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Abstract 

Several algorithms have been developed for problems of 

data aggregation in wireless sensor networks, all of which 
tried to increase networks lifetime. In this paper, we deal 
with this problem using a more efficient method, and offer a 
heuristic algorithm based on distributed learning automata 
to solve data aggregation problems within stochastic graphs. 
Given that data aggregating through creating backbones and 
making connected dominating sets (CDS) in networks 
lowers the ratio of responding hosts to the hosts existing in 
virtual backbones, we employed this idea to our algorithm, 
trying to increase networks lifetime considering such 
parameters as sensors lifetime, remaining and consumption 
energies in order to have an almost optimal data aggregation 
within networks. Finally, we assess our algorithm for make 
CDS lifetime given increased transmission range and 
increased sensors number.  

 
Keywords: Wireless sensor network, Data aggregation, 
Connected Dominating Set, Backbone formation, distributed 
learning automata.  

1. Introduction  

Wireless sensor networks consist of a large number of 
inexpensive sensor nodes distributed in environment 
uniformly, having limited energy, therefore, in the 
most cases, nodes communicate with central node via 
their neighbors [1]. On the other hand, an optimal 
route must be selected because there are different 
routes to central node from any other nodes. On the 
other hand, frequent use of one route results in 
reduction of energy of sensors located on that route 
and, ultimately, in sensors destruction. For solving 
this problem, we can consider a wireless sensor 
network as a graph in the nodes (hosts) which are the 
sensors and edges show the links between sensors. If a 
backbone can be created in this graph the constituent 
nodes that are able to communicate with all graph 
nodes or, in other words, to cover them, it is not 
necessary to use all graph nodes to aggregate the data 
and it suffices only to carry out data aggregation on 
backbone nodes, then, to send the result in the form of 
a single packet to central node. The set of nodes 

constituting backbone are referred to Connected 
Dominating Set (CDS) and each node of this set is 
called dominator. Creating CDS to aggregate data is a 
promising approach for reducing routing overhead 
since messages are transmitted only within virtual 
backbone by means of CDS and, also, data 
aggregating through lowers the ratio of responding 
hosts to the hosts existing in virtual backbones [2-5]. 
By offering an intellectual algorithm, we tried to 
increase networks lifetime considering such 
parameters as sensors lifetime, remaining and 
consumed energies of sensors, in order to have an 
almost optimal data aggregation within networks. Our 
algorithm operates as follows: initially, wireless 
sensor network is modeled as a unit disk graph G= (V, 
E) in the nodes that represent hosts and edges show 
the links among hosts [6, 7]; then, an intellectual 
algorithm based on distributed learning automata is 
implemented on the model to aggregate data. For this 
algorithm, each host is equipped with a learning 
automaton. Sink node is considered as the first 
dominator here. Next, learning automata selects next 
action randomly from its variable action set with 
respect to action probability vector and this process 
continues until finally entire network is covered, with 
set of selected dominators constituting the backbone. 
After that, message "data aggregation" is sent to 
dominators from sink node inside backbone. 
Dominators will send the message to their parents 
immediately after receiving it. Each parent must wait 
until it receives data from all its children, then, 
aggregates all data received from its children and 
sends it to its own parent until aggregates data is sent 
to sink node in the form of a single packet.  
Once every iteration of the process has finished, 
action probability vectors are updated for any learning 
automata. Eventually, with iteration of process, 
learning automata converges to public policy of 
optimal data aggregation for network graph. Given 
that lifetime of created CDS is of special importance, 
the algorithm will pursue the aim of choosing a CDS 
with the longest lifetime from made CDSs.  
The rest of this paper consists of five sections. The 
related work is reviewed in the section 2. In the 
section 3, some definitions and primary concepts will 
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be presented. In the Section 4, the proposed DLA-
based backbone formation algorithm for finding a 
CDS with longest lifetime is presented. The 
experiment results are demonstrated in the section 5 
and finally are in the section 6, the conclusion and 
future work is highlighted. 

2. Related work  

Many routing algorithms have been provided for the 
sensor networks. For some of these algorithms, each 
node may has more than one route to sink node that 
one of them is selected on the basis of a series of 
criteria, among the level of energy consumption along 
the route can be a proper criterion. Energy saving can 
be taken into account in two ways: (1) energy 
consumption is calculated for any separate routes, 
then, the route with minimal energy consumption is 
chosen [8]; and (2) data aggregation is based on 
provided learning automata, which prevents extra 
packets from being sent in networks by identifying 
sensors generating identical data and by activating 
sensor nodes periodically, and saves a large amount of 
energy while increasing network lifetime [9]. A 
solution has been provided in [10] for data 
aggregating and routing with intra network 
aggregations in wireless sensor networks in order to 
maximize network lifetime by using intra network 
processing techniques and data aggregation. The 
relationship between the security and data aggregation 
process within wireless sensor networks has been 
investigated in [11].  
In [12], network is first clustered in order to aggregate 
data, then, head- clusters aggregate data from each 
cluster separately. A network organized into clusters 
with the same sizes results in unequal load 
distribution among head- cluster nodes. But [12] 
provides a model in which clusters are of different 
sizes, resulting in more uniform energy distribution 
among head-cluster nodes and with increasing in 
network lifetime. In [13] has offered data aggregation 
in wireless sensor networks by using ant colony 
algorithm that states the problem of creating data 
aggregation tree in wireless sensor networks for a 
group of source nodes to send sensed data to the 
single sink node. Ant colony system represents a 
natural method of heuristic search to determining data 
aggregation. Each ant discovers all possible routes to 
sink node and data aggregation tree is created by 
using accumulated pheromone. In [14] provides two 
different tree structures LPT and E-Span to facilitate 
aggregation of data in wireless sensor networks. In 
LPT, nodes having more remaining energy are chosen 
as aggregation parents. The tree is restructured when 
one node has no long function or when a broken link 
is identified. E-Span is an aware energy–spanning tree 
algorithm in which source node with maximal 
remaining energy is selected as root. Other source 
nodes select their corresponding parents from their 
neighbors on the basis of such information as 

remaining energy and distance to root. In [15] an 
efficient energy–spanning tree is used to aggregate 
data in wireless sensor network for making which two 
parameters are used: energy and distance [15] uses 
route energy average to balance parameters energy an 
distance while previously provided algorithms have 
selected only one of these parameters as the main one 
and gave sound priority to the other. In [16] unlike 
common data aggregation methods, ESPDA avoids 
transmitting redundant data to head–clusters from 
sensor nodes in order to remove redundancy for 
improving application of efficient energy and 
bandwidth in sensor nodes . In [17] presents a scheme 
of efficient and highly accurate energy to aggregate 
data securely. The main idea of this is to aggregate 
data carefully without disclosing or reading secret 
information of sensors and posing considerable 
overhead in energy–limited sensors.  
In [18] aggregation of data in wireless sensor 
networks is raised to balance latency and 
communication cost. In [19] spanning tree- based 
algorithms are provided to create high convergence 
between data aggregation and efficient energy and 
low latency in wireless sensor networks. Initially [19] 
provides two algorithms for making DAC tree. The 
first algorithm is the kind of minimum spanning tree, 
and the second of individual source shortest path 
spanning tree. Both of them are used as combined 
(COM) algorithm stimulator generally based on MST 
and SPT.  

3. Preliminaries  

Before presenting the algorithm, it is necessary to 
offer some primary definitions and concepts as 
follows.  

3.1 Connected dominating set  

Dominating set S of graph G = (V, E) is a host subset 
ሺݏ  ሻ  exists in set S or isܸ ݒሻ so that each host ሺݒ
adjacent to a host from S. In dominating set S, each 
host is referred to as dominator host, otherwise, as 
dominate host. A minimum dominating set is one with 
minimum cardinality. A connected dominating set S 
from graph G is one connected to each other. A 
minimum connected dominating set is a CDS with 
minimum cardinality. 
There is no fixed, predefined infrastructure in wireless 
networks, and a virtual backbone can be formed by 
using CDS due to the lack of physical backbone. By 
definition, CDS is a subset of network nodes each of 
either belongs to CDS or is adjacent to at least one 
CDS node. This structure can be used to create a 
virtual backbone for routing and disseminating 
packets because it is connected. A minimum 
connected dominating set create a virtual backbone in 
graph, and reduces routing overhead considerably [20, 
21].  
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3.2 Calculating sensors and CDS lifetimes  

Let ݊ be the number of sensors: ܤ be initial energy of 
sensors; ݔ, be the number of bits being routed from 
sensor ݅ to sensor ݆; ݔ, be the number of bits being 
routed from sensor ݅ to base station; ݐ, be sensor ݅ 
communication cost of transmitting one bit to sensor 
݆; and ݎ, be sensor ݅ communication cost for 
receiving one bit from sensor j [22]. In data 
aggregation process, each sensor receives data from 
one or more sensors, but sends data only to one 
sensor. Total sensor ݅ consumed energy amount for 
transmitting one event ሺߦሻ is calculated as follows:  

ߦ ൌ  ܺ,ݎ,   ܺ,ݐ,



                ሺ1ሻ


 

And sensor ݅ remaining energy amount is calculated 
as follows:  
 
ሻݐሺܤ ൌ ݐሺܤ െ 1ሻ െ                        ሺ2ሻߦ
 
ݐሺܤ ሻ Andݐሺܤ െ 1ሻ are current and previous 
remaining energies, respectively.  
Also, sensor ݅ lifetime is calculated as follows:  
 
ߙ ൌ ܤ  ⁄ߦ                                            ሺ3ሻ 
 
The average of CDS lifetime is calculated as follows:  
 
തௌߙ ൌ ௌߙ ݉⁄                                    ሺ4ሻ 
 
Where ߙതௌ  equal to CDS lifetime average and ߙௌ 
equal to Total lifetime of sensors constituting CDS 
which is calculated as follows:  
 

ௌߙ ൌ  ߙ



ୀଵ

                                       ሺ5ሻ 

 
In (4) and (5) equations ݉ is the number of sensors 
exist in CDS.  

3.3 Learning automata  

A learning automata (LA) [23-25] is an abstract 
model capable of doing finite actions. Each selected 
action is evaluated by a probable environment, the 
result that is delivered to automata in the form of a 
positive or negative signal. Learning automata use this 
response to select their next action. Ultimate goal is 
for automatas to select the best of their actions. The 
best action is one maximizing the likelihood of 
receiving rewards from environment. 
The Probable environment can be expressed 
mathematically by triple ܧ ൌ ሼߙ, ,ߚ �ሽ where 
ߙ ൌ ሼߙଵ, ,ଶߙ … ,  ሽ is the set of environment inputsߙ
and ߚ ൌ ሼߚଵ, ,ଶߚ … ,  ሽ  is each action's beingߚ
penalized. Fig. 1 shows the relationship between 
learning automate and environment. 

 

Fig. 1 the relationship between learning automata and environment 

Given the values of ߚ , three different models are 
defined for probable environments. Whenever ߚ is a 
two-members set of [0, 1], the environment is of 
type , that is, values of 0 and 1 is selected as 
environment outputs. In this case, ߚଵ ൌ 1 means 
"being penalized" and ߚଶ ൌ 0 means "being 
rewarded". 
If ߚሺ݊ሻ is a value bounded to [0, 1], the model is of 
type ݍ; and if ߚሺ݊ሻ is a stochastic variable within [0, 
1], the environment is of type S. ܥ represents the 
probability that action ߙ receives an undesirable 
response from environment. The values of ܥ do not 
change in static environments with changing the time 
in non- static ones [26].  
Learning automatas are divided into two groups: (a) 
those with fixed structured, and (b) those with 
variable structured. In this paper, we make use of the 
variable structured. For learning Automatas with fixed 
structures, probabilities of automata actions are fixed 
while, for learning automatas with variable structures, 
they are updated with each turn of iteration. Learning 
automatas with variable structures can be denoted by 
triple ሼߙ, ,ߚ ܲ, ܶሽ where ߙ ൌ ሼߙଵ, ,ଶߙ … ,  ሽ is anߙ
automata's actions set; ߚ ൌ ሼߚଵ, ,ଶߚ … ,  ሽ is itsߚ
inputs; ܲ ൌ ሼ ଵܲ, ଶܲ, … , ܲሽ is probability vector of 
each automata's action; and ߬ ൌ ݔሺ  1ሻ ൌ
ܶሾߙሺݔሻ, ,ሻݔሺߚ  ሻሿ is learning algorithm. Automatasݔሺߩ
choose their actions randomly on the basis of 
probability vector ܲ and exercise. It is on the 
environments that they get a response. If the actions 
selected by Learning automate is action ߙ, then, 
automata updates its action probabilities to Eq. 6 in 
the case of receiving desirable response from 
environment while it does this according to Eq. 7 in 
the case of receiving undesirable one. 

൜ ܲሺ݊  1ሻ ൌ ܲሺ݊ሻ   ܽሾ1 െ ܲሺ݊ሻሿ

ܲሺ݊  1ሻ ൌ ሺ1 െ ܽሻ ܲሺ݊ሻ      ݆,     ݆ ് ݅            ሺ6ሻ 

ቊ
ܲሺ݊  1ሻ ൌ ሺ1 െ ܾሻ ܲሺ݊ሻ

ܲሺ݊  1ሻ ൌ ቀܾ
ݎ െ 1ൗ ቁ  ሺ1 െ ܾሻ ܲሺ݊ሻ   ݆, ݆ ് ݅

ሺ7ሻ 

Where ݎ is the number of automata's actions and ܾ is 
penalty parameter. There following algorithms can be 
available on the basis of different values considered 
for parameters ܽ and ܾ of learning: 

1) If    ܽ ൌ ܾ , linear reward-penalty ሺܴܮ െ ܲሻ scheme 
is obtained.  
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2) If the value of ܾ is many times smaller than that 
of ܽ, resulting learning method is called liner reward 
epsilon schemeሺܲߝ_ܴܮሻ.  
3) If  ܾ ൌ 0 , algorithm is called linear reward 
inaction ሺܫ_ܴܮሻ 

3.3.1 Distributed learning automata (DLA) 

A distributed learning of automata (DLA) [27, 28] is a 
network of LAs cooperating to solve a particular 
problem. Within this network of cooperating 
automata, only one automata is active at a time. In 
DLA the number of actions each automata is able to 
do is equal to the number of automatas connects to 
that one. When an automata selects an action in the 
network, other automata connected to it is activated. 
In other words, Choosing an action by an automata in 
this networks corresponds to activation of another 
automata there. The model considered for DLA 
network is graph each vertex of which is an automata, 
as shown in fig. 2 In this graph, presence of edge (ܣܮ  
ߙ ) means that choosing the actionܣܮ ,

 by ܣܮ 
activate ܣܮ. The number of actions ܣܮ  can select is 
denoted as ܲ ൌ ൛ ଵܲ

, ଶܲ
, … , ܲ

 ൟ. within this set, 
 ܲ

represents probability related to action ߙ
 . 

Selecting the action ߙ
  by ܣܮ activates ܣܮ. ݎ 

Shows the number of actions ܣܮ is able to do. 

 

Fig. 2 Network of distributed learning automatas 

4. Forming virtual backbone based on distributed 
learning automata  

Suppose that wireless sensor network includes a 
group of wireless hosts having transmission range 
 .and linking, directly or indirectly, to each other ݎ
Here, suppose that topological graph corresponds with 
unit graph where host 1 ሺܪଵሻ corresponds with vertex 
1 ሺ ଵܸሻ . Any two hosts connected to each other are 
said to be neighbors having mutual communication. 
Therefore, it is assumed that network graph is a 
undirected graph. Each host has a unique argument 
and is required to know its neighbors. In this section, 
an algorithm based on distributed learning automata is 
provided for data aggregating in wireless sensor 
networks, focusing on finding an almost optimal 
solution for problem of data aggregation in network 
graph. In this approach, each host (e.g.ܪ) is equipped 
with learning automata (e.g.ܣ). A network of 

learning of automata is denoted by binary ൏ ,ܣ ߙ 
 where ܣ ൌ ሼܣଵ, ,ଶܣ … ,  ሽ  indicates set of learningܣ
automatas corresponding to set of vertexes (hosts) and 
ߙ ൌ ሼߙଵ, ,ଶߙ … ,  ,ሽ  represents action set. And alsoߙ
ଵߙ ൌ ሼߙଵଵ, ,ଵଶߙ … ,  ଵሽ  represents an action setߙ
which can be run by learning automata  ܣଵ . Here, we 
use learning automata with variable actions the 
number of which depends on the number of adjacent 
vertexes (neighbors) of respective learning automata. 

4.1 Action set formation method 

In the algorithm provided for forming action set 
related to learning automata ܣ, initially, its host 
(e.g.ܪ) sends a message locally to its neighbors one 
step apart locally. Hosts located in transmission range 
from sending host respond to it upon receiving the 
message and send back their action sets to primary 
sending host which creates its own action set on the 
basis of responses received from neighbors. 
Therefore, each host ܪthe message of which was 
responded adds action ߙ to action set of learning 
automata ܣ. In fact, when ܪ sends a message to ܪ 
which sends back its response to  ܪ , the learning 
automata corresponding to ܪadds actionߙ (selection 
of vertex j ( ܸ)) to action set of its own corresponding 
automata (namely, ܣ). Selection of action ߙ 
corresponding to ܪ as dominator is performed by 
learning automata ܣ . So the size of each learning 
automata action set depends on the order of respective 
host, assuming that hosts have been distributed in 
network uniformly. A problem with above defined 
action set , in which the number of actions is fixed 
and does not change with time , may result in frequent 
selection of a host, with virtual backbone including 
redundant loops and dominators . Therefore, fixed 
action sets decrease convergence speed of algorithm 
and enlarge the size of virtual backbone. To overcome 
these shortcomings, we suggest learning automata 
with variable actions and present following rules for 
pruning action set of learning automata. 
Rule1. To avoid choosing the same dominators (by 
different hosts), each activated learning automaton is 
allowed to prune its action-set by disabling the actions 
corresponding to the dominator hosts selected earlier. 
This rule increases the convergence speed, and 
consequently, decreases the running time of the 
proposed algorithm.  
Rule2. To avoid the loops and the redundant 
dominator hosts by no more (dominate) hosts can be 
spanned; the proposed algorithm prunes the action-set 
as follows. 
 As mentioned earlier, when host ܪ is going to form 
the action-set of its automaton, it receives some 
messages from its neighboring hosts which include 
the action-set information of these hosts. Depending 
on received information, activated automaton ܣ 
updates its action-set by disabling the actions 
corresponding to the hosts whose one-hop neighbors 
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all have been spanned (or added to the dominate set) 
before (see Fig. 4a–f), if any. This rule reduces the 
dominator set (backbone) size, decreases the running 
time and improves the convergence rate of algorithm. 

4.2 Algorithm description  

As mentioned above, we consider our network as a 
unit disk graph that is, sending radiuses of all graph 
nodes are equal. Also, we assume the nodes are 
distributed in network graph randomly. Each of sensor 
nodes possesses some amount of energy being 
approximately the same for all nodes at first. Over 
time, the level of nodes energy changes. In this 
network, sensor nodes have some information about 
themselves and their neighboring nodes, including 
their energy level at a given time, which is updated 
periodically. As stated earlier, nodes participating in 
CDS are referred to as dominators and the rest are 
dominates. We create CDS in accordance with energy 
levels of network nodes. In fact, we use nodes with 
higher levels of energy to create CDS. Our aim is 
actually to make created route more permanent. In  
other words, we want to increase created CDS 
lifetime. Each node of network is equipped with 
learning automata; therefore, we have a network of 
learning automata each of which has a selected action 
set. The numbers of each automaton's operations are 
equal with the number of nodes neighboring the node 
corresponding to targeted automata that can select 
only one action from its action set at a moment over 
time. Given the decrease in nodes energies, we 
calculate their energy periodically. The amount of 
energy consumed for sending or receiving a message 
differs. The amount of energy usually consumed to 
send a message is much more than that consumed to 

receive it. These nodes not located on the route of 
made CDS go into idle (or sleep) state in which their 
consumption energy is near zero, thus, energy 
consumption is associated with nodes located on the 
route of made CDS. A CDS is made any time the 
algorithm is iterated. Initially, we define an energy 
threshold for nodes existing in network, which is the 
least amount of energy needed by each network node 
which is for network permanence. 
The level of energy of each of nodes located on made 
CDS route should not be less than this amount of 
energy defined as threshold level. If so, learning 
automata of nodes located on the route are penalized, 
if not, are rewarded. So that the probability of 
selecting these nodes to make future CDS routes 
increases. The process of CDS–making continues 
until made CDS converges toward an optimal 
response. The pseudo code of algorithm is presented 
below (Fig. 3). Here, m and k represent the number of 
nodes constituting CDS and the number of steps of 
making CDS, respectively.  
  isܵܦܥ ; Is dynamic threshold at kth stepܵܦܥ
calculated with Eq. 8. CDS is the selected connected 
dominating set; Wୡୢୱ is the weight of made CDS and 
calculated with Eq. 9 ; VA୧ is the vertex corresponding 
to learning automata A୧ ; NVA୧ represents neighbors 
adjacent to vertex ݅ (V୧); and ݎ is the number of CDSs 
made until step ݇  1. 

ܵܦܥ ൌ
1
ݎ

 ܹௗ௦



ୀଵ

                   ሺ8ሻ 

 

ܹௗ௦ ൌ 1 ௗ௦ߙ
ൗ                             ሺ9ሻ               

 

 
Algorithm for forming a CDS with maximum of lifetime 

1: Input: Graph൏ ܸ, ,ܧ ܹ , Pୡୢୱ,Iteration_max  
2: Output: Optimal nearest Data aggregation  
3: Assumptions  
4: let CDS denotes the selected connected dominated set  
5: Begin algorithm  
6: ݇ ՚ ܵܦܥ , 0  ՚ 0  
7: Repeat  
ܵܦܥ :8 ՚ ݏ݀ܿ_ܹ ,  ՚  0, ݐ݁ݏ_ݎݐܽ݊݅݉ܦ ՚ ݐ݁ݏ_݁݁ݐܽ݊݅݉ܦ , ՚    
9: the automaton corresponding to sink node is selected , denoted as A୧ and activated , ݉ ൌ 1  
ݐ݁ݏ_ݎݐܽ݊݅݉ܦ :10 ՚  ݐ݁ݏ_ݎݐܽ݊݅݉ܦ  ܸ

, ݐ݁ݏ_݁݁ݐܽ݊݅݉ܦ ՚  ݐ݁ݏ_݁݁ݐܽ݊݅݉ܦ  ܸ
  ሼ ܰಲ

ሽ , 

ܵܦܥ        ՚ ܵܦܥ    ܸ
 , ௗ௦ߙ  ՚ ௗ௦ߙ  ಲߙ

  
11: Repeat  
12: If ሺห݀ݐ݁ݏ_݁݁ݐܽ݊݅݉ห ്   ሻ Thenݏ݊݅ݐܿܽ ݈ܾ݁݅ݏݏ ݊ ݏ݄ܽ ܣ && ݁ݖ݅ݏ ݇ݎݓݐ݁ܰ 
13: Path induced by active automata is traced back for finding an automata with available actions  
14: the found learning automata is denoted as A୧   
15: End If  
16: Each automata prunes its action set  
17: automaton A୧ chosen one of its actions  
ݐ݁ݏ_ݎݐܽ݊݅݉ܦ    :18 ՚  ݐ݁ݏ_ݎݐܽ݊݅݉ܦ  ܸ

 , ,ݐ݁ݏ_݁݁ݐܽ݊݅݉ܦ  ܸ ݐ݁ݏ_݁݁ݐܽ݊݅݉ܦ
  ሼ ܰಲ

ሽ , ܵܦܥ ՚ ܵܦܥ 

          ܸ
, ௗ௦ߙ ՚ ௗ௦ߙ  ಲߙ

  , ݉ ൌ  ݉  1 

19: automaton A୨  is active  
20: set A to A୨  

21: until ሺห݀ݐ݁ݏ_݁݁ݐܽ݊݅݉ห ് ݁ݖ݅ݏ ݇ݎݓݐ݁ܰ  && ܣ ݏ݄ܽ ݊ ݈ܾ݁݅ݏݏ  ሻݏ݊݅ݐܿܽ
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തௗ௦ߙ  :22 ൌ ௦௦ߙ ݉ൗ   , ܹௗ௦ ൌ 1
തௗ௦ߙ

ൗ   

23: Data aggregation  
24: compute the average weight of CDS and denote it ܹௗ௦ 
ሺ ݂ܫ :25 ܹௗ௦  ൏  ିଵሻ Thenܵܦܥ 
26: Reward the selected actions of the activated automata along the CDS  
27: Else  
28: Penalize selected actions of the activated automata along the CDS  
29: End If  
ܵܦܥ :30 ՚ ሾሺ݇ െ 1ሻܵܦܥିଵ   ܹௗ௦ሿ / ݇  
31: ݇ ՚ ݇  1  
32: Enable all the disabled actions  
33: until ሺ ݇ ൌ ݕݐ݈ܾܾ݅݅ܽݎ ܴܱ ݔܽܯ_݊݅ݐܽݎ݁ݐܫ  ݂ ݂݅݊݀݅݊݃ ݎݐܽ݊݅݉݀ ݐ݁ݏ  ݏ݀ܿܲ ሻ  
34:End Algorithm  

Fig. 3  The pseudo code of proposed algorithm 
 

 

Fig. 4a-e illustrates the steps of making backbone in the first 
implementation of the algorithm. In fig. 4b, node 3 is 
considered as sink node and the first dominator. In this case, 
nodes 3, 1, 4 ܽ݊݀ 5  are added to dominate set. In fig. 4c, 
node 4 is selected as next dominator and node 6 is added to 
dominate set. In fig. 4d, node 6 is selected as next dominator 
and nodes 2, 7, 8 ܽ݊݀ 10 are added to dominate set. In fig. 4e 
node 2 is selected as next dominator and node 0 is added to 
dominate set. Up to this step, we have dominator set of 
ሼ2,6,4,3ሽ and dominate set ofሼ0,10,8,7,2,6,5,4,1,3ሽ. Entire 

network is not still covered because the size of dominate set 
is smaller than network's; therefore, the algorithm performs 
backtracking and selects node 10 as next dominator, hence 
nodes 9 ܽ݊݀ 11 added to dominate set (fig. 4f). Now, we 
have dominator and dominate sets of ሼ10 ,2 ,6,4,3ሽ and 
ofሼ11,9,0,10,8,7,2,6,5,4,1,3ሽ, and entire network is covered. 
Fig. 4g and 4h were obtained in the second and third 
implementation of algorithm, respectively, that node 5 is 
considered as sink node and the first dominator.  
 

 

 
 

Fig. 4 The step-by-step backbone formation process 
 

5. Simulation results  

In this paper, NS2 software was used to simulate 
wireless sensor network. Simulation was performed in 
a square area of 100 ൈ 100 ݉ with 50, 100 ܽ݊݀ 150 
nodes distributed uniformly in the environment. We 
assumed learning rate is 0.2 and initial energy is 500mj 
for each node. Also, we assumed each node consumes 
6mj and 3݆݉ units of energy to send and receive any 
kinds of packets, respectively. For this simulation, the 

threshold of CDS process and max iteration were set at 
0.9 and 200, respectively. In here, for assessing our 
algorithm (CDS-LT), we compare our algorithm with 
proposed algorithms in [14] and [19]. In [14] Lee and 
Wong have proposed two different tree structures LPT 
and E-Span to facilitate aggregation of data in wireless 
sensor networks. In LPT, nodes having more remaining 
energy are chosen as aggregation parents. The tree is 
restructured when one node has no long function or 
when a broken link is identified.  
In [19] Upadhyayula and Gupta have proposed 
spanning tree- based algorithms are provided to create 
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high convergence between data aggregation and 
efficient energy and low latency in wireless sensor 
networks. Initially [19] provides two algorithms for 
making DAC tree. One of the algorithms is the kind of 
individual source shortest path spanning tree. In here, 
we evaluate our simulation with respect to made CDS 
lifetime by expanding transmission range and 
increasing the number of nodes. We assume 
transmission range changes from 10݉ 20݉ ݐ. As it is  

show in fig. 5, the CDS lifetime decreases when the  
transmission range increase. And CDS lifetime  
decreases by increasing the number of nodes. Also with 
comparing our algorithm (CDS-LT) with proposed 
algorithms in [14] and [19] will determine how much 
our method performs well.  
 
 

 Fig. 5 Comparison CDS life time for CDS-LT algorithm 
 

6. Conclusion  

This paper is provided on heuristic algorithm based on 
distributed learning automata to solve problems of 
data aggregation in stochastic graphs. Given that data 
aggregating by creating backbones and making CDSs 
in networks lowers the ratio of responding hosts to the 
hosts existing in virtual backbones, we used this idea 
in our algorithm and tried to find CDSs with the 

longest lifetime considering such parameters as 
lifetime, remaining and consumption energies of 
sensors in order to have an optimal data aggregation. 
Simulation results showed that lifetime of made CDSs 
decreased as the number of nodes increased and 
transmission range expanded. Also, we compared our 
algorithm with proposed algorithms in [14] and [19], 
as shown above our algorithm always outperforms the 
others in terms of the life time. 
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