
Designing Debugging Models for Object Oriented Systems

Sujata Khatri1, R.S.Chhillar2

 1 D.D.U.College University , Delhi University
New Delhi, 110078

2 D.C.S.A Maharishi Dayanand University
Rohtak , Haryana

Abstract
 Bugs are inevitable in any software development life cycle.
Most bugs are detected and removed in the testing phase. In
software, we can classify bugs into two categories: (1) bugs of
different severity (2) bugs of different complexity. Prior
knowledge of bug distribution of different complexity in
software can help project managers in allocating testing
resources and tools. Various researchers have proposed models
for determining the proportion of bugs present in software of
different complexity but none of these models have been applied
to object oriented software. Software reliability growth models
have been used during later stages of testing to predict the
number of latent bugs dormant in the software. Once a bug is
found in the software, efforts have been made by the
development team to debug it. It is found in practice that
debugging may not be perfect and during removal of bugs, some
new bugs may be generated and this phenomenon is called
imperfect debugging. In this paper, we have developed a
software reliability growth model for object oriented software
system for perfect debugging in which new bugs are not
generated during removal process and also by incorporating
imperfect debugging, where new bugs are generated during
removal process in a proportion removed bugs. Here, the
proposed paper is used to assess the reliability growth of object
oriented software developed under concurrent distributed
development environment. We have collected bug reported data
of MySQL for python. Numerical illustration has been also
presented in the paper.
Keywords: Open source software, software reliability growth
model, and Object oriented approach.

1. Introduction:
Software applications are the fastest growing trend in

the virtual world and the possibilities regarding the
features and functions provided by a specific application is
generating tremendous interest amongst a vast number of
people around the globe. As the interest grows, so does the
demand for application.
Development of large software products involves several
activities that need to be suitably coordinated to meet
desired requirements. Meyer defines object-oriented
design as "the construction of software systems as
structured collections of abstract data type
implementations" [1].The emphasis on object oriented
language is on defining abstraction of a model concept

related to an application domain [2].To understand Object
Oriented Programming Systems the following high level
concepts must be introduced: objects, classes, inheritance,
polymorphism, and dynamic binding.

Software objects are conceptually similar to physical
objects; they too consist of state and related behavior. An
object stores its state in fields (variables) and exposes its
behavior through methods (functions). Methods operate on
an object’s internal state and serve as the primary
mechanism for object-to-object communication [3].
The IEEE defines testing as "the process of exercising or
evaluating a system or system component by manual or
automated means to verify that it satisfies specified
requirements or to identify differences between expected
and actual results" [3]. Instead of bugs being in the
software units, the complexity is now primarily in the way
in which we connect the software.

The object oriented approach has been widely used
for the development of closed source and open source
software. In open source software, developers are also the
users, meaning there by those who remove the bugs are
also responsible for generating bugs [4]. Open source
project has more advantage in terms of fewer bugs, better
reliability, no vendor dependence, shorter development
cycles, quick support and educational benefits. In the
available literature, many papers address the issue of open
source software [5, 6, 7, 8, and 9].
 Over the last three decades various software
reliability growth models have been developed but very
few of them have been applied in object oriented software
system. It was Kapur et al. [10] who firstly developed
reliability growth model for object oriented software
system. Recently, Singh et al. [19] have also developed a
software reliability growth model for object oriented
system which categorizes bugs into simple, hard and
complex types.

During last three decades various software reliability
growth models have been developed in the literature for
closed source software in dealing with bug complexity.
Kapur et al. [11] introduced a flexible model called the
generalized Erlang SRGM by classifying the bugs in the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 350

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

software system as simple, hard and complex. It is
assumed that the time delay between the failure
observation and its removal represent the complexity of
bugs. Another model according to Kapur et al.[12],
describes the implicit categorization of bugs based on the
time of detection of fault. However, an SRGM should
explicitly define the different types of bugs as it is
expected that any type of fault can be detected at any point
of testing time. Therefore, it is desired to study testing and
debugging process of each type of bugs separately [13 and
14]. The mean value function of SRGM is described by
the joint effect of the type of bugs present in the system.
Such an approach can capture the variability in the
reliability growth curve due to errors of different severity
depending on the testing environment. Another model of
Kapur et al. [16] describes the errors of different severity
in software reliability growth model using different
debugging time lag functions. Kapur et al.[17] also
describe flexible software reliability growth model using a
power function of testing time for defining errors of
different severity. Singh et al. [18] have developed a
generalized software reliability growth model which
determines proportion of bugs of different complexity
from open source software. Recently, Singh et al. [25]
have developed a generalized software reliability growth
model which determines the proportion of bugs of
different complexity from open source software where
software has been developed on object oriented
methodology.

Due to the complexity of software systems and an
incomplete understanding of software, the testing team
may not be able to remove/correct the fault perfectly on
observation/detection of a failure, and the original fault
may remain resulting in a phenomenon known as
imperfect debugging, or get replaced by another fault
causing error generation. In the case of imperfect
debugging, the fault content of the software remains the
same; while in the case of error generation, the fault
content increases as the testing progresses and
removal/correction results in the introduction of new faults
while removing/correcting old ones[25]. In this paper we
have considered the second case where new errors are
generated during removal process.

To the best of our knowledge, no research paper has
addressed the issue of imperfect debugging in object
oriented software systems. In this paper, we propose a
Perfect and Imperfect debugging model for object oriented
software system.

The rest of the paper is organized as follows: Section
2 provides model development, assumptions and
formulation. Section 3 describes model validation and data
analysis. And, finally, section 4 concludes the paper with a
future research direction.

In this paper, we have taken actual failure data of
software namely SQL for python developed under open
source environment. And the development of software
follows object oriented approach.
A. Assumptions of the Model

Following assumptions have been taken for developing
software reliability growth model for software which has
been developed under open source environment using
object oriented approach.
1. A finite number of test cases are prepared to ensure that

the software works according to the requirements and
specifications. Each test case is designed to execute a
finite number of instructions.

 2. The time dependent behavior of the instruction
execution is represented by Exponential or Rayleigh
curve.

3. The software is prone to failure due to the following
causes

3.1 Erroneous execution of internal variable/data of
the objects. In this case we have three types of
errors:

3.1.1 Error due to private (local) variable/data.
3.1.2 Error due to public (global)
Variable/data.
3.1.3 Error due to protected variable/data.

4. The failure observation/error removal phenomenon
follows NHHP.

5.1 No new error is introduced during removal process for
perfect debugging.
5.2 New errors are generated for imperfect debugging.
6. The error removal intensity per execution is

proportional to the remaining errors in the software.
7. The number of executions per unit of time is

proportional to the remaining number of instructions not
executed.

8. The software faults are classified in to three categories.
1. simple faults, (easy to detect and remove)
2. hard faults (difficult to detect and remove) and
3. complex faults. (very difficult to detect and

remove)
9. We assume that accession to private, protected and

public variable resulted in simple, hard and complex
faults.

2. MODEL FORMULATION (Perfect

debugging)

The total number of instructions executed is E(t) at any
given time t. These instructions cause an accession to
private, protected and public variable [10 and 19].
The sum of errors (mean vale function) due accession of
private, protected and public variable is a.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 351

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Based on the assumptions 2 and 7, the number of
instructions per unit of time can be written as

      dE t
x t A E t

dt
  (1)

A is total number of instructions to be eventually executed
and x(t) is the rate of instruction execution per instruction.
Solving above equation we get:

    
0

1 exp
t

E t A x t dt
  

        
 (2)

Depending upon the value of x(t), different types of
instruction execution functions can be formulated. If
x(t)=B i.e. instructions execution rate is independent of
time then it follows exponential curve (instructions are
uniformly executed) i.e.

     1 expE t A Bt   (3)

If x(t)=Bt, then it follows Rayleigh curve means
instructions are no uniformly executed with respect to
time.

Using assumptions (4-9), we can write the following
differential equation for error removal phenomenon in
case of errors due to private, protected and public
variable :

 

    
1

1 1
1

dm t

dt b ap m t
dE t

dt

  (4)

Where  1E t is the number of instructions causes an

accession to private variable. Solving above differential
with initial condition m(0)=0, we get

     1 1 11 expm t ap bE t   (5)

Error removal equation due to accession of protected
variable is

 

    
2

2

2 2
2 1

dm t
b tdt ap m t

dE t bt

dt

 


Where  2E t is the number of instructions causes an

accession to protected variable. Solving above
differential with initial condition m(0)=0, we get

        2 2 2 21 1 expm t ap bE t bE t    (6)

Error removal equation due to accession of public
variable is

 

    
3

3 2

3 32 2
3 2 1

2

dm t
b tdt ap m t

dE t b t
bt

dt

 
 

  
 

Where  3E t is the number of instructions causes an

accession to public variable. Solving above differential
with initial condition m(0)=0, we get

   
     

2

2
3 3 2 31 1 exp

2

bE t
m t ap bE t bE t

  
      
  

  

 (7)

The total error removal is given as

     
      

 
  

  

1 1

2 2 2

2

2
2

3

3

1 exp

1 1 exp

1 1
2

exp

m t ap bE t

ap bE t bE t

bE t
bE t

ap

bE t

   

   

  
    
  

  
  

 (8)

 Here  1 2 3a a p p p   and

1 2 3, ,E pE E qE and E rE  

Here E is the total number of instructions executed due
to accession of private, protected and public variables. p
,q, and r is the proportion of instructions causes an
accession to private , protected and public variable.

1p , 2p and 3p are proportion of faults due to accession

of private, protected and public variables.

3. MODEL FORMULATION(Imperfect
debugging)

 (Case 1: Simple bugs):

 
    

1

1 1 1 1 1
1

dm t

dt b ap m t m t
dE

dt

  

Here, 1b is the bug removal rate for simple bug. a is

the initial bug content in software, p1 is proportion of
simple bugs,  1m t is the number of bugs removed due to

accession of private variable and 1 is bug generation rate

per remaining bug
 .

 Solving above differential with initial condition

 1 0 0m  m(0)=0, we get

         1
1 1 1 1

1

1 exp 1
1

ap
m t b E t


   


 (4.1)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 352

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

(Case 2: Hard bugs):

Bug removal equation due to accession of protected
variable by considering bug generation during removal of
bug is

 
    

2

2 2 2 2 2
2

dm t

dt b ap m t m t
dE

dt

  

Here, 2b is the bug removal rate for simple bug. a is

the initial bug content in software, p2 is proportion of
simple bugs,  2m t is the number of bugs removed due to

accession of private variable and 2 is bug generation rate

per remaining bug.
Solving above differential with initial
condition  2 0 0m  , we get

         2
2 2 2 2

2

1 exp 1
1

ap
m t b E t


   


 (5.1)

 Bug removal equation due to accession of public
variable by considering bug generation during removal of
bug is

 (Case 3: Complex bugs):

 
    

3

3 3 3 3 3
3

dm t

dt b ap m t m t
dE

dt

  

Here, 3b is the bug removal rate for simple bug. a is

the initial bug content in software, p3 is proportion of
simple bugs,  3m t is the number of bugs removed due to

accession of private variable and 3 is bug generation rate

per remaining bug.
Solving above differential with initial condition

 3 0 0m  , we get

          3
3 3 3 3

3

1 exp 1
1

ap
m t b E t


   


 (6.1)

The total bug removal is given as

         

       

       

1
1 1 1

1

2
2 2 2

2

3
3 3 3

3

1 exp 1
1

1 exp 1
1

1 exp 1
1

ap
m t b E t

ap
b E t

ap
b E t










    


   


  


 (7.1)

Here  1 2 3a a p p p   and

           1 1 2 2 3 3, ,E t q E t E t q E t and E t q E t   or

     1 2 3E t E t q q q  

Here, 1p , 2p and 3p are proportions of bugs due to

accession of private, protected and public variables.

1q , 2q and 3q are proportions of accession due to private,

protected and public variables.

4. MODEL VALIDATION

To verify the proposed model that determines types of
fault present in the software due to accession of private,
protected and public variable and proportion of
instructions execution causes to accession of private,
protected and public variable , we estimated the unknown
parameters by using SPSS software tool.

A. Description of Data set

Data set-: MySQL for Python software has been
developed under open source environment
www.sourceforge.net. We collected failure data of
MySQL for Python from 4/25/2001 (first bug reported) to
11/23/2009, during this period 144 bugs were reported on
bug tracking system.
We have considered only valid bugs which are fixed.

We have simulated the instruction executed data with
assumption that expected total number of instructions
executed is 2000K and the rate of instructions execution is
.003 for Rayleigh growth pattern respectively as follows in
[10].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 353

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Sample of bug reported data PF MySQL for Python Software

A. Parameter Estimation and Comparison Results
The performance of an SRGM is judged by its ability to fit the past software bugs and to predict satisfactorily the
future behavior of the software bug removal process. Therefore, we use various comparison criteria for goodness of fit
as mentioned in figure[5-8] .We have estimated the parameters of proposed model (equation 8) using SPSS tool for
this data set. Parameter estimates are also shown in table [1-4].

 Parameter Estimates of My-SQL Dataset (Rayleigh) for perfect debugging.

 Table 1 Table 2

ID Summary Status Opened Assignee Submitter Resolution Priority
418713 Python 1.5.2 adds an L Closed 4/25/2001 nobody nobody Wont Fix 5
419004 _mysql_timestamp_converter Closed 4/26/2001 adustman nobody Fixed 5
424878 Date_or_None Closed 5/17/2001 adustman nobody Fixed 5
440332 Need to #ifdef around things Closed 7/11/2001 adustman ads Fixed 5

440327
setup.py configuration for my

platform Closed 7/11/2001 adustman gimbo
Wont Fix

5

442299
core-dump.

Python2.1,config_pymalloc Closed 7/18/2001 adustman nobody
Fixed

5

445489
Execeptions don't follow DB-API

v2.0 Closed 7/28/2001 adustman nobody
Fixed

5
464875 Limit bug in ZMySQLDA Closed 9/25/2001 adustman nobody Wont Fix 5
464873 Limit bug Closed 9/25/2001 nobody nobody Wont Fix 5

Datasets

Comparison Results(Rayleigh)

2R MSE Bias Variation RMSPE

MySQL

for Python

.995

10.05

-0.078

3.19

3.29

Parameter
Estimates of
proposed
model
(Equation-7)

Rayleigh

a 161.905

 b .090

1p .232

2p .275

3p .493

p .713

q .181

r .106

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 354

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Parameter Estimates of My-SQL Dataset (Rayleigh) for Imperfect debugging

Table 3 Table 4

3.5 Goodness of fit Curves

This section describes the goodness of fit curves of different models for given data sets.

 For Perfect Debugging:

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13C
u
m

u
la

ti
v
e
 fa

u
lt
s

Time(half yearly)

Goodness of fit curves

m(t)

m(t) for exponential execution

m(t) for Rayleigh Execution

0

2

4

6

8

10

12

14

16

18

20

N
o.

 o
f

bu
gs

Bug frequency

Figure 1 Figure 2

Datasets

Comparison Results

2R MSE Bias Variation RMSPE

MySQL for

Python

.998

4.69304

-0.074

2.25348

2.2547

Parameter

estimates of the

proposed model

equation(7)

MySQL for Python

a 174

b1 .000

b2 .473

b3 .016

p1 .000

p2 .097

p3 .903

q1 .000

q2 .774

q3 .226

  .041

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 355

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

For Imperfect Debugging:

0

2

4

6

8

10

12

14

16

18

20

N
o.

 o
f

bu
gs

Bug frequency

Figure 3 Figure 4

Figure 1, 3 gives mean value function of equation (7 and 7.1) vs time for MySql data set of Rayleigh type for
Imperfect.

5. CONCLUSION:

Object oriented approach has become integral part of
software development process. Traditional software
engineering approach has been converting into object
oriented software engineering. In this paper, we firstly
discussed about object oriented approach. We also
mentioned the main elements and advantages of using this
approach. We see how accession to different variable
namely private, protected and public causes an error to
occur of different severity. In this paper, different
modeling has been done for a failure resulting from
accession to different types of variables. We have
considered perfect as well as imperfect debugging occurs
during bug removal. It also occurs in traditional and
Object oriented development methodology. In this paper,
we have proposed a software reliability growth model that
determines the proportion of bug complexity in presence
of perfect and imperfect debugging. The prior knowledge
of distribution of bugs of different complexity will help
project manager in allocation of testing efforts, tools and
thus provide a better software production. We have
provided the numerical results for the proposed model
along with different types of growth curves depending
upon their complexity.

This study can be further extended and applied on
more data sets to increase confidence in the proposed
model. In future, we will try to develop software
reliability growth model for object oriented system by
incorporating imperfect debugging and error generation by
taking different models for different complexity of bugs.

REFERENCES:

[1] Meyer, Bertrand (1988): Object-oriented Software
Construction. Prentice- Hall, New York, NY, 1988,
p. 59, 62.

[2] Binder RV: Testing object oriented software: A
survey. Journal of software testing, Verification
and Reliability 31996;6(3/4):125-252

[3] IEEE 729-1983: Glossary of Software Engineering
Terminology, September 23, 1982.

[4] Gacek Cristina and Arief Budi (2004):The Many
meanings of Open Source, IEEE Software, Vol.
21, issue 1, 2004, pp.34- 40.

[5] Ruben van Wendel de Joode and Mark de
Bruijne(2006): The organization of open source
communities: Towards a Framework to Analyze
the relationship between openness and reliability,
Proceedings of 39th Hawaii International
Conference on System Sciences, , 2006, pp.1-6.

[6] Mary Paul Li, Shaw, Herbsleb Jim , Bonnie Ray,
Santhanam P., Empirical Evaluation of Defect
Projection Models for Widely-deployed
Production Software systems, in the proceedings
of the 12th International Symposium on the
production of Software Engineering (FSE-12),
PP.263-272.

[7] Tamura Y. and Yamada S., Optimization analysis
for Reliability Assessment based on stochastic
differential equation modeling for Open Source
Software, International Journal of Systems
Science, Vol. 40, No.4 , 2009, pp 429- 438.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 356

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[8] Zhou Ying and Davis Joseph (2005):Open Source
Software Reliability Model: An empirical
approach, Proceedings of the 5th WOSSE, 2005,
pp 1-6.

[9] Singh V.B. and P.K Kapur.(2009): Measuring
Reliability Growth of Open Source Software,
Accepted for poster presentation in IBM-Indian
Research Laboratory Collaborative Academia
Research Exchange held during October 26, 2009
at IBM India Research Lab, ISID Campus,
Institutional Area, Vasant Kunj , New Delhi, India.

[10] .Kapur P.K, Min Xie and Younes Said (1994):
Reliability Growth Model for Object Oriented Software
System, Software Testing, Reliability and Quality
Assurance, , Dec.21-22 1994,. pp. 148 – 153

[11] Kapur P.K., Younes S. and Agarwala S. (1995)
‘Generalized Erlang Software Reliability Growth
Model with n types of bugs”, ASOR Bulletin,14,5-
11.

[12] Kapur P.K., Bardhan A.K., and Kumar S. (2000)
:On Categorization of Errors in a Software, Int.
Journal of Kapur Management and System,
16(1),37-38

[13] P.K., Bardhan A.K.; Shatnawi O.; (2002) Why
Software Reliability Growth Modelling Should
Define Errors of Different Severity. Journal of
the Indian Statistical Association, Vol. 40, 2,
119-142.

[14] Kapur P.K., Younes S and Grover P.S.; (1995),
Software Reliability Growth Model with Errors of
Different Severity, Computer Science and
Informatics (India) 25(3):51-65.

[15] Kapur P.K. Kumar Archana ,Yadav Kalpana and
Khatri Sunil(2007) :Software Reliability Growth
Modelling for Errors of Different Severity using
Change Point, International Journal of Quality
,Reliability and Safety engineering
Vol.14,No.4,pp. 311-326.

[16] P
.K Kapur. Kumar Archana Singh V.B. and Nailana
F.K.(2007):On Modeling Software Reliability
Growth Phenomanon for Errors of Different
Severity, In the Proceedings of National
Conference on Computing for Nation
Development, Bhartiya Vidyapith’s Institute of
Computer Applications and Management, New
Delhi, pp.279-284, held during 23rd-24 th February.

[17] P.K., Kapur Kumar Archana , Mittal Rubina and
Gupta Anu (2005):Flexible Software Reliability
Growth Model Defining Errors of Different
Severity, Reliability, Safety and Hazard, pp. 190-
197 Narosa Publishing New Delhi.

[18] Singh V.B., Singh O. P., Kumar.Ravi,Kapur
P.K.(2010) A Generalized Software Reliability
Model for Open Source Software published in
proceedings of 2nd International Conference on
Reliability Safety and Hazard, organized by
Bhabha Atomic Research Center, Mumbai held
during December, 14-16, 2010, published by IEEE
Explore, pp.479-484

[19] Singh V.B., Khatri Sujata and Kapur P.K.(2010): A
Reliability Growth Model for Object Oriented
Software Developed Under Concurrent Distributed
Development Environment, published in
proceedings of 2nd International Conference on
Reliability Safety and Hazard, organized by
Bhabha Atomic Research Center, Mumbai held
during December, 14-16, 2010, Pp 479-
484,Published by IEEE Explore. Kapur P.K., Garg
R.B. and Kumar S. (1999) “Contributions to
Hardware and Software Reliability”, World
Scientific, Singapore.

[20] K. Pillai and V.S.S. Nair, A Model for Software
Development effort and Cost Estimation, IEEE
Transactions on Software Engineering; vol. 23(8),
1997, pp. 485-497.

[21] Goel, AL and Okumoto K. (1979) :Time dependent
error detection rate model for software reliability
and other performance Measures, IEEE
Transactions on Reliability Vol. R-28 (3) pp.206-
211.

[22] S. Yamada, M. Ohba and S. Osaki, S-shaped
Software Reliability Growth Models and their
Applications, IEEE Transactions on Reliability R-
33, 1984, PP. 169-175.

[23] Singh V.B., Kapur P.K. and Abhishek Tandon
“Measuring Reliability Growth of Software by
Considering Fault Dependency, Debugging Time
Lag Functions and Irregular Fluctuation” published
in May issue Vol. 25, No. 3 ACM SIGSOFT
Software Engineering note,2010.

[24] Kapur P.K., H. Pham, Anand Sameer, and Yadav
Kalpana A Unified Approach for Developing
Software Reliability Growth Models in the
Presence of Imperfect Debugging and Error
Generation, IEEE Transaction on Reliability,
March 2011 Volume: 60 Issue: 1 On page(s): 331
- 340

[25] Khatri Sujata, Chhilar R.S. and Singh V.B. “A
Generalized Software Reliability Growth Model for
Object Oriented Software” ACM SIGSOFT,
volume 36, Issue 6, 2011.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 357

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

