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Abstract 
Combinational quantum circuits are essential for quantum 
computation; and quantum multiplexer circuit is one of the 
important combinational circuits. In this paper, we have 
presented the synthesis of quantum multiplexer circuit in detail. 
Instead of using functional blocks, we have used physically 
realizable quantum logic gates for synthesis of quantum 
multiplexers. In addition to this, our synthesis procedure shows 
that it is possible to construct quantum multiplexer circuit that 
can operate in the minimum dimension of the vector space and 
scalable according to linear nearest neighbor architecture. The 
detail functionality of the circuits along with the matrix 
formulations is presented.	 
Keywords: Quantum Synthesis, Quantum Circuits, Quantum 
Multiplexer. 
 
Nomenclature  

Qbit Quantum bit 
Qgate Quantum gate 
QNOT Quantum NOT gate 
LNN Linear nearest neighbor 
MUX Multiplexer 
CMUX Classical digital multiplexer 
QMUX Quantum multiplexer 
Hn n-dimensional Hilbert space, 2n -dimensional 

vector space (n=1, 2, 3, … etc.) 
CNOT Quantum controlled-NOT gate with one control 

Qbit 
CnNOT
  

Quantum controlled-NOT gate with n number of 
control Qbits (n>1) 

SWAP Quantum swap gate 
CSWAP Quantum swap gate with one control Qbit 
CnSWAP Quantum swap gate with n number of control Qbit 

(n>1) 

1. Introduction 

The pressure of fundamental limits on classical 
computation and the promise of exponential speedups 
from quantum mechanical effects are recently brought 
quantum circuits to a new dimensional attention of 
electronics community. As a result of which the quantum 
computation and information remain an attractive area of 
research in the last couple of decades. It is noticed that 
though wealth of knowledge in quantum mechanics is 
acquired; today development of quantum computer suffers 

from many aspects. Synthesis of quantum circuits is one of 
the major challenges in the quantum information 
processing and in the development of the architecture of 
quantum computer. Though some basic quantum logic 
circuits and gates are demonstrated, the efficient functional 
blocks such as quantum flip-flop, register, multiplexer, 
demultiplexer, counter etc. have not demonstrated and 
investigated rigorously to produce efficient quantum 
circuit which can be constructed by physically realizable 
Qgate.  This paper deals with one of the combinational 
functional blocks such as QMUX which can be 
constructed by physically realizable gate such as CNOT 
gate.	
	
In quantum computation, the Qbits are counterpart of the 
classical bits. Unlike bits which are described by two 
constants (0 and 1) and manipulated using Boolean 
algebra, Qbits are described in terms of vectors, matrices 
and manipulated using other linear algebra. The Qbits are 
realized in Hilbert space (H1) spanned by the orthogonal 
basis states |0 and |1, i.e. 
H1= spanԧ{|0>, |1>}                                                         (1) 
 
A Qbit can be in a superposition state that combines |0 
and |1. The states, |0 and |1 are the vectors of the 
computational basis and the value of a Qbit can be any unit 
vector in the space they span (i.e. in H1). 
 
In addition to this, unlike the classical logic gate operation, 
the operation on Qbits must be reversible. The reversibility 
requirement of the operation on Qbits poses another 
challenge in the circuit synthesis. Both the logical and 
physical reversibility are the concern of any quantum 
circuits. If a circuit is logically reversible, then inputs can 
be constructed from the outputs of the circuit. For 
example, among the classical logic gates, NOT gate is the 
only reversible gate, but it is not a universal gate. While in 
quantum circuits, Fredkin gate, Toffoli gate (both having 3 
inputs and 3 outputs) are the popular universal as well as 
reversible quantum gates. So in the cases, where the 
operation of a quantum circuit consists of many quantum 
operations, it is extremely important to check the 
reversibility of all the operations involved in that quantum 
circuit. Apart from these issues, Qbits cannot be copied 
using quantum wire in a similar way that we normally do 
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for classical circuits. Additionally, the number of inputs 
and outputs in any quantum circuit must be same. 
 
The function of a MUX is to select one input among a 
group of inputs and pass the selected input to output of the 
circuit. Basically it consists of two types of inputs: one 
group is the data input and the other group is the select 
input and these select inputs decide which data input is to 
be selected to pass to the output.  A classical “d:1 MUX” 
implies a MUX circuit with d number of data input  and 
one output. A MUX circuit has numerous applications in 
information processing and communication. 
 
Developing electronic functional block using another 
functional block is very common in electronics. For 
example, classical registers which are commonly 
composed of flip-flops. In such development, cost (of 
fabrication) and time taken for operation are mainly 
considered as efficiency of circuit. Recently, a few QMUX 
circuits are synthesized and presented [1,2]. 
 
The synthesis of QMUX using ternary quantum gates is 
also presented [2]. Since, the ternary quantum state is 
difficult to achieve and quite immature as a quantum 
effect, we have considered the most commonly used 
binary quantum state in the circuit synthesis procedure. 
Vivek et al. [3,4] and K. N. Patel et al. [5] presented many 
elements of the theory of quantum circuit to construct 
combinational circuits and we have extensively used their 
work in the synthesis of optimal QMUX. 
 
In this work, we have shown that it is possible to develop 
QMUX circuit using physically realizable quantum logic 
gates. Open source software package ‘Octave’ is used as 
programming tool for this work. The operations involved 
in the proposed circuit are very basic in nature. We found 
that the number of operations and the cost of the proposed 
quantum circuit are optimum. The functionality of the 
circuit along with the reversibility requirement and matrix 
formulation are provided. The generalization of higher 
order QMUX synthesis is also presented.  

2. Background 

A combinational quantum logic circuit consists of 
quantum gates, interconnected by quantum wire carrying 
Qbits without fanout or feedback. Since, each quantum 
gate has the same number of inputs and outputs; any cut 
though the circuit crosses the same number of wires [3]. 
Quantum circuit operation is sequence of some quantum 
logic operations by some Qbits. A quantum wire is 
realized by a Qbit and corresponding matrix is a 2×2 
identity matrix. 
 

On the other hand, a quantum logic gate is a closed-system 
evolution (or transformation) of the n Qbit state space	 Hn,	
i.e.	
Hn= spanԧ{|q; q a bitstring of length n}= spanԧ{|q1,|q2, 
|q3, |q4....................|q2

n}                                              (2a) 
Where |qi=|b0 b1 b2 b3 b4 b5...bn-1 =|b0|b1|b2|b3.......|bn  
for each bi ϵ	{0,1}; |b0 b1 b2 b3 b4 b5...bn-1 is abbreviated as 
bitstring state and |q= |no of bits. 
 
Here the arbitrary vector	|  (|	 ∈  Hn) can be written as 
| = α1|000…00…000 + α2|000…00…001 + 
α3|000...00...010 + ...........+ αi|000...01…101 + .........+ 
αn|111…11…111                                                          (2b) 

|	 ൌ 	∑ α୧	|q୯∈ℚ౤ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

ଵߙ
ଶߙ
ଷߙ
ସߙ		
.
.
ߙ ௜.
..

ଶ೙ߙ ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

                                      (2c)	

Where, ℚ௡	is the space of bitstring of length of n and |i|
2 

is the probability of the state of ith element. So a n Qbit 
space is 2n dimensional vector space and this can also be 
utilize as n Qbit register and a n Qbit circuit. Or in other 
words, no information is gained or lost during the 
transformation. Thus if |q is a state vector in	 Hn,	 the 
operation of n Qbit quantum logic gate can be represented 
by 
|qU|q                                                                         (2d) 
Where, U is the 2n×2n unitary matrix representing the gate 
operation. 
 
Before we proceed to the synthesis of QMUX circuit, it is 
important to understand the effect of parallel and/or series 
combinations in quantum circuits and circuit elements 
used to construct the QMUX. We have used 2×2 SWAP 
gate and multiple controlled SWAP gate in the synthesis of 
QMUX. For the purpose of the quantum cost calculation, 
the multiple controlled SWAP gate is decomposed in 
terms of CNOT gate, controlled V gate and controlled V†. 
In the following paragraphs, we have presented these 
aspects of quantum circuits. 

2.1 Combination of Quantum Circuit Elements 

Combinational circuits are important to build a functional 
block. In order to demonstrate the effect of various 
combinations (series and parallel) of quantum gates and 
quantum wire in quantum circuits, a circuit shown in Fig. 
1 is considered. The equivalent circuit is also shown in this 
figure. 
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Fig. 1  A typical quantum logic circuits and its equivalence. 

The circuit shown in Fig. 1 is a six Qbit quantum circuit 
and the circuit is composed of four Qbit and two Qbit 
quantum gates. The number of four and two Qbit Qgate in 
the circuit is 3 and 6 respectively. Note that the state of six 
Qbit circuit can be expressed by a vector in	 H6(n=6)	
(contains 26 column element), whereas the four Qbit and 
two Qbit gates are expressed by unitary operations on 
H4(n=4) and H2(n=2).	 If U be the resultant unitary matrix 
representing the six Qbit circuit operation (the dimension 
of the U will be 26×26), then 
               1              2              3               4                5    
		U	=	ሺܫ⊗ସ ⨂ ଺ܸሻሺܫ⊗ଷ⨂ ହܸ ⨂ ሻሺܷଷܫ ⨂ ଶሻሺ⨂ܫ ଷ⊗ܫ ⨂ ସܸ ⨂ ሻሺܫ ⨂	ସ⨂ܫ ଷܸሻ	

									ሺܫ⊗ଷ ⨂ ଶܸ ⨂ ⨂ሻሺܷଶܫ ଶሻሺ⨂ܫ 	⨂ଷ⊗ܫ ଵܸ ⨂ ሻሺܫ ଵܷ 	⨂ 	(3)																					ଶሻ⨂ܫ

                6             7               8                 9 

The number 1 to 9 at the top/bottom of the Equation (3) 
represents the individual operation of each block of circuit 
labeled by 1 to 9 in the circuit (see Fig. 1). 
 
From the Equation (3) one can see that an individual 
operation can be represented by the tensor product 
(parallel combination of quantum wire and Qgate are 
represented by tensor product of corresponding unitary 
matrices of quantum circuit elements) of the corresponding 
space matrices while the linear combination of two 
individual operations is represented by the ordinary 
product of the individual space matrices. For example, 
consider the individual operation 1, which can be 
represented by the tensor product of U1 and I2 i.e. 
ሺ ଵܷ 	⨂  ଶሻ. Similarly, the operation 2 can be represented⨂ܫ
by ሺܫ⊗ଷ⨂	 ଵܸ ⨂ ሻܫ , while series combination of the 
operations 1 and 2 is the multiplication of their space 
matrices i.e. ሺܫ⊗ଷ⨂	 ଵܸ ⨂ ሻሺܫ ଵܷ 	⨂  .ଶሻ⨂ܫ
 
Actually six Qbits go through the operation according to 
the quantum circuit to produce some output state. Ordinary 
products of nine consecutive operations are performed by 
the circuit to produce some output sates from the input 
states. 

2.2 CNOT Gate 

CNOT gate is one of the fundamental logic gates in 
quantum circuits and it operates in four (22) dimensional 
space. This gate consists of two inputs: one is the control 
input (a Qbit) and the other one is the target Qbit. The 

circuit and operational matrix UCNOT (22×22) of the CNOT 
gate is shown in Fig. 2. The operation of this gate can be 
written as | UCN||a,ba, where |=|a|b 
=|a|b. 

 

Fig. 2  Circuit of CNOT gate and its matrix. Here |a and |b are the 
control and target Qbit respectively.	 

A three-input controlled-controlled-NOT gate in which 
two inputs act as control Qbit and the rest one  acts as 
target Qbit is known as Toffoli gate (or C2NOT gate) and 
is a universal quantum gate. This gate operates in 8 (=23) 
dimensional space. The circuit of the C2NOT gate and its 
matrix UT (23×23) is shown in Fig. 3. The operation of this 
gate can be written as | 
UT|=UT|a,b,c=|a,b,(ca.b). 
 

 

Fig. 3  Circuit of C2NOT gate (or Toffoli gate) along with its matrix. In 
this circuit |a, |b are the two control Qbits and |c is the target Qbit.  

Though the CNOT gate is not directly involved in the 
synthesis of QMUX circuits, we have presented the above 
emphasis on CNOT gate since, we have used SWAP gate 
to construct QMUX circuits and SWAP gate consists of 
CNOT gate. In addition to this, CNOT gate is also 
involved in quantum cost calculation. 

2.3 SWAP Gate 

It swaps the states of two Qbits. The operation of this gate 
can be decomposed into three CNOT operations. The 
circuit for SWAP gate and its matrix US (22×22) is shown 
in Fig. 4. The state (|=|a, b) transformation for this gate 
can be represented as follows. 

| US|=US|a, b=|b, a.     

Or in other words, 

 |ܽ, ܾ⟶ |ܽ, ܽ ⊕ ܾ 

             ⟶ |	ܽ ⊕	ሺܽ ⊕ ܾሻ, ܽ ⊕ ܾ	 ൌ |ܾ, ܽ ⊕ ܾ 

              ⟶	|ܾ, ሺܽ ⊕ ܾሻ⊕ ܾ	 ൌ |ܾ, ܽ 
 
Similar to CNOT gate, a SWAP gate can have also control 
Qbits. When the number of control Qbit is one, the gate 
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(CSWAP) becomes the well known Fredkin gate. The 
Fredkin gate is not only a reversible gate but also 
conservative, i.e. it is universal as well. Similar to Toffoli 
gate, the Fredkin gate also operates in space H3. The 
swapping operation between the two target Qbits is 
performed when the control Qbit is |1 (active high) or |0 
(active low). This means that the circuit can have two 
configurations: one is active high and other is the active 
low. The operational matrices (unitary matrices of 
dimension 23×23) of these two circuit configurations are 
different. The circuit configurations along with their 
unitary matrices for active high and active low are shown 
in Fig. 5 and Fig. 6 respectively. 
 

 

Fig. 4  Left to right: SWAP gate, equivalent circuit, equivalent symbol, 
SWAP gate matrix.  

 

Fig. 5  Active high configuration of Fredkin gate and its matrix. 

 

Fig. 6  Active low configuration of Fredkin gate, its equivalent circuit and 
its matrix.  

Thus, when the number of control Qbit is increased to two, 
in a SWAP gate (i.e. for C2SWAP gate), there exists four 
configurations for the swapping to be performed between 
the two target Qbits. The four circuit configurations along 
with their matrices are shown in Fig. 7. 

3. Synthesis of QMUX 

A CMUX consists of more than one input and only one 
output. The inputs of the multiplexer are two types: select 
inputs and data inputs. Depending upon the select inputs, 
at a time, only one of the data inputs is selected and sent to 
the output. If there are d data inputs in the circuit, then one 
needs at least s number of select input such that, 2s  d. 
This is the reason i.e. why commonly 2n (where, n = 1, 2, 
….etc.) number of data inputs are considered in the 
multiplexer circuit design. Unlike CMUX, the number of 

outputs of a QMUX is equal to the total number of inputs 
(which is valid to any quantum circuit) of the circuit. 
Among the (s+d) number of outputs, only one output 
shows the desired multiplexing property. For optimization 
we have designed the QMUX in such a way that the 
multiplexing output will be available at Do0. 

 

 
 

Fig. 7  Four configurations of the C2SWAP gate and their matrices. 
Circuit swaps the target Qbits when both the control Qbits are set to |1, 
|1 for the configuration (a); |1, |0 for the configuration (b), |0, |1 for 
the configuration (c) and |0, |0 for the configuration (d).  

 
The matrix (M) of a QMUX is block diagonal [4]. If the 
QMUX consists of s and d number of select inputs and 
data Qbits respectively, then the matrix M will be a block 
diagonal matrix having 2s blocks, each of size 2d×2d [4]. 
Hence, the dimension of the matrix M will be 2d+s×2d+s. A 
typical matrix for QMUX is shown below. 
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ܷெ௎௑ ൌ ൭
ܷ଴ ⋯
⋮ ⋱ ⋮

⋯ ܷ௡ିଵ
൱; where, n – 1= 2s.  

3.1 Synthesis of 2:1 QMUX Circuit 

The function of a 2:1 QMUX circuit can be performed by 
a Fredkin gate. A Fredkin gate can have two possible 
configurations (as shown earlier). Thus the possible two 
configurations along with their matrices of 2:1 QMUX can 
be found in Fig. 5 and Fig. 6. In these 2:1 QMUX circuits, 
the top most input Qbit is the control Qbit (or select input) 
and rest of two inputs are the data Qbits. Among the three 
output Qbits, the middle Qbit is the multiplexed Qbit. Let 
the states of the input Qbits for the circuit shown in Fig. 5 
are: |S0, |Di0 and |Di1 (from top to bottom) and the same 
for the output Qbits are: |S0, |Di0 and |Di1 respectively, 
then we can express the state of the multiplexed output as: 
|Di0 = |Di0  S0 (Di1  S0 Di0). 
 
Let us consider the matrix UF-HIGH in Fig. 5 to explain its 
block diagonal nature. In this case, the number of select 
Qbit, s =1 and number of data input, d=2. Hence the 
number of the blocks in the said matrix is 2s = 2. The size 
of each block is 2d×2d = 4×4. To show the blocks of the 
matrix UF-HIGH, it is rewritten as: 

 
In the above expression, one can see the two blocks: U0 
and U1 corresponds to the single select input S0 = 0 or S0 
=1. Note that the size of the each block is 4×4. In a more 
simplified way, the above matrix can be written as: 

 

3.2 Synthesis of 4:1 QMUX Circuit 

This circuit consists of 6 inputs among which 2 inputs are 
select inputs and 4 inputs are data inputs. The circuit of the 
4:1 QMUX is shown in Fig. 8. The truth table of the 
circuit is shown in Table 1. In the truth table, each input 
Qbit is shown as 1 or 0 for simplicity, however in reality, 
each Qbit is a state vector either |0 or |1 (or superposition 
of these two sates) as shown earlier. 
 
The dimension of the vector space (࣢଺) which represents 
the 4:1 QMUX is 26. So for this circuit  

࣢଺ 	ൌ 	 ;ԧሺ|ܾ݊ܽ݌ݏ   6ሻ	݄ݐ݈݃݊݁	݂݋	݃݊݅ݎݐݏݐܾ݅	ݏ݅	ܾ
								ൌ ,ԧሺ|ܾଵ݊ܽ݌ݏ |ܾଶ… |ܾ଺	ሻ 
|bi = | ଵܵܵ଴ܦ௜଴ܦ௜ଵܦ௜ଶ݅ܦଷ; 
Where, ଵܵ, ܵ଴, ,௜଴ܦ ,௜ଵܦ ,௜ଶܦ ௜ଷܦ ∈ ሼ0,1ሽ. 
 

 
 

Fig. 8  Circuit of the 4:1 QMUX. Here, S1, S0 are two select input Qbits 
and Di3 to Di0 are the four data input Qbits. The quantum wire Do0 shows 
the multiplexing output.  

 
Table 1: Truth table of 4:1 QMUX. 

S1 S0 Di3 Di2 Di1 Di0 Output(Do0) 
0 0 0 0 0 0 Di0 
0 0 0 0 0 0 Di0 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 
Di0 

0 0 1 1 1 1 Di0 
0 1 0 0 0 0 Di1 
0 1 0 0 0 1 Di1 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 
Di1 

0 1 1 1 1 1 Di1 
1 0 0 0 0 0 Di2 
1 0 0 0 0 1 Di2 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 
Di2 

1 0 1 1 1 1 Di2 
1 1 0 0 0 0 Di3 
1 1 0 0 0 1 Di3 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 
Di3 

1 1 1 1 1 1 Di3 
 

Now, if |ᴪM is a state of the QMUX, then 

		ܯ| ∑ α୧	|bୠ∈९ల   

ۉ

ۈ
ۇ

ଵߙ
ଶߙ
.
..
یଶలߙ
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ۊ

 ; 
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Where, |i|
2 is the probability of the state of ith element. 

So, a state of this space is basically realized by the above 
column vector. Similar to the previous multiplexer circuit, 
the matrix U4:1 QMUX in the block diagonal form can be 
written as: 

			ܷସ:ଵ	ொெ௎௑ ൌ ൮

ܷ଴
ଵܷ

ܷଶ
ܷଷ

൲ 

Where U0, U1, U2 and U3 are the four diagonal blocks, 
each of size 24 × 24. So here U0, U1, U2 and U3 are operated 
on data inputs Di0, Di1, Di2 and Di3 when S0=0, S1=0; S0=0, 
S1=1; S0=1, S1=0; S0=1, S1=1 respectively. 
 
In order to understand the operation of the QMUX in 
detail, the circuit is decomposed into nine functional 
blocks using LNN method. The LNN is often considered 
as an appropriate technique to scalable quantum 
architecture [6]. The decomposition of the circuit (using 
LNN method) is shown in Fig. 9. 
 

 
 

Fig. 9  Decomposition of 4:1 QMUX circuit into nine functional blocks.  

 
Denoting I as 2×2 identity matrix, the matrices of the nine 
blocks are: 
M1 = U1  I2 (where, U1 = UC

2swap01, see Fig. 7c) 

M2 = I3  US  I (for US see Fig. 4) 

M3 = U2  I2 (where, U2 = UC
2swap10, see Fig. 7b) 

M4 = M2  

M5 = I4  US 

M6 = M2 

M7 = U3  I2 (where, U3 = UC
2swap11, see Fig. 7a) 

M8 = M2 

M9 = M5 
 
The operation of each block is represented by a 26×26 
matrix. The resultant matrix U4:1 QMUX of the 4:1 
multiplexer circuit is, therefore the multiplication of the 
nine matrices, i.e. 

U4:1 QMUX = M9×M8×M7×M6×M5×M4×M3×M2×M1 

The input and output of the 4:1 QMUX circuit is a column 
of matrix of element 64 (2s+d = 26 = 64). If  represents an 
output matrix corresponding to the input matrix  of the 
circuit, then one can write, U4:1 QMUX =. This expression 
can also be written in the following form: 

ܷସ:ଵ	ொெ௎௑.

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

ଵߙ
.ଶߙ
.
௥ߙ
..
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ۊ

	; ݎ ൒ 17                        (4) 

In the Equation (4), n = s+d = 6 for 4:1 QMUX and the 
constraint, r  (2d +1) or r  17 is obtained as follows. 
 
In Equation (4), the 17th element is the square-root of the 
probability of the input state |010000.  The 17th position 
represents an element which changes its position according 
to combinations of select inputs other than all 0s. Here 
௥|ଶߙ|  stands for probability of rth state which changes 
according to the circuit operations and swaps with (r+f)th 
state. 
 
In order to check the reversibility of circuit, the unitary 
property of the matrix U4:1 QMUX is checked. It is found that 
the relation: (U4:1 QMUX).(U4:1 QMUX)T = I is valid for the 
circuit and hence the proposed multiplexer circuit is a 
reversible circuit. 

3.3 Higher Order QMUX Synthesis 

Considering the 4:1 QMUX circuit as reference, it is not 
difficult to construct a higher order multiplexer. By 
looking the sequences of ‘’ and ‘’ and ‘×’ in Fig. 8, 
one can easily construct an 11-input 8:1 QMUX circuit. 
Such an 8:1 QMUX circuit is shown in Fig. 10. 
 

 
Fig. 10  An 11-input optimized 8:1 QMUX circuit. 

 

Hence, it is possible to generalize the QMUX circuit for an 
n:1 QMUX, where n = 2r, r is the number of select inputs. 
Such an optimistic generalized circuit is shown in Fig. 11. 
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4. Quantum Cost 

Quantum cost is a measure of efficiency of a quantum 
circuit and it is commonly expressed in terms of Qgate. 
Using the LNN method, the quantum cost of different 
quantum gates is given in Table 2 [7]. 
 

 
Fig. 11  Optimized n:1 QMUX circuit. 

 
Table 2: Quantum cost of different Qgate [7].  

Name of the Gate Quantum cost  
Controlled NOT 1 
Controlled V 1 
2-input SWAP 3 
3-input Toffoli 9 
4-input Toffoli 27 
5-input Toffoli 45 
3-input Fredkin 11 
4-input Fredkin 29 
5-input Fredkin 47 

 

Similar technique is used to calculate the quantum cost for 
QMUX circuits and the summary of the cost calculation is 
presented in Table 3. 
 

Table 3: Quantum	cost	for	the	QMUX	circuits.	
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Where, 
BN1= 0 
BN2 = 2 × 1;  BN3 = 2 × 2 ;….; BN(n-1) = 2 × (n-2) 
Tnswap =  [(n-2)× (2 + BN(n-1))]/2 ⇒Tnswap = G2 – G 

Cost X = 2S൫2ሺୗିଵሻ െ 1൯ ൅ ሺ18S െ 7ሻሺ2ୗ െ 1ሻ ൅ 3 ൈ

T୬ୱ୵ୟ୮ ൌ R ൅ ሺ18S െ 7ሻሺ2ୗ െ 1ሻ ൅ 3 ൈ T୬ୱ୵ୟ୮ 

Where, R ൌ 2Sሺ2ሺୗିଵሻ െ 1ሻ  is the no. of QNOT gates 
required for a CnSWAP gate. 

5. Conclusion 

We have synthesized optimum QMUX circuit. In order to 
construct the quantum multiplexer, some physically 
realizable quantum gates are used and ‘Octave’ 
programming tool is used to present the functionality of 
the circuits. The matrix formulations and operational 
behavior of the circuits are presented in details. Our 
procedure shows the ability to construct a general n:1 
QMUX. 
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