
A SLA-Aware Scheduling Architecture in Grid System
Using Learning Techniques

Seyedeh Yasaman RashidaP

1
P, Amir Masoud Rahmani P

2
P

1
PDepartment of Computer Engineering, Shirgah Branch, Islamic Azad University

Shirgah, Mazandaran, Iran

P

2
PDepartment of Computer Engineering, Islamic Azad University, Science and Research Branch

 Tehran, Tehran, Iran

Abstract
In the Grid environment, the relationship between a customer
and a service provider should be clearly defined. The
responsibility of each partner can be stated in the so-called
Service Level Agreement (SLA). A SLA is a formal contract
between end-user and system to guarantee that customers'
service quality expectation can be achieved. In recent years,
extensive research has been conducted in the area of SLA for
utilizing computing systems and also, various SLA-based
scheduling are proposed but the number of resources and
tasks to be scheduled is usually variable and dynamic in
nature. Most of proposed algorithms don't have flexibility in
all situations, because every scheduling algorithm cannot
improve all grid factors like resource utilization, load
balancing, etc and cannot notice all parameters at the
moment. In this paper, we propose SLA aware scheduling
architecture which uses learning techniques for selecting best
way to schedule resources in different situations. The
proposed model causes increasing user satisfaction, number
of completed tasks and system utilization and resource load
balancing. At the end, we formulize relation between number
of completed tasks and system utilization.
Keywords: SLA, Scheduling, Grid Computing, Learning
Technique, Load Balancing.

1. Introduction

Grid computing system is a collection of distributed
heterogeneous computing resources available over a
local or wide area network that appears to an end user
or application as one large virtual computing system.
Grid computing is to provide an unlimited power,
collaboration, and information access to everyone
connected to grid [1].
A schedule is defined as a function 𝑓:𝑇 ⟶ 𝑅 which
maps every task 𝑇𝑖 ∈ 𝑇 on a resource 𝑅𝑗 ∈ 𝑅 that has
attached to a queue 𝑄𝑗 . The goal of any schedule is to
minimize the cost function such as scalability and
lateness.
The grid scheduler has four phases, which consists of
resource discovery, resource selection, job selection
and job execution. A grid scheduler acts as an interface
between the user and distributed resources. It hides the
complexity of the computational grid from the grid user.

The main responsibility of a scheduler is selecting
resources and scheduling tasks in such a way that the
user and application constraints are satisfied, in terms
of overall execution time and cost of the resources
utilized. To achieve these goals, Service Level
Agreement (SLA) can play a critical role. In general,
SLAs are defined as an explicit statement of
expectations and obligations in a business relationship
between service providers and customers. SLAs
specify priori negotiated resource requirements, the
quality of service (QoS), and costs.
Most research applies one or two scheduling
algorithms to achieve their goals such as maximize
number of completed jobs, system utilization, etc. But
it is important to notice that each scheduling algorithm
can improve some of the expected factors. In order to
dynamic grid environment, it is possible to confront
critical situation which applied proposed scheduling
cannot achieve the whole goal. In this paper, we
propose a SLA-aware scheduling scheme which uses
learning techniques to select best way of scheduling for
achieving system goals in variable situations.
The rest of this paper is organized as following. In
section 2, we discuss related work. Section 3 describes
the proposed scheduling architecture. In section 4, we
obtain relationship between number of completed jobs
and utilization. Section 5 gives the concluding remarks.

2. Related Work

Distributed resource allocation is one of the most
challenging problems in resource management field.
This problem has attracted a lot of attention from the
research community in the last few years. In the
following we provide a review of some relevant prior
work.
Bin Zeng et al. [5] propose a negotiation based model,
where adaptive learning agents, representing individual
resources and tasks, co-operate among themselves to
help achieving a near optimal schedule. N.Malarvizhi
and V.Rhymend Uthariaraj [6] describe a scalable grid-
architecture involving a Grid Resource Manager,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 266

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

assuming the role of a resource broker to select
computational resources based on job requirements and
the capacity of grid resources, so as to minimize the
time to process each application along with
transmission time associated with it. D. P. Spooner et
al. [7] develop a multi-tiered scheduling architecture

(TITAN) that uses a performance prediction system
(PACE), along with brokers that are involved in
distribution of jobs in the grid, to meet deadlines and
significantly increase the efficiency of resource
utilization.

The paper [8] presents a novel load balancing approach
in a heterogeneous distributed environment. The
scheduler takes into account the threshold value, based
on the ratio of service rates, along with the queue
length to determine whether it is beneficial to migrate a
given local task to another node in the system or not.
Markov process model is used to describe the behavior
of the heterogeneous distributed system under the
proposed policies. Kumar also proposes a Load
balancing algorithm for fair scheduling, and compares
it to other scheduling schemes such as the Earliest
Deadline First, Simple Fair Task order, Adjusted Fair
Task Order and Max Min Fair Scheduling for a
computational grid. It addresses the fairness issues by
using mean waiting time. It scheduled the task by using
fair completion time and rescheduled by using mean
waiting time of each task to obtain load balance. This
algorithm scheme tries to provide optimal solution so
that it reduces the execution time and expected price
for the execution of all the jobs in the grid system is
minimized [27]. In [30], Anandharajan and Bhagyaveni
propose to find the best EFFICIENT cloud resource by
Co-operative Power aware Scheduled Load Balancing
solution to the Cloud load balancing problem. The
algorithm developed combines the inherent efficiency
of the centralized approach, energy efficient and the
fault-tolerant nature of the distributed environment like
Cloud. Shahu Chatrapati et al. [28] propose
Competitive Equilibrium Scheme (CES) that
simultaneously minimizes mean response time of all
jobs, and the response time of each job individually.
Ruay-Shiung Chang et al. [9] propose an Adaptive
Scoring Job Scheduling algorithm (ASJS) for a
distributed grid environment to reduce the completion

time of submitted jobs, by assigning jobs to resources
after looking into recent scheduling history of every
available resource and then choosing the most optimal
one.
Computing intensive jobs and data intensive jobs
handled differently, and local and global updates are
used to obtain the most recent status of grid resources
to schedule jobs more effectively in real time. System
ModelSyed Nasir Mehmood Shah et al. [10] propose
an algorithm for CPU scheduling of a modern
multiprogramming operating system, design and
development of new CPU scheduling algorithms (the
Hybrid Scheduling Algorithm and the Dual Queue
Scheduling Algorithm) with a view to minimize overall
task schedule. The following paper extends this
prioritized round robin heuristic from a single system
multiprogramming environment, onto a multi-
processor distributed architecture. As each scheduling
strategy optimizes some of performance parameters
such as making span, resource utilization, response
time, workload balancing, service time, reliability,
fairness deviation and throughput, we propose a SLA-
aware scheduling model to achieve four important
parameters such as resource utilization, response time,
workload balancing and throughput.
In [26], Murugesan and Chellappan introduce a new
resource allocation model with multiple load
originating processors as an economic model. Solutions
for an optimal allocation of fraction of loads to nodes
obtained to minimize the cost of the grid users via
linear programming approach. It is found that the
resource allocation model can effectively allocate
workloads to proper resources.

Fig.1. SLA-aware Scheduling Architecture

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 267

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In [25], presents a clustering technique for gene
expression data which can also handle incremental
data. It is called GenClus and designed based on
density based approach. Experimental results show the
efficiency of GenClus in detecting quality clusters over
gene expression data. Our approach improves the
cluster quality by identifying sub-clusters within big
clusters.

3. Proposed Scheduling Architecture

We represent a SLA aware scheduling architecture
(Given at fig. 1) with making decision ability to
achieve grid goals such as increasing resource
utilization, number of completed jobs, percentage of
user satisfaction, load balancing, etc. In the proposed
model, SLA encompasses three parts ̶ inception,
decision and execution ̶ that make decision based on
request status and system condition what scheduler
policy would be best way to achieve grid goals.
As shown fig. 2, requests and system status as input
would be given to SLA. SLA selects some operations
as action to operate on inputs. Based on action which
be done on inputs, grid system status would be
changed, on the other hands, grid goals would be
changed. So it is important to apply best action for
achieving grid goals.

Fig.2. General representation of proposed procedure

3.1. How To Specify Inputs

In this section, we discuss the way for specifying
requests and system status as inputs of our model.

3.1.1 Request Properties

 SLA requires information in both requests (jobs) and
system status, in order to making the decision to do a
function (action) mapping inputs ̶ requests and system
status ̶ to desired outputs. Since Deadline, service time,
priority of jobs and system workload are very
important factors for SLA to recognize current status
and make decision what to act for producing sufficient
output, we use these parameters to obtain required
information and define a job as follow:

 𝐽 =< 𝑅,𝑄,𝐷, 𝑆,𝑃 >

Each job will have some requirements as resource, 𝑅,
quality of service of resource, Q, job deadline, D, job
service time, S, job priority, P.
Jobs prioritize based on applied action. For example,
privileged program priority would be more than batch
job priority. Job deadline is made on two parts, service
time, S, and laxity, L, as shown in eq. 1. Service time is
the time a job takes to finish executing on resources.
Laxity is the time a job holds resources with no using,
as shown in fig. 3.

𝐷 = 𝑆 + 𝐿 (1)

 Fig. 3. Division of Deadline

Since there are numerous submitted jobs at the
moment, selecting each job as discrete input and
surveying them discretely will increase computing
overhead. So, we suppose a time slot that jobs are
surveyed at the start of time slot. Based on system
workload, time slot fluctuates in time. It means if
system workload is high, then time slot would grow
until system workload decreased and vice versa.

For specifying jobs status as part of input, it requires to
calculate mean of request deadline, 𝜇𝑑, and mean of
request service time, 𝜇𝑠 and also mean of request
priority, 𝜇𝑃, at start of time slot, as shown in eq. (2)-
(4). In our model, jobs status would be defined by these
three parameters.

Table 1. Characteristics of the proposed system

n number of submitted jobs at the start of time slot
Pi priority of 𝑖𝑡ℎ request
Di deadline of 𝑖𝑡ℎ request
Si service time of 𝑖𝑡ℎ request
μd mean of request deadline
µs mean of request service time
µP mean of request priority

𝜇𝑑 =
∑ 𝑃𝑖 × 𝐷𝑖𝑛
𝑖=1

𝑛

(2)

𝜇𝑠 =
∑ 𝑃𝑖 × 𝑆𝑖𝑛
𝑖=1

𝑛

(3)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 268

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

𝜇𝑃 =
∑ 𝑃𝑖𝑛
𝑖=1

𝑛

(4)

3.1.2 Specifying System Status

Inputs are job and system status. In previous section,
we explained how to specify job status and in this
section, we want to explain how to specify system
status. For obtaining information about the system,
there are some smart agents monitoring system status
and alarming the status to the SLA. SLA notices
obtained information about requests and system status
as inputs and proceeds to set best action to do on the
input so that desired output has been produced. In the
next section, it will be described how to select best
action regarding to inputs.

3.2 How To Choose Action

As explained later, based on inputs, SLA should
choose a sufficient action to obtain desired output-
resource utilization, number of completed jobs,
percentage of user satisfaction, load balancing. It is
difficult to map inputs to desired output. To solve the
problem, we use clustering technique together with
supervised learning. Cluster analysis or clustering is
the process of grouping the objects into subsets so that
the objects in subset are similar in some sense.
Clustering is a method of unsupervised learning and a
common technique for statistical data analysis used in
many fields, including machine learning, data mining,
pattern recognition, image analysis and bioinformatics
[29]. Fig. 4 represents the clustering process. In this
section, we discuss algorithms and methods
implemented for grouping similar inputs and
generating sufficient actions.

Fig. 4. representation of clusters

3.2.1 Clustering Algorithm For Grouping Inputs

Cluster is the same template of items– Input, Action
and Output– which have been registered in tuple with
fields are listed eq. 5. The first four parameters are
related to inputs and the others are related to system
and actions. As shown on eq. 6, system status
comprises two options – load balancing rate and
resources utilization rate – that alarm by smart agents.
And as shown in eq. 7, request status comprises two
field- percentage of user satisfaction and percentage of
completed jobs. Percentage of completed jobs is

computed easily but it needs to compute some
parameters in order to obtain percentage of user
satisfaction that it is shown in eq. 8. All parameters
which exist in eq. 5-8, are listed on table 2.

〈𝜇𝐷 , 𝜇𝑆, 𝜇𝑃, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 − 𝑠𝑡𝑎𝑡𝑢𝑠, 𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑢𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡,
 𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑 , 𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑢𝑠𝑛𝑒𝑥𝑡 ,𝑇𝑆𝑙𝑜𝑡

〉 (5)

𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑢𝑠 = 〈𝑙𝑜𝑎𝑑 − 𝑏𝑎𝑙𝑎𝑛𝑐𝑒,𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒〉 (6)

𝑟𝑒𝑞𝑢𝑒𝑠𝑡 − 𝑠𝑡𝑎𝑡𝑢𝑠 =
< 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛,

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑗𝑜𝑏𝑠 >

𝑃𝑠𝑎𝑡𝑖𝑠𝑓𝑦 =

𝑝𝑖 �𝐷𝑖 − � 𝑇𝑠𝑖𝑗
𝑆𝑖
𝑚𝑖𝑛 + 𝐿𝑖

𝐵𝑤𝑖𝑗
𝑇𝑖𝑗��+ 𝑝𝑖′(1− 𝑝𝑖)(𝐷𝑖 − 𝑇𝑐 − 𝑇𝑁) (8)

Table 2. Existing parameters in eq. 5-8

𝑇𝑆𝑙𝑜𝑡 Determined time slot by system
𝑎𝑐𝑡𝑖𝑜𝑛𝑟𝑒𝑙𝑎𝑡𝑒𝑑 Selected action for the input

𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑢𝑠𝑛𝑒𝑥𝑡 System status after doing action
on inputs

𝑠𝑡𝑎𝑡𝑢𝑠𝑟𝑒𝑞𝑢𝑒𝑠𝑡 Status of requests which
submitted to SLA

𝑠𝑦𝑠𝑡𝑒𝑚𝑠𝑡𝑎𝑡𝑢𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 Current system status
𝑃𝑠𝑎𝑡𝑖𝑠𝑓𝑦 Percentage of user satisfaction
𝐷𝑖 Deadline of job i
𝑇𝑠𝑖𝑗 The i-th job service time on the

resource j
𝑆𝑖𝑚𝑖𝑛 Speed of the slowest resource

on which the job i can be
executed

𝐿𝑖 The size of a given job i
𝐵𝑤𝑖𝑗 The bandwidth between i-th job

and the resource j on which the
job can be executed

𝑝𝑖′ Probability that i-th job
submitted for the second

negotiation
𝑝𝑖 Probability that i-th job

submitted for the first
negotiation

𝑇𝑖𝑗 Required time to transfer data
from i-th job to resource j

𝑇𝑐 Completed job time
𝑇𝑁 Required duration for the first

negotiation

At first, there is no knowledge about system, on the
other hands, no cluster exists. So selecting randomly an
action to apply on requests called as inputs can cause
undesirable results. For solving the problem, we early
apply supervised technique. It means that grid system
manger supposes some inputs which might happen in
system and then manager makes decision which action
or policy is conducted to goals. Supposed inputs and
system status are classified on different clusters. Each
cluster includes group of similar status, as shown in fig.
4.

(7)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 269

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

As shown in fig. 5, we describe only six statuses with
proposed action across all statuses which grid manager
can suppose:

Status 1: Jobs deadline are too short and they have

high priority. It means jobs should do as
fast as possible with low rejection rate.

Action 1:

Scheduler should use a quick searching
algorithm to find sufficient resources with
matching requests like hill climbing. It is
better to find resources nearby request
because transmitting jobs to remote
resources would spend time. Even if there
is no idle local resource, it is better to find
resource by which young request, 𝐽𝑖, with
long deadline is executed. The new request
is sent to the resource and 𝐽𝑖 is sent to
remote idle resource.

Status 2: Jobs deadline are too short but no have
high priority and system workload is high.
And there is no scarcity of resources. It
means jobs should be done fast in order to
more accepted jobs. But it is never forget
that load system is high.

Action 2: Scheduler should use a quick searching
algorithm to find sufficient resources with
matching requests like hill climbing.
It is better to find resources nearby request
Because of transmitting jobs to remote
resources would spend time. Also, Time
slot, 𝑇𝑆𝑙𝑜𝑡, should grow because of heavy
system load, it causes that fewer number of
job would be submitted so system load
would decline.

Status 3: Jobs deadline are normal but there is no
load balancing.

Action 3: Scheduler should use a searching
algorithm to provide system load
balancing like BACO (Balance ant colony
optimization).

Status 4: Jobs deadline is normal but system
workload is high and there is scarcity of
resources.

Action 4: Scheduler can use an Economic heuristic
algorithm to find sufficient resources with
matching requests like Game theory.

Status 5: Jobs deadline are too short. System does
not have heavy system workload.

Action 5: Scheduler should use hill climbing
algorithm to search resources nearby
request.

Status 6: Jobs deadline are normal and there is load

balancing.

Action 6:

Scheduler use PSO algorithm to search
resources.

As illustrated above, we only use four scheduling
algorithms, PSO (partial swarm optimization), BACO
(balanced ant colony optimization), Hill climbing and
Economic based heuristic like game theory. Each
algorithm can improve some grid factors. For example,
BACO is capable of achieving system load balance better
than other job scheduling algorithms and also economic
heuristic deals with matching jobs to available
resources in economical way such that resource
provider and consumer get sufficient incentive to stay
and play in competitive market [2, 3].
Each upper status makes a distinct cluster based on
input, action and output. Input and action will be
registered in related cluster but output will be
registered after executing action on input and observing
the result on grid.
Anyway, after requests submit to SLA, the new
observation should be lied on clusters. For the purpose
of grouping similar sets of inputs, we apply k-means
clustering algorithm. The registered information on
cluster is shown in eq. (5)-(7).
K-means is a clustering algorithm that, given an initial
set of k means, assigns each observation to a cluster
with the closest mean. It then calculates new means to
be centers of observations in the clusters and stops
when the assignments no longer change [22]. A cluster
center is a newly generated input for a group of
requests.
 A frequent problem in k-means algorithm is the
estimation of the number k. Two implemented
approaches are explained as follow [23]:

1. Rule-of-Thumb is a simple but very effective method

in which k is set to�𝑁 2� , where N is the number of

entities.
2. Hartigan’s Index is an internal index introduced in
[24]. Let 𝑊(𝑘) represents the sum of squared distances
between cluster members and cluster center for k
clusters. When grouping n items, the optimal number k
is chosen so that the relative change of 𝑊(𝑘)
multiplied with the correction index 𝛾(𝑘) = 𝑛 − 𝑘 − 1
does not significantly change for 𝑘 + 1,

𝐻(𝑘) = 𝛾(𝑘)
𝑊(𝑘) −𝑊(𝑘 + 1)

𝑊(𝑘 + 1) < 10

The threshold 10 shown in Hartigan’s index is also
used in our model. It is “a crude rule of thumb”
suggested by Hartigan [24].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 270

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.5. Describing six proposed initial statuses by system manager

3.2.2 Computing Distance Between Input Template

In order to utilize clustering algorithm, the measure of
distance between two clustering items must be defined,
as well as the distance between a clustering item and a
cluster center. As already mentioned in the previous
section, an item for clustering as called Template
generally is a set of inputs, actions and outputs, while a
cluster center is a master template for the given group
of inputs.
Since having knowledge about the content of requests
and about system status, we can exactly reconstruct
templates. Therefore, both the distance between two
clustering items as well as between an item and a
cluster center can be reduced to computing distances
between two templates. For this purpose, we introduce
the n-tuple representation of decision. A decision
consists of input, action and output parameters.
We distinguish between the structure of a decision, the
list of input, action and output parameters with their
names, and the values of a template, a list of numerical,
boolean and string values of clustering items attributes.
We introduce the n-tuple representation of a decision,
where first 𝑛 − 1 elements contain values of the
template, while the last element contains the template
structure. By using such a representation, we can
define the distance between two templates as an n-
tuple, where first 𝑛 − 1 elements contain the
differences between the two values of each of the
parameters, while the final element contains a value

representing the difference between the structures of
the templates.
To formalize, we observe two decision templates T1

and T2 defined by their values {𝛼,𝛽, 𝛾, … } and the
template structure 𝜏.

𝑇1 = (𝛼1,𝛽1, 𝛾1, … , 𝜏1)

𝑇2 = (𝛼2,𝛽2, 𝛾2, … , 𝜏2)

The n-tuple 𝐷𝑇1,𝑇2 representing the distance between
two clustering templates is defined as eq.(9) [23].

𝐷𝑇1,𝑇2 = �𝑓(𝛼1,𝛼2), 𝑓(𝛽1,𝛽2), … ,𝐹(𝜏1, 𝜏2)� (9)

The result of the function 𝑓 for calculating the
difference between two template values 𝛼1 and 𝛼2
depends on the type of its arguments and is defined as
eq. (10) [23].

𝑓(𝛼1,𝛼2) =

⎩
⎪
⎨

⎪
⎧

|𝛼1 − 𝛼2|, if α1 and α2 are numerical
0, else if α1 and α2 are not

 numerical and α1=α2

1, else if α1 and α2 are not
 numerical and α1≠α2

�

The distance between the structures of clustering
templates is expressed as a number of differences
between properties of templates. This value is
calculated by iterating through all parameters contained
by at least one of the cluster templates, calculating the

(10)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 271

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

distance between the templates with respect to the
parameters. We define the distance function 𝐹
calculating the difference between structures 𝜏1 and 𝜏2
of two templates T1 and T2 as shown in eq. (11) [23].

𝐹(𝜏1, 𝜏2) = � 𝑑𝑝
𝑝∈𝑇1∪𝑇2

(𝑇1,𝑇2) (11)

where the distance between two parameters of two
cluster templates with respect to its properties is
defined as shown eq. (12).

𝑑𝑝(𝑇1,𝑇2) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0, if name and metric of p are
 the same in T1 and T2

1, else if T1 and T2 does not contain p
1, else if only name or metric of p

 differs in T1 and T2
2, else if both name and metric
 of p differs in T1 and T2

�

After the result tuple has been calculated, it can be used
to generate a single numerical value representing the
distance between the two clustering templates. In order
to do so, the result tuple must be normalized
beforehand so that the tuple elements can be mutually
comparable. Normalization is executed on each of the n
tuple elements separately, where a value of an element
is divided by a range of possible values for the element
(maximum value minus the minimum value). Then, the
final value representing the distance between clustering
items can be computed by a simple function.
Note, in this paper, we discuss only the final element of
the distance tuple, the difference between structures of
two SLA templates. We plan to consider the values of
SLA templates in our future work.

 Fig. 6. Overview of the proposed model

However, SLA makes decision to choose sufficient
action based on these clusters. If a status is found to
which there is no matching cluster, SLA should make a

new cluster. SLA selects clusters which their inputs are
nearby current input and based on these clusters, SLA
guesses the sufficient action which is better in this
status. Then new cluster would be created. So, as time
pass, number of clusters will be changed.
It is important to note if there is a status which there is
no algorithm to improve all of grid goals, SLA selects
the algorithm that is able to improve user factors
(number of completed jobs and user satisfaction)
instead of system factors. In our model, user has high
priority.

3.3 Glimpse Of The Proposed Model

As shown in fig. 6, requests submit to SLA. SLA
surveys and analyses current grid status and received
requests and based on input distinguishes related
cluster for selecting sufficient scheduling policy to
improve grid factors.
For example, it is possible that a status happens which
SLA recommend user to change his job deadline
otherwise job would be reject or other bad events
happen. If user accepts, SLA's suggestion would be
executed otherwise, user should resubmit his job.
Described scenario of grid operation is illustrated in
fig. 7.

3.4 SLA Infrastructure

In the proposed model, SLA encompasses three parts ̶
inception, decision, execution ̶ that make decision
based on request status and system condition what
scheduler policy would be best policy to achieve grid
goals as shown in fig. 1.

(12)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 272

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.7. Describing scenario of grid operation

3.4.1 Inception Unit

When user submits his job to SLA, it is received by
inception unit. The unit is responsible for surveying
requests and system status as input and calculating
mean of request deadline, 𝜇𝑑, and mean of request
service time, 𝜇𝑠 and also mean of request priority, 𝜇𝑃.
And also communicates with smart agents to gain
system status. Then sends obtained information to the
decision unit.

3.4.2 Decision Unit

This unit is responsible to survey received result from
the inception unit and determine the cluster which is
related to current situation. If it distinguishes the
cluster, then send the related action to the execution
unit. But while no cluster match, the unit should create
new cluster with current status as its input and choose
its sufficient action using the approximately similar
clusters but cannot specify its real output. The output
would be specified after the action is done.
However, the unit chooses the action then sends it to
the execution unit. After scheduler do the action and
sends result to the decision unit, the unit surveys the
result and selects best actions that best result would be
provided for requests and system.

3.4.3 Execution Unit

It is responsible to send parameters to which scheduler
requires executing selective action. Based on proposed
action, scheduler finds resources then sends the result
to the decision unit.

4. Relationship Between Number Of
Completed Jobs and Utilization

In real world, there is no detailed mathematic
relationship for most of phenomenon, so that
specifying one phenomenon cause specifying the other
one. For example, suppose that there is relation
between company publicity and number of sell. The
relation often is not precise, so that we can say if spend
n dollar for publicity, company would sell q number of
stuff. The relation that is between number of completed
jobs and utilization is instance of this kind of
relationship. First, draw transmittal diagram and then
select best line which have minimum variance respect
to spots in diagram. In this part, we intend to obtain
relationship, �̂�, between the number of completed jobs,
𝑁𝐶𝑟, and system utilization, U, as illustrated in eq. (5)
– (9). For specifying the relationship it needs 𝑛
experiments which number of completed jobs, 𝑁𝐶𝑟𝑖,
and system utility, 𝑈𝑖, in i-th experiment should
measure in each experiment.

𝜇𝑁𝐶𝑟 = �
𝑁𝐶𝑟𝑖
𝑛

𝑛

𝑖=1

(5)

𝜇𝑈 = �
𝑈𝑖
𝑛

𝑛

𝑖=1

(6)

𝑏 =
∑ 𝑁𝐶𝑟𝑖 × 𝑈𝑖 − 𝑛 × 𝑀𝑁𝐶𝑟 × 𝜇𝑈𝑛
𝑖=1

∑ 𝑁𝐶𝑟𝑖2𝑛
𝑖=1 − 𝑛 × 𝜇𝑁𝐶𝑟2

(7)

𝑎 = 𝜇𝑈 − 𝑏 × 𝜇𝑁𝐶𝑟
 (8)

�̂� = 𝑎 + 𝑏 × 𝑁𝐶𝑟 (9)

5. Conclusion

The following paper describes a novel SLA-aware
model to schedule tasks efficiently in a grid
environment. To apply best scheduling policy, this
model uses clustering technique. Clustering is a
method of unsupervised learning, and a common
technique for statistical data analysis. Clustering is the
assignment of a set of observations into subsets (called
clusters) so that observations in the same cluster are
similar in some sense. We put past scheduling
experiments in disjoint clusters and in future, we use
clusters to choose best scheduling policies.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 273

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

References

1. Y. Gao, H. Rong, J. Z. Huang, "Adaptive grid job
scheduling with genetic algorithms", J. Future
Generation Computer Systems, Vol. 21, 2005, pp. 151-
161.

2. Y. S. Dai, X. L. Wang, "Optimal resource allocation on
grid systems for maximizing service reliability using a
genetic algorithm", Reliability Engineering and System
Safety, Vol. 91, 2006, pp. 1071-1082.

3. A. V. Chandak, B. Sahoo, A. K. Turuk, "Heuristic Task
Allocation Strategies for Computational Grid", Int. J.
Advanced Networking and Applications, Vol. 2, 2011,
pp.804-810.

4. D. D. H. Miriam, K. S. Easwarakumar, "A Double Min
Min Algorithm for Task Metascheduler on Hypercubic
P2P Grid systems", International Journal of Computer
Science Issues, Vol. 7, No. 5, 2010, pp. 8-18.

5. B. Zeng, J. Wei, H. Liu, "Dynamic Grid Resource
Scheduling Model Using Learning Agent", IEEE
International Conference on Networking, Architecture,
and Storage (NAS’09), 2009, pp. 67-73.

6. N. Malarvizhi, V. R. Uthariaraj, "A Minimum Time To
Release Job Scheduling Algorithm in Computational
Grid Environment", Proceedings of Fifth International
Joint Conference on INC, IMC and IDC, 2009, pp. 13-
18.

7. D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini, G. R. Nudd,
"Local Grid Scheduling Techniques using Performance
Prediction", IEEE Proceedings of Computers and Digital
techniques, 2003, pp. 87–96.

8. S. Bansal, B. Kothari, C. Hota, "Dynamic Task-
Scheduling in Grid Computing using Prioritized Round
Robin Algorithm", International Journal of Computer
Science Issues, Vol. 8, 2011, pp. 472-477.

9. M. Cochran, P. D. Witman, "Governance and Service
Level Agreement Issues in A Cloud Computing
Environment", Journal of Information Technology
Management, Vol. 22, No. 2, 2011, pp. 41-55.

10. T. Altameem, "On the Design of Job Scheduling Strategy
Using Agent Replication for Computational Grids",
IJCSNS International Journal of Computer Science and
Network Security, Vol. 11, No. 3, 2011, pp. 269-276.

11. J. Li, J. Peng, Z. Lei, W. Zhang, "An Energy-efficient
Scheduling Approach Based on Private Clouds", Journal
of Information & Computational Science, Vol. 8, No. 4,
2011, pp.716-724.

12. C. Ray, N. Guha, "Determination of Cost Model for
Constraint based Query Optimization in Data Grids",
Proceedings of International Conference on Advances in
Computer Science, 2010, pp. 237-240.

13. L. M. Khanli, M. Etminan Far, A. Ghaffari, "Reliable Job
Scheduler using RFOH in Grid Computing", Journal of
Emerging Trends in Computing and Information
Sciences, Vol. 1, No. 1, 2010, pp. 43-47.

14. M. Amoon, M. Mowafy, T. Altameem, "A Multiagent-
Based System for Scheduling Jobs in Computational
Grids", ICGST- AIML journal, Vol. 9, 2009, pp. 19-27.

15. M. Hovestadt, "Operation of an SLA-aware Grid Fabric",
Journal of Computer Science, Vol. 2, No. 6, 2006, pp.
550-557.

16. R. J. S. Raj, V. Vasudevan, "Beyond Simulated
Annealing in Grid Scheduling", International Journal on
Computer Science and Engineering (IJCSE), Vol. 3, No.
3, 2011, pp. 1312-1318.

17. R. M. R. Kovvur, S. Ramachandram, V. Kadappa, A.
Govardhan, "A Reliable Distributed Grid Scheduler for
Independent Tasks", International Journal of Computer
Science Issues, Vol. 8, 2011, pp. 296-301.

18. H. Izakian, B. T. Ladani, A. Abraham, V. Snasel, "A
Discrete Particle Swarm Optimization Approach For
Grid Job Scheduling", International Journal of
Innovative Computing, Information and Control, Vol. 6,
No. 9, 2010, pp. 1-15.

19. A. Revar, M. Andhariya, D. Sutariya, "Load Balancing in
Grid Environment using Machine Learning-Innovative
Approach", International Journal of Computer
Applications, Vol. 8, No. 10, 2010, pp. 31-34.

20. G. D. Parmar, S. K. Mitra, "Performance Analysis of
Unsupervised Probabilistic", IJCA Special Issue on
Computer Aided Soft Computing Techniques for
Imaging and Biomedical Applications CASCT, 2010,
pp. 93-98.

21. J. MacQueen, "Some methods for classification and
analysis of multivariate observations", Proceedings of
the fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1967, Vol. 1, pp. 281-297.

22. K. V. Mardia, J. T. Kent, "Multivariate Analysis",
Academic Press, 1980.

23. I. Breskovic, M. Maurer, V. C. Emeakaroha, I. Brandic,
J. Brandic, "Towards Autonomic Market Management
in Cloud Computing Infrastructures", In Proceedings of
CLOSER, 2011.

24. J. A. Hartigan, Clustering Algorithms, John Wiley &
Sons Inc, 1975.

25. S. Sauravjyoti, D. K. Bhattacharyya, "An Effective
Technique for Clustering Incremental Gene Expression
data", International Journal of Computer Science Issues,
Vol. 7, No. 3, 2010, pp. 31-41.

26. G. Murugesan, Dr. C. Chellappan, "An Economic-based
resource Management and Scheduling for Grid
Computing Applications", International Journal of
Computer Science Issues, Vol. 7, No. 2, 2010, pp. 20-
25.

27. U. Karthick Kumar, "A Dynamic Load Balancing
Algorithm in Computational Grid Using Fair
Scheduling", International Journal of Computer Science
Issues, Vol. 8, No. 1, 2011, pp. 123-129.

28. K. S. Chatrapati, J. U. Rekha, A.V. Babu, "Competitive
Equilibrium Approach for Load Balancing a data Grid",
International Journal of Computer Science Issues, Vol.
8, 2011, pp. 427-437.

29. S. R. Nimmagadda, P. Kanakamedla, V. B. Yaramala,
"Implementation of Clustering Through Machine
Learning Tool", International Journal of Computer
Science Issues, Vol. 8, 2011, pp. 295-401.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 274

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

30. T. R. V. Ananadharajan, Dr. M. A. Bhagyaveni, "Co-
operative Scheduled Energy Aware Load-Balancing
technique for an Efficient Computational Cloud",
International Journal of Computer Science Issues, Vol.
8, 2011, pp. 571-576.

Seiiedeh Yasaman Rashida received his B.S. in
computer engineering from Sari Azad University,
Mazandaran, in 2006, the M.S. in computer
engineering from Arak Azad University, Markazi, in
2010. She is a teacher at Shirgah University in
Mazandaran. Her research interests include grid
computing and Fuzzy logic. She has some papers in
these fields.

Amir Masoud Rahmani received his B.S. in computer
engineering from Amir Kabir University, Tehran, in
1996, the M.S. in computer engineering from Sharif
University of technology, Tehran, in 1998 and the PhD
degree in computer engineering from IAU University,
Tehran, in 2005. He is assistant professor in the
Department of Computer and Mechatronics
Engineering at the IAU University. He is the author/co-
author of more than 80 publications in technical
journals and conferences. He served on the program
committees of several national and international
conferences. His research interests are in the areas of
distributed systems, ad hoc and sensor wireless
networks, scheduling algorithms and evolutionary
computing.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 275

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

	38

