are directly computed from a continuous function
of the input. In XCSFCA, the classifier action ݈ܿ. ܽis
computed as equation (12) suggested:

݈ܿ. ܽሺݔ, ሻߞ ൌ .ߞ	 ᇱݔ

ᇱݔ ൌ ሺݔ, ,ଵݔ … , ሻ (12)ݔ
Where ߞ	is a vector of action weights and ݔ is a constant,
also a vector of mutation rate ݈ܿ. is added to eachߪ
classifier to be used in action weight updating phase. An
evolutionary strategy (ES [10]) evolves the action weights
to compute actions that are more accurate. The XCSFCA
principal changes as follow:

The process of building the match set [M]:XCSFCA
builds a match set [M] containing the classifiers in the
population [P] whose condition matches the current
sensory input and its computed action ݈ܿ. ܽ belongs to the
range of actionܽ, where ܽis a range of
acceptable values for actions.

Covering operator: classifier	݈ܿis accepted and inserted
into population [P] and consequently into match set [M] if
the computed action ݈ܿ. ܽ belongs to the allowed action
range.

Action selection in exploration: the action with the
highest prediction is selected.

4. Extension to XCSFCA by polynomial
function

As described in section 3.2, XCSFCA uses a linear
combination of action weight vector ݈ܿ. to ′ݔ and	ߞ
compute actions in reply to specified environmental state
x. The length of weight vector ߞ is related to problem
landscape dimension. In XCSFCA classifiers action curve
represented as straight line. Since the classifier action cl.A
must align to desired action curve, while the problem is
not complex and the relation between input x and best
action a* is uniformly ascending or descending, the linear
actions is efficient. In more complex problems the curve of
best action a*is not uniformly ascending or descending
and it is not linear like and it is arched. Therefore,
XCSFCA must evolve a large population to handle the
problem landscape entirely, because a particular classifier
in XCSFCA just works finely in a small area of problem

landscape. If the classifiers activation area becomes
undersized, more classifiers need to cover problem
landscape. For these types of problems, in one side,
producing a suitable population and in the other side
evolving action weight vector ݈ܿ. for a particular classifierߞ
is time consuming processes, also population size,
proportionally grown up.

In this section, we describe that the action computation
function can change to reach another mapping type of
input x to action a.

We replaced action weight vectorߞ with action
computation coefficients	߭ ൌ ሺ߭, ߭ଵ, ߭ଶ, … , ߭ሻ. If our
modification of XCSFCA, the classifier action ݈ܿ. ܽ is
computed as a polynomial equation of ߭ and the current
input ݔ. Degree of polynomial is related to problem, e.g.
for a polynomial with degree 2 the classifier action
computed as equation 13:

݈ܿ. ܽሺݔ, ߭ሻ ൌ ߭ଶ ∗ ଶݔ 	߭ଵ ∗ ݔ	 	߭ (13)

It is clear that, for a low dimensional problem, a
polynomial function with opportunely degree is more
powerful to compute actions because the number of action
computation coefficients ߭is related to polynomial degree
and we can adjust the polynomial degree considering the
problem complexity. In the other point of view, through
using polynomial function for compute actions, a
particular classifier is able to cover a larger subsection of
problem landscape because this is more flexible and better
to be aligned with best actions curve.

We expected that, modified XCSFCA using polynomial
function can solve problems that are more complex, also it
can compact the population size in the simplest problems.
The promising results presented in this paper approve our
claim.

5. Experimental Setup

This section described frog1 and frog2 problems from [24]
and [18]. Also for better examination, our proposed
method a new frog problem introduced. In comparison
with frog1 and frog2, the new frog problem is more
difficult.

5.1 Frog problems

The frog problem introduced in [24] is a one-dimensional
problem describing a frog who wants to catch a fly that is
located at the distance d. The frog senses the distance d
through a value named x calculated as equation (15), and
jumps with respect to x then the frog receive the payoff
using the function given as equation (14):

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 87

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

ܲሺݔ, ܽሻ ൌ 	 ൜
ݔ ݔ	݂݅												ܽ ܽ 1
2 െ ሺݔ ܽሻ				݁ݏ݅ݓݎ݄݁ݐ

 (14)

ሺ݀ሻݔ ൌ 	1 െ ݀ (15)

As an extension to the original frog problem, the
frog2problem is introduced in [12] where both payoff
function and transformation of d to x are modified as
equation (16) and (17):

ܲሺݔ, ܽሻ ൌ 	 ൜
ܽ	݂݅							݁ݔ െ݈݊ݔ
݁ݏ݅ݓݎ݄݁ݐ			ଵ݁ିିݔ

 (16)

ሺ݀ሻݔ ൌ 	݁ିௗ (17)
Fig. 1 and Fig. 2 show the best action a* of the frog1 and
frog2 with respect to x. We introduce an extension of frog
problem called Frog3, which is demonstrated in fig. 3(a,
b). In Forg3, the payoff function is still continuous and
nonlinear which is composed of two nonlinear forms, also
the relation between x and a* is not uniformly ascending
or descending. The payoff function is computed as
equation (18) and (19):

ሺݔ, ܽሻ ൌ 	

ە
ۖ
۔

ۖ
ۓ

ܽ
భ
మ
ሺୱ୧୬ሺଶగ௫ሻାଵሻ

									݂݅		ஸ	ଵ
ଶ
ሺୱ୧୬ሺଶగ௫ሻାଵሻ

ି	
భ
మ
ሺୱ୧୬ሺଶగ௫ሻାଵሻ

భ
మ
ሺୱ୧୬ሺଶగ௫ሻାଵሻିଵ

 ݁ݏ݅ݓݎ݄݁ݐ										1
 (18)

ሺ݀ሻݔ ൌ 	 ଵ
ଶ
ሺୱ୧୬ሺଶగௗሻାଵሻ (19)

Figure 1: Best action a* of frog1

Figure 2: Best action a* of frog2

Figure 3(a): Best action a* of frog3

Figure 3(b): Payoff for all input x and action a of frog3

5.2 Simulation Setting

All the experiments discussed in this paper are performed
following the standard design used in the literature [25].
To apply fair comparison of our results with other related
work results, we used the minimal change to parameter
setting. The parameters setting for the experiment were as
follows:ܰ ൌ 2000, ߚ ൌ 0.5, ߙ ൌ 0.1, ߟ ൌ 0.2, ߜ ൌ 0.1,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 88

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

ீߠ ൌ 	48, ߥ ൌ 5, ߝ	 ൌ 0.01, ߤ ൌ 0.04, ߯ ൌ 0.8, ௗߠ ൌ
	50. Both GA-subsumption and action set subsumption
were not activated. Each run would stop after 100,000
explore problems. Explore and exploit problems are
experimented one after one. As a polynomial with degree
2is used to compute the actions, each classifier has an
array with 3elements ߭ ൌ ሺ߭, ߭ଵ, ߭ଶሻ as action
computation coefficients. The payoff would be received
after applying the selected action. The fly positions were
randomly selected from continuous range [0, 1]. The
actions were computed within continuous range [0, 1].To
plot the best action a, x was scanned from 0 to 1 and from
݁ିଵ to 1 and from 0 to 1 in frog1, frog2 and frog3problems
respectively, increased by 0.001. The best action curve is
plotted, averaged over ten runs.

6. Results

6.1. Frog1`s results.

Fig. 4 shows the system performance (in black),
population size (in blue) and system error (in red).As it
Fig.4 shows, the system performance is greater than 99%
and system error drops to smaller than 1% after 21000
explore problems. The final population size of classifiers N
is smaller than 19% of N, and it is worth to mentioning
that the final population size is about half of XCSFCA
population size showed in [18].

Figure 3: Results of frog1 average over ten runs

Figure 4: Best action a* of frog1 is plotted by scanning the values of x
from 0 to 1, increased by 0.001 averaged over ten runs. Best action a* is

slightly borken at some input x

 Fig. 5 shows the best action a* of frog1 which is very
similar to diagonal 1-x. The frog problem seems simple,
however the mapping from real distance d to transformed
distance x makes it as a benchmark because this mapping
from d to x hide the real position of fly and the frog-like
system to be compelled to catch the fly using the payoff
values. In the finalized population, the vectors of action
computation coefficients ߭, ߭ଵ	ܽ݊݀	߭ଶ are close to 1, -1
and 0 respectively, and the standard deviations
,ߪ ଶare very close to zero so in late phases theߪ	݀݊ܽ	ଵߪ
action computation coefficients ߭ ൌ ሺ߭, ߭ଵ, ߭ଶሻ have little
change.

Table1, shows 20 more activated classifiers from one run
of frog1, where selected from the finalized population. In
Table 1, ݈ and ݈ଵare the values for the interval predicate;
 ݔ ଶ are the prediction weights for constantݓ ଵandݓ ,ݓ
and the input ݔ and the action a respectively; ߭, ߭ଵ and߭ଶ
are the action computation coefficients for ݔ, ݔ and ݔଶ
respectively; ߪ, ଶ are the standard deviationsߪ	݀݊ܽ	ଵߪ

used by mutation on ߭, ߭ଵ and߭ଶ respectively;, fit and
num indicate prediction error, classifier fitness and
numerosity respectively. For example in the last row of
Table 1, classifier condition starts from 0.302 and spreads
to 0.935, so from this interval x = 0.1 andCl.ais calculated
by Eq.(13) as follows: ݈ܥ. ܽ ൌ ߭ଶ ∗ 0.01 	߭ଵ ∗ 0.1
	߭ଷ ൌ 	െ0.0021	 ∗ 	0.01	 	െ1.0023	 ∗ 	0.1	 	0.9995	 ൌ
	0.8992

6.2. Frog2`s results.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 89

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

However frog2 is more difficult than frog1; Fig. 6 shows
the system performance, population size and system error
of frog2 where averaged over ten runs. The system
performance is greater than 99% and the system error
drops to smaller than 1% after 22000 explore problems.
The final population size of classifiers N is smaller than
20% of N where it is about half of XCSFCA population
size showed in [18]. Fig. 7 shows the best action a* of
frog2 which is very similar to curve –ln(x).

Figure 6: Results of frog2 average over ten runs

Figure 7: Best action a* of frog2 is plotted by scanning the values of x
from 0 to 1, increased by 0.001 averaged over ten runs. Best action a* is

slightly borken at some input x

Fig. 8 shows two classifiers with similar condition part
where the first one calculate actions using linear function
like XCSFCA and the second one calculate actions using
polynomial equation. The condition part of both classifiers
are Cl.c = [0.503, 0.812], but the action weight vector of
first classifier is݈ܥ. ,ߞሺ=ߞ ଵሻ = (-1.5210, 1.4251) andߞ
action computation coefficient of second one isCl.υ ൌ

ሺυ,υଵ,υଶሻ ൌ ሺ1.90, -2.99, 1.11ሻ. Fig. 8 clearly shows
that the second classifier activity area is larger than first;
consequently, in this type of action computation, the
number of classifiers for handle a wide area of problem is
smaller than linear case and the population tends to be
compacted.

Figure 8: Compare two classifier activites;first classifier with polynomial
computed action and second classifier with linear computed action

Table2, shows 35 more activated classifiers from one run
of frog2, which are selected from the finalized population.
All columns of Table 2 are same as Table 1. For example,
in the first row of this table, the classifier condition starts
from 0.398 and spreads to 0.706,so from this interval x =
0.4 and Cl.ais calculated by Eq.(13) as follows: ݈ܥ. ܽ ൌ
߭ଶ ∗ 0.16 	߭ଵ ∗ 0.4 	߭ଷ ൌ 	1.6209	 ∗ 	0.16	
	െ3.6205	 ∗ 	0.4	 	0.1.6209	 ൌ	0.9137while –
ln(0.4)=0.09163.

6.3. Frog3`s results.

In Section 5.1, we described that both frog1 and frog2 are
uniformly descending but frog3 is not uniformly
descending and has two direction changes. Calculating
action by linear function is effective for frog1 and frog2
and similar problems because each classifier calculates the
actions as a line, but for frog3 linear function is not
effective and need more classifier to cover all points of
problem landscape.

Fig. 9 shows the system performance (in black),
population size (in blue) and system error (in red) of
frog3where averaged over ten runs. The system
performance is greater than 99% and the system error
drops to smaller than 1% after 29000 explore problems.
The final population size of classifiers N is smaller than

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 90

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

30% of N. Fig. 10 shows the best action a* of frog3 which

is very similar to curve
ଵ

ଶ
ሺsinሺ2ݔߨሻ 1ሻ.

Figure 9: Results of frog3 average over ten runs

Figure 10: Best action a* of frog3 is plotted by scanning the values of x
from 0 to 1, increased by 0.001 averaged over ten runs. Best action a* is

slightly borken at some input x

Fig. 11 shows a classifier activity for frog3 problem where
selected from the finalized population of one run. In Fig.
11, the classifier condition is Cl.c = [,࢛] = [0.105782,
0.54728], the classifier actions are calculated by Eq. (13)
where x starts fromto࢛ and increases by 0.001 and the
action computation coefficients is. ߭ ൌ ሺ߭, ߭ଵ, ߭ଶሻ ൌ
	ሺ0.47778, 4.089679,െ8.149012ሻ. Fig. 11 clearly shows
that computing action using polynomial equation makes
classifiers that are more powerful and in more complex
problems such as frog3, XCSFCA could solve problem
with smaller population size.
Table 3, shows 45 more activated classifiers from one run
of frog3, that are selected from the finalized population.
All columns of this table are same as Table 1.Fig. 12
shows the activity of classifiers showed in Table 3. Fig. 12

demonstrates that all points of curve
ଵ

ଶ
ሺsinሺ2ݔߨሻ 1ሻcan

covered by the classifiers with continuous action using
polynomial equation and we can conclude that cover this
curve by classifiers that use linear function to compute
actions, is more difficult and consequently needs larger
population.

Figure 11: A classifier with polynomial computed action for frog3
problem

Figure 12: Classifier activities for frog3takes from table3

7. Conclusion

In this paper we presented a new method for calculating
continuous actions in which there would be directly
computed as a polynomial equation of the input state a and
a vector of polynomial coefficient ݈ܥ. ߭ ൌ ሺ߭, ߭ଵ, ߭ଶሻ. We
have shown that computing action using polynomial
equation not only can solve the previous problems but it
can solve more difficult problems with smaller population
size. In our proposed method the classifiers is more

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 91

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

general because the mapping from input states to actions is
none linear. Therefore, the action curve effectively can
align to desired action curve. For better examination, we
introduced a new frog problem called frog3 where this is
more difficult in compare to forg1 and frog2.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 92

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Appendix

Table 1: Activated classifiers from one run of frog1

 fit num࣌ ࣌ ࣌ ࣏ ࣏ ࣏ ࢝ ࢝ ࢝
0.564 0.895 551.34 447.53 448.30 0.9435 -0.8359 -0.1133 0.0003 0.0002 0.0002 0.00003 0.932543 17
0.422 0.453 552.12 446.15 447.03 0.7595 0.1012 -1.2599 0.0001 0.0002 0.0001 0.00001 0.85019 34
0.512 0.696 551.15 446.17 446.39 0.8351 -0.4288 -0.4888 0.0002 0.0001 0.0002 0.00000 0.931921 26
0.405 0.724 550.76 449.89 449.99 1.0099 -1.0494 0.0562 0.0001 0.0000 0.0001 0.00002 0.936204 2
0.435 0.670 551.67 447.81 447.47 1.0783 -1.3053 0.2960 0.0001 0.0003 0.0002 0.00000 0.900447 39
0.309 0.817 551.34 446.71 445.91 0.9762 -0.8981 -0.1010 0.0003 0.0002 0.0001 0.00003 0.914114 20
0.351 0.834 550.17 448.96 448.56 0.9965 -0.9972 0.0016 0.0001 0.0003 0.0000 0.00003 0.912424 35
0.119 0.519 552.13 448.01 448.70 1.0094 ‐1.0726 0.1227 0.0001 0.0002 0.0002 0.00000 0.886267 32
0.053 0.506 550.81 448.93 448.68 1.0059 ‐1.0317 0.0339 0.0002 0.0000 0.0003 0.00001 0.933522 23
0.036 0.610 550.19 449.24 450.03 0.9957 ‐1.0011 0.0201 0.0003 0.0002 0.0003 0.00002 0.910299 18
0.014 0.751 550.37 449.38 448.45 0.9948 ‐0.9458 ‐0.0745 0.0001 0.0002 0.0002 0.00001 0.981172 14
0.406 0.847 550.46 449.51 448.80 1.0601 ‐1.2017 0.1624 0.0001 0.0002 0.0001 0.00000 0.886937 12
0.297 0.787 550.76 449.07 449.85 1.0262 ‐1.0952 0.0829 0.0000 0.0002 0.0003 0.00003 0.935824 7
0.591 0.965 550.24 448.99 449.85 0.9449 ‐0.8878 ‐0.0478 0.0002 0.0000 0.0001 0.00002 0.98569 36
0.125 0.782 550.18 448.87 449.22 1.0112 ‐1.0508 0.0465 0.0002 0.0002 0.0001 0.00000 0.859041 33
0.458 0.942 551.19 448.65 448.77 0.9300 ‐0.7961 ‐0.1428 0.0002 0.0000 0.0001 0.00002 0.869776 30
0.102 0.926 550.71 449.03 449.00 0.9942 ‐0.9912 ‐0.0026 0.0001 0.0000 0.0002 0.00001 0.923078 17
0.212 0.972 550.32 449.59 449.64 0.9925 ‐0.9505 ‐0.0465 0.0001 0.0000 0.0001 0.00001 0.918337 18
0.224 0.867 550.83 448.89 449.78 0.9887 ‐0.9548 ‐0.0390 0.0001 0.0003 0.0001 0.00001 0.863084 15
0.041 0.935 550.11 449.82 449.30 0.9995 ‐1.0023 ‐0.0021 0.0001 0.0001 0.0002 0.00000 0.934733 27

Table 2: Activated classifiers from one run of frog2

 fit num࣌ ࣌ ࣌ ࣏ ࣏ ࣏ ࢝ ࢝ ࢝
0.398 0.706 604.256 396.477 396.526 2.1026 -3.6205 1.6209 0.0003 0.0003 0.0000 0.0000 0.9537 9
0.391 0.629 585.297 414.412 413.953 2.1997 -4.0158 1.9946 0.0003 0.0000 0.0002 0.00002 0.8696 37
0.399 0.643 561.773 438.986 439.848 2.2198 -4.0811 2.0620 0.0001 0.0000 0.0001 0.00002 0.9758 28
0.405 0.500 590.845 409.476 410.112 2.3525 -4.6685 2.7014 0.0003 0.0000 0.0002 0.00002 0.8987 25
0.405 0.516 576.622 422.729 421.877 2.2265 -4.1553 2.1497 0.0001 0.0003 0.0003 0.00002 0.8611 9
0.420 0.536 612.416 387.540 388.513 2.3077 -4.4925 2.5071 0.0001 0.0001 0.0003 0.00003 0.9282 27
0.420 0.629 579.191 420.497 419.617 2.1635 -3.8855 1.8803 0.0002 0.0001 0.0001 0.00003 0.9713 50
0.446 0.742 639.625 360.915 360.770 1.9903 -3.2264 1.2854 0.0003 0.0002 0.0002 0.00001 0.9022 43
0.479 0.791 588.738 411.101 410.245 1.9896 -3.2382 1.2924 0.0001 0.0003 0.0001 0.00002 0.8521 2
0.480 0.799 600.556 399.426 398.663 1.9768 -3.1913 1.2548 0.0002 0.0001 0.0002 0.00000 0.9100 16
0.490 0.608 572.706 427.506 428.083 2.8821 -6.5533 4.3381 0.0003 0.0001 0.0001 0.00002 0.9063 28
0.503 0.812 598.578 401.457 401.738 1.9052 -2.9885 1.1108 0.0002 0.0001 0.0003 0.00001 0.9657 48
0.530 0.759 625.036 374.677 374.576 1.9234 -3.0317 1.1385 0.0001 0.0000 0.0002 0.00001 0.9430 49
0.530 0.783 598.628 402.074 402.496 2.0107 -3.3034 1.3426 0.0003 0.0000 0.0002 0.00003 0.9363 4
0.531 0.838 630.043 369.081 369.800 1.9341 -3.0842 1.1761 0.0001 0.0000 0.0001 0.00003 0.9007 9
0.541 0.849 596.694 403.953 404.266 1.9566 -3.1262 1.2020 0.0000 0.0003 0.0001 0.00002 0.9191 31
0.546 0.740 613.995 386.354 385.797 1.8822 -2.9157 1.0560 0.0001 0.0002 0.0002 0.00001 0.8973 34
0.548 0.663 628.909 370.247 371.084 1.8607 -2.8304 0.9648 0.0003 0.0000 0.0003 0.00002 0.9085 37
0.566 0.693 648.515 350.579 349.597 1.9129 -3.0237 1.1376 0.0003 0.0001 0.0001 0.00001 0.9135 13
0.568 0.993 602.391 397.975 397.244 1.8327 -2.7698 0.9414 0.0003 0.0001 0.0001 0.00001 0.9651 13
0.574 0.980 611.149 389.761 389.652 1.8068 -2.7000 0.9014 0.0001 0.0001 0.0002 0.00002 0.9418 69
0.579 0.939 627.030 373.264 373.685 1.8066 -2.7032 0.9022 0.0003 0.0001 0.0003 0.00001 0.9967 6
0.584 0.763 585.835 413.546 412.997 2.0794 -3.4752 1.4639 0.0000 0.0000 0.0002 0.00002 0.9611 45
0.602 0.748 655.315 345.240 346.014 1.9172 -3.0460 1.1553 0.0001 0.0002 0.0001 0.00001 0.9282 33
0.608 0.987 569.095 431.738 431.644 1.7512 -2.5447 0.8046 0.0003 0.0002 0.0002 0.00002 0.9981 5
0.613 0.757 573.704 427.036 427.983 1.8813 -2.9274 1.0793 0.0002 0.0002 0.0002 0.00002 0.9036 8
0.644 0.979 578.538 421.785 421.784 1.6683 -2.3524 0.6925 0.0000 0.0000 0.0002 0.00001 0.9886 10
0.657 0.863 621.729 377.725 378.440 1.8960 -2.9551 1.0741 0.0001 0.0001 0.0001 0.00001 0.9741 19
0.668 0.942 594.465 404.623 404.831 1.6236 -2.2387 0.6194 0.0002 0.0003 0.0003 0.00001 0.9227 26
0.670 0.845 615.929 383.544 384.027 1.6384 -2.2888 0.6479 0.0002 0.0002 0.0002 0.00000 0.9118 53
0.681 0.991 587.441 411.934 412.173 1.6209 -2.2347 0.6040 0.0000 0.0000 0.0001 0.00001 0.9442 21
0.683 0.871 644.612 354.853 354.850 1.6956 -2.4515 0.7647 0.0002 0.0001 0.0001 0.00001 0.8855 25
0.738 0.831 630.146 370.818 371.600 0.5328 0.5937 -1.2293 0.0002 0.0002 0.0002 0.00001 0.9312 17
0.838 0.992 601.617 398.968 399.775 -0.5003 2.4174 -1.9341 0.0002 0.0002 0.0002 0.00003 0.8864 19

Table 3:Activated classifiers from one run of frog3

 ࢛ ࢚ࢌ ࣏ ࣏ ࣏ ࢝ ࢝ ࢝ ࢛

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 93

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

0.236866 0.378151 557.448 442.355 442.105 0.462892 4.367334 -8.863423 0.0001 0.0000 0.0003 0.00001 0.9021 23

0.396261 0.504303 610.746 389.721 390.664 2.585839 -5.64389 2.983449 0.0001 0.0001 0.0001 0.00000 0.9256 6

0.675294 0.813556 565.184 435.705 435.391 5.199552 -13.8721 9.253198 0.0003 0.0002 0.0002 0.00003 0.8860 28

0.144715 0.270772 610.681 390.154 389.984 0.400498 4.772644 -9.499598 0.0001 0.0000 0.0000 0.00001 0.9055 6

0.753308 0.887874 616.630 384.009 384.940 4.652703 -12.5434 8.450933 0.0001 0.0001 0.0002 0.00002 0.9040 32

0.908448 0.957071 595.380 404.479 405.128 -4.055715 6.486184 -1.952416 0.0002 0.0001 0.0002 0.00001 0.9255 21

0.220638 0.529526 637.686 363.275 362.487 0.685409 2.952123 -6.676628 0.0001 0.0000 0.0001 0.00002 0.9854 32

0.590939 0.615211 597.901 402.838 402.149 -0.875622 6.102896 -7.165173 0.0000 0.0002 0.0001 0.00002 0.9498 6

0.476973 0.494184 546.631 452.399 451.762 1.321259 -0.04879 -3.190553 0.0001 0.0002 0.0001 0.00003 0.9644 13

0.429482 0.689566 519.450 480.683 481.642 2.907427 -6.48469 3.3197 0.0001 0.0002 0.0003 0.00001 0.9254 26

0.001792 0.285244 502.017 497.264 497.112 0.479286 3.928016 -7.350406 0.0001 0.0000 0.0002 0.00002 0.8668 16

0.434314 0.989304 614.745 384.941 384.918 4.518964 -12.053 8.060292 0.0001 0.0001 0.0002 0.00003 0.9397 18

0.810792 0.923059 511.993 488.662 488.867 2.549828 -7.67451 5.631641 0.0000 0.0001 0.0002 0.00000 0.9816 7

0.386302 0.975958 556.146 443.034 442.205 4.26313 -11.4037 7.658942 0.0002 0.0002 0.0002 0.00001 0.8891 4

0.105782 0.54728 599.462 401.290 401.297 0.47778 4.089679 -8.149012 0.0002 0.0000 0.0002 0.00003 0.9141 34

0.038944 0.572351 547.421 451.933 451.841 0.46726 4.11836 -8.122994 0.0002 0.0001 0.0003 0.00000 0.9989 12

0.242885 0.454341 625.044 374.427 375.312 0.548812 3.80329 -7.960753 0.0000 0.0001 0.0002 0.00001 0.9415 9

0.884585 0.896512 581.338 417.682 416.684 -2.485004 3.577624 -0.653736 0.0002 0.0002 0.0002 0.00001 0.9676 2

0.008574 0.107252 539.416 461.281 461.744 0.49494 3.389111 -3.951048 0.0001 0.0001 0.0002 0.00001 0.9781 16

0.59412 0.841014 620.532 379.419 378.934 5.044566 -13.4136 8.920132 0.0002 0.0001 0.0002 0.00003 0.9960 18

0.482966 0.912977 616.104 384.263 385.009 4.786066 -12.7864 8.550762 0.0001 0.0001 0.0000 0.00001 0.9445 33

0.21136 0.553078 588.525 411.761 412.337 0.717369 2.735222 -6.337924 0.0001 0.0003 0.0002 0.00002 0.9211 8

0.769896 0.847555 566.054 434.285 434.793 2.344688 -6.86859 4.962867 0.0002 0.0001 0.0002 0.00000 0.9155 3

0.41739 0.500036 577.489 422.148 422.633 4.848799 -15.4056 13.485216 0.0001 0.0000 0.0002 0.00003 0.9217 15

0.295148 0.352 597.111 403.392 404.261 0.387123 4.873423 -9.704807 0.0001 0.0001 0.0000 0.00003 0.8977 23

0.378401 0.93028 535.291 463.994 464.410 4.047738 -10.7379 7.162291 0.0003 0.0001 0.0001 0.00003 0.8694 29

0.316721 0.991723 552.987 446.608 446.387 3.739284 -9.98436 6.73005 0.0001 0.0003 0.0001 0.00001 0.9061 8

0.403481 0.80944 541.112 458.978 459.369 3.566391 -8.98479 5.635987 0.0002 0.0001 0.0001 0.00001 0.9364 31

0.356699 0.986483 542.287 456.866 456.244 4.085368 -10.9451 7.369765 0.0000 0.0003 0.0001 0.00002 0.9090 24

0.120854 0.638617 551.996 448.509 448.036 0.660247 2.776901 -6.040679 0.0002 0.0002 0.0000 0.00001 0.9108 35

0.382687 0.412435 584.311 415.898 415.093 1.397067 -0.47681 -2.57908 0.0000 0.0001 0.0002 0.00001 0.9675 1

0.630326 0.984551 556.056 443.997 444.666 4.810479 -12.8266 8.55884 0.0002 0.0001 0.0001 0.00001 0.9813 13

0.471696 0.9234 582.284 417.544 417.768 4.760066 -12.7141 8.502911 0.0002 0.0001 0.0001 0.00000 0.9128 31

0.140224 0.353918 577.498 423.425 424.000 0.405069 4.754791 -9.51792 0.0000 0.0003 0.0001 0.00002 0.8532 36

0.540241 0.645817 607.457 392.884 391.971 3.705055 -9.16138 5.55151 0.0002 0.0003 0.0002 0.00001 0.9645 24

0.248794 0.332006 611.469 388.959 389.148 0.471754 4.298072 -8.729586 0.0002 0.0002 0.0002 0.00003 0.9836 4

0.086551 0.407214 575.873 424.827 425.413 0.420461 4.625187 -9.249066 0.0001 0.0000 0.0002 0.00001 0.9079 19

0.816528 0.901481 619.306 380.119 379.261 4.270738 -11.6626 7.94208 0.0001 0.0003 0.0003 0.00002 0.9962 29

0.200032 0.314307 591.956 408.027 408.300 0.416822 4.701121 -9.464894 0.0003 0.0003 0.0003 0.00002 0.9158 29

0.345596 0.566242 527.571 472.094 472.440 1.420445 -0.52537 -2.617408 0.0001 0.0002 0.0001 0.00002 0.9697 35

0.347297 0.562507 590.386 408.891 409.880 1.405706 -0.4676 -2.673811 0.0002 0.0001 0.0000 0.00002 0.9226 5

0.31763 0.524651 498.064 502.112 501.684 1.098693 0.95305 -4.299129 0.0001 0.0001 0.0001 0.00002 0.9342 38

0.177281 0.213103 582.993 417.427 416.593 0.675133 1.941115 -2.197091 0.0003 0.0000 0.0000 0.00002 0.9527 33

0.478104 0.686496 568.397 432.095 432.336 3.423344 -8.2471 4.812014 0.0002 0.0001 0.0002 0.00001 0.8610 20

0.45901 0.945764 519.999 479.939 479.635 4.631968 -12.3687 8.273945 0.0000 0.0003 0.0002 0.00000 0.9122 18

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 94

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

References

1. L.Bull, A.Sha’Aban,A. Tomlinson,J. Addison, and
B.Heydecker,“Towards distributed adaptive control for
road traffic junction signals using learning classifier
systems", in Applications of LCS,Studies in fuzziness
and soft computing,2004, pp. 276–299.

2. M.V.Butz,”An algorithmic description of ACS2”, inLanzi
PL, Stolzmann W, Wilson SW (eds) advances in learning
classifier systems. LNAI,2002, Vol. 2321, pp. 211–229

3. M. V.Butz“Kernel-based, ellipsoidal conditions in the
real valuedXCS classifier system”, In Beyer HG,
O’Reilly UM (eds) Genetic and evolutionary computation
conference, GECCO, 2005. pp. 1835–1842.

4. M. V. Butz, Rule-based evolutionary online learning
systems, Berlin: Springer,2006.

5. M. V. Butz,P. L.Lanzi, andS. W. Wilson,“Hyper-
ellipsoidal conditions in XCS: rotation, linear
approximation, and solution structure”, inGECCO, 2006,
Vol. 8, pp. 1457–1464.

6. M. V. Butz,andS. W. Wilson,“An algorithmic description
of XCS”, inAdvances in learning classifier systems,
LNAI, 2001, Vol. 1996,pp. 253–272.

7. M. Dorigo,“Alecsys and the autonomouse: learning to
control a real robot by distributed classifier systems”, in
Mach Learn,1995, Vol. 19, pp. 209–240.

8. M. Dorigo, andM.Colombetti,“Robot shaping: an
experiment in behavior engineering”,Massachusetts: MIT
Press/Bradford Books, 1998.

9. M.Dorigo, andU.Schnepf,“Genetics-based machine
learning and behavior based robotics” in a new synthesis.
IEEE Trans Syst Man Cybern, 1993, Vol. 23, pp. 141–
154.

10. A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing, Springer, 2003.

11. P. L.Lanzi,“Learning classifier systems: then and now”.
Evol. Springer,2008,pp. 63–82.

12. P. L.Lanzi,D.Loiacono,S. W. Wilson,D. E. Goldberg,
“Prediction update algorithms for XCSF: Rls, kalman
filter, and gain adaptation”, in GECCO, Vol. 8, 2006, pp.
1505–1512.

13. P. L.Lanzi,D.Loiacono,S. W. Wilson,D. E.
Goldberg,“Generalization in the XCSF classifier system:
analysis, improvement, and extension”,EvolComput
J,Vol. 15, No.2,2007, pp. 133–168.

14. D. Loiacono, andP. L.Lanzi,“XCSF with neural
prediction”,in IEEE congress on evolutionary
computation. CEC 2006, pp. 2270–2276.

15. D.Loiacono,A.Marelli, andP. L.Lanzi, ”Support vector
regression for classifier prediction”,in GECCO,2007,
Vol. 2, pp. 1806–1813.

16. W.Stolzmann,and M. V.Butz, “Latent learning and action
planning in robots with anticipatory classifier systems”,
inlearning classifier systems, from foundations to
applications, Lecture notes in computer science,2000,Vol.
1813, pp. 301–320.

17. R. S.Sutton, andA.G.Barto, “Reinforcement learningan
introduction”,Cambridge: MIT Press, 1998.

18. T. H.Tran,C.Sanza,Y.Duthen, andT. D. Nguyen, “XCSF
with computed continuous action”, inGECCO, 2007, pp.
1861–1869.

19. B.Widrow, and M. E. Hoff.“Adaptive Switching
Circuits”, Chapter Neurocomputing: Foundation of
Research,Cambridge: The MIT Press, pp. 126-134, 1998.

20. S. W.Wilson, “Classifier fitness based on
accuracy”,EvolComputVol.3, No.2, pp.149–175,1995.

21. S. W.Wilson, "Get real! XCS with continuous-valued
inputs", in Lanzi PL, Stolzmann W, Wilson SW (eds)
Learning classifier systems, from foundations to
applications, Lecture notes in computer science,2000,
Vol. 1813, pp. 209–222.

22. S. W. Wilson,"Function approximation with a classifier
system",in GECCO, 2001, pp. 974–981.

23. S. W. Wilson, "Classifiers that approximate functions". J
Nat Compute, Vol. 1, No. 2,2002, pp. 211–234.

24. S. W. Wilson,"Classifier Systems for Continuous Payoff
Environments",in GECCO, 2004, pp. 824-835 in Part II.

25. S. W. Wilson,“Three architectures for continuous action”,
in :Kovacs T, Llora` X, Takadama K, Lanzi PL,
Stolzmann W, Wilson SW (eds) IWLCS, Lecture notes in
computer science,2005, Vol. 4399, pp. 239–257.

S. Goodarzian was born in Shiraz, Iran in 1984. He received
his B.Sc. degree in Computer engineering from Shiraz Islamic
Azad University in 2008. He is received his M.Sc. degree in
Artificial Intelligence at Shiraz University in 2011. His research
interests include evolutionary computation and learning
classifier systems.

A. Hamzeh received his Ph.D. in artificial intelligence from Iran
University of Science and Technology in 2007. Since then, he
has been working as assistant professor in CSE and IT
Department of Shiraz University. His research interests include
evolutionary computation, optimization and learning classifier
systems.

S. Hashemi received the PhD degree in Computer Engineering
from the Iran University of Science and Technology, in
conjunction with Monash University, Australia, in 2008. He is
currently a lecturer in the Electrical and Computer Engineering
School, Shiraz University, Shiraz, Iran. His research interests
include data stream mining, database intrusion detection,
dimension reduction, and adversarial learning.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 95

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

