
 Design of a Conceptual Reference Framework for Reusable
Software Components based on Context Level

V. Subedha1, Dr. S. Sridhar2

 1 Research Scholar, Department of CSE, Sathyabama University
Chennai, Tamilnadu, India

2 Research Supervisor, Department of CSE, Sathyabama University
Chennai, Tamilnadu, India

Abstract

Reusable software components need to be developed in a generic
fashion that allows their reusability in context level. Components
identification based on quality metrics for reusability and
indexing had been the desired technique in the field of reusable
software components. However, the methodologies utilized for
the identification of reusable components are not able to handle
the reusability of faulty behavior component. In this paper we
propose a conceptual reference framework for reusable software
components which is available in reusable component
repositories and also based on the faulty functional behavior of
the components in the environment. Also we propose a
Component Extraction scheme named as Minimum Extraction
Time First (METF) based on extraction time of the component.
The component for reuse is qualified based on the functional
coverage report, software reuse metrics and minimum extraction
time from the collection of components identified. Reuse-Utility-
Percent and Reuse-Frequency metrics were used to assess the
reusability in the environment. So, the proposed framework can
be used to achieve high potential and high quality reuse.
Keywords: Software reuse, Reusable Software Components,
Components Identification, Component Extraction, Component
Qualification, Reusability metrics.

1. Introduction

Effective reuse of requirements, architecture, design,
process, technology, knowledge and components from
previous software developments can increase the
productivity & quality in software environment [4].
Software reuse catalyzes improvements in productivity by
avoiding redevelopment and improvements in quality by
incorporating components whose reliability has already
been established [7]. In fact, Software production using
the reusable components will probably be very crucial to
the higher level of software industry maturity [9]

So, in recent years, there has been an increasing awareness
of the reusability. As a consequence there are lots of

research studies which focus on the software components
extracted from the existing sources [1]. The most
extensive effort to date has been the focus on software
reuse is to examine the issues ranging from methods and
techniques and also to improve productivity and economic
impact [2].

Reusability can be improved not only by replicating the
software components but also continue to reuse the
components with faulty functional behavior. Coverage
driven functional verification plays a more and more
important role in reusability of components with faulty
behavior. Based on the coverage report generated by the
Coverage driven test-cases the components are identified
for reusability.

Component-based reuse is widely accepted as an
important reuse strategy and component-based reuse
programs heavily depend on software reuse repositories
for achieving success [12].

Reuse Frequency metric and Reuse-Utility-Percent metric
values are used as the assessment attributes for reusability
of the software component in Context level. In this paper,
we outline a way to reuse the software components
corresponding to the context-dependent reusability.

The rest of this paper is structured as follows. Section 2
deals with some of the related research works. Section 3
describes our design of a conceptual reference framework
for Reusable Software Components and the proposed
algorithm for the framework. Section 4 deals with metrics
to assess reusability and their evaluation. Section 5
discusses about the case study and analysis results.
Finally, Section 6 concludes.

2. Background and Related Work

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 26

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In the literature, the area of studies addressed by this paper
is called Reusable Software Components. This term means
the process of effectively reusing the components from
existing environment on context level.

Reusability is an important goal in well engineered
systems. Two main approaches have been developed to
identify the components for reusability in existing
software components. The first one facilitates the
component identification based on indexing and the
second approach based on metrics and models.

P. Vitharana et al.[11] describes a component retrieval
mechanism that the reuser formulates a request based on
the keyword. To be retrieved, the information about the
components must be encoded. This process of
identification is also called as indexing which may be
manual or automatic but result in loss of information.

Richard W. Selby [7] proposed a Reuse based software
development model in order to achieve an average reuse
of 32% per project. They identify two categories of factors
that characterize successful reuse-based software
development of large-scale systems: module design factors
and module implementation factors. Also they evaluate the
fault rates of the reused, modified, and newly developed
modules.

Matteo Gaeta et al. [1] proposed an approach to extract
relevant ontology concepts and their relationships from a
knowledge base of heterogeneous text documents. The
proposed model is a complete methodology for automatic
knowledge extraction for reuse.

Parvinder Singh and Sandhu and Hardeep Singh, [5] [6]
have used metric based approach for identifying a
software module and the reusability was obtained with the
help of Fuzzy Logic and Neuro-Fuzzy. This research
shows how metrics can be used to identify the quality of a
software component.

Keiji Hokamura et al [3] proposed an approach of defining
reusable components for multiple Web applications using
a domain-specific aspect-oriented (AO) mechanism based
on an abstraction model common to all Web applications.
The domain-specific AO mechanism based on the server-
client model of Web is useful to describe reusable
components which implement functionalities affecting
user page accesses. B. Morel et.al [10] proposed adapting
software components at the architecture level.
3. Conceptual Reference Framework for
Reusable Software Components

Our reference framework for reusable software
components is to identify, extract, qualify and integrate
reusable software components based on the functional
behavior. This approach follows the well planned,
efficient by cost and quality product. Fig. 1 shows the
conceptual reference framework for reusing the software
components.

Fig. 1 Conceptual Reference Framework for Reusable Software
Components

The whole process consists of the following phases

1. Component identification
2. Component extraction
3. Component Qualification

We focus on a problem as how to analyze the existing
replicant and faulty component for identifying the
collection of suitable components for use. After once they
identified how it is extracted and how to qualify them for
appropriate use is the next issue. Our approach to
identification, extraction and qualification of reusable
software components is based on functional behavior of
the component, minimum component extraction time and
reusability metrics.

In the component identification phase, to identify the
component the information about the components must be
encoded. In our approach both replication of software
components and the failover components are maintained in
the repositories. The functionality of the component is
indexed and the functionality request from the existing
environment will be compared with the indexes and a
collection of match components will be extracted. So the
Reuse Utility Percent and Reusable Frequency can be
improved by the reuse of replication and faulty
components. Coverage driven functional verification
method generates the test case for functional verification
of the components and the reused components were
identified.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 27

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Component Identification process is divided into two
steps.

(1) The existing environment sends the request based
on functionality.

(2) The coverage driven functional verification is
done for both replicant components and as well
as faulty behavior components. And a set of
components that possibly satisfying the need is
returned.

The next phase in this framework is component extraction.
In this phase the identified components which are
scattered in the existing environment is extracted for
reusability. In our approach we propose a new Component
Extraction scheme named as Minimum Extraction Time
First (METF).

In this proposed scheme we extract a component which is
in the nearest distance to the current position of the
environment. By using this scheme we can extract the
entire identified reusable component in average minimum
extraction time from the current position in the existing
environment. This scheme defines an optimal path for
component extraction and also calculates extraction time
for each component.

After extracting a set of reusable software components, in
the qualification phase we qualify the reusable software
components based on the coverage report, minimum
extraction time to extract the components and software
reusability metrics. After qualification the component is
integrated with existing environment so that the system is
able to continue its usual work.

The following general algorithm illustrates the software
component reusability process proposed in this framework

Begin

Step 1: Specify the Reuse Strategy
Step 2: Index the components with coverage driven
functional verification Report
Step 3: If identical match with Components in
repositories or Components with faulty
behavior then identify the component for reuse
Step 4: For entire set of identified component for
reuse do
Calculate the minimum extraction time with METF
scheme
Step 5: Qualify the component based on Coverage
report, Minimum extraction time and quality metrics
Step 6: Integrate the reusable software component
with the environment

End

4. Metrics to assess reusability

A pair of metrics Reuse-Utility-Percent and Reuse
Frequency has been used to measure the reusability of the
components. Linguistic variables are then assigned to the
metrics based on the measurement. The assignment of the
linguistic variables depends on the range of the values of
the measurement.

Reuse-Utility-Percent is the most important reuse metrics
and this metric is very simple to measure. It is the ratio of
No. of Reused software components to the No. of software
components available in the existing environment. Reuse-
Utility-Percent is assigned with six linguistic variables
VERY HIGH, HIGH, MEDIUM, LOW, VERY-LOW and
NIL as constants in the range of 0-100 in Table 1.

100*
)(

)(
 =Percent Utility Reuse

SCn

RSCn
 (1)

where n(RSC) is total number of Reusable Software
Components & n(SC) is total number of Standard
Components existing environment

Table 1 : Linguistic variables for Reuse Utility Percent

Reuse Frequency
Range

Linguistic
variables

0 – 10 NIL

10 – 30 VERY LOW

30 – 50 LOW

50 – 70 MEDIUM

70 - 90 HIGH

90 - 100 VERY HIGH

Reuse-Frequency is the ratio of the count of a component
refereed for reuse to the total count of references of the
entire standard component in the existing environment.

Reuse-Frequency is assigned to two linguistic variables
LOW and HIGH as constants in the range of less than 1
and greater than 1.

n

i

Sin
n

Cn

1

)(
1

)(
 = Frequency Reuse (2)

where n(C) is total number of reference to a Reusable
Software Component, n(Si) is total number of reference

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 28

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

for each Standard Components in the existing environment
& n is the total number of component in the existing
environment in the Table 2

Table 2: Linguistic variables for Reuse-Utility-Ratio

Reuse Utility Percent
Range

Linguistic
variables

<=1 LOW

>1 HIGH

The equation (2) shows that the Reuse Frequency is the
measure of function usefulness of a component. Hence
there should be some minimum value of Reuse Frequency
to make software component really reusable.

5. Case Study and Analysis

In this section we present a case study to evaluate the
effectiveness of component extraction scheme and
analysis of reusability metrics with our own test cases

5.1 Evaluation and Discussion

The minimum extraction time for all the components in
the entire identified set is calculated. The Total
Component Extraction time and Average Component
Extraction for the proposed scheme is derived in this
subsection. Total Component Extraction time is the total
time taken to extract all the reusable components which
are identified based on the functionality in Component
Identification Phase. Average Component Extraction time
is the average time taken to extract all the reusable
components

For experimental study Local Area Network Environment
with following specification where chosen:

1. No. of Nodes=5000 i. e node 0 to node 4999 i. e

Distance[Cend]=4999
2. Present reuser position is 143 i. e distance

[Cst]=143 rd node
3. The Component Extraction distances of [Ci]

were chosen in Table 3
4. Ci denotes the position in the Network from

where the Component for the ith position has
to be extracted.

Table 3: Distances of Ci for different Reusable Components of ‘i’

Identified
Component i

Distance of Ci

1 86

2 1470

3 913

4 1774

5 948

6 1509

7 1022

8 1750

9 130

The component Extraction path and minimum extraction
time each component in the optimal path for proposed
scheme shown in the Table 4.

Table 4: Extraction path & Extraction time using METF

Extraction
Path

Distance of Ci
Extraction

Time of
component Ci

9 130 0.004

1 86 0.016

3 913 0.246

5 948 0.255

7 1022 0.276

2 1470 0.400

6 1509 0.411

8 1750 0.478

4 1774 0.485

The Total distance travelled is, TD = | Distance [Cst] -
Distance [C9] | + | Distance [C9] - Distance [C1] | + |
Distance [C3] - Distance [C1] | + | Distance [C5] - Distance
[C3] | + | Distance [C7] - Distance [C5] | + | Distance [C2] -
Distance [C7] | + | Distance [C6] - Distance [C2] | + |
Distance [C8] - Distance [C6] | + | Distance [C4] - Distance
[C8] |

 TD =13+44+745+827+35+74+448+39+241+24 = 1745
 Average distance = 1745/9 = 193.88

Total extraction time = 2.570
Average extraction time = 0.286

Extraction path for proposed Extraction Minimum
Extraction Time First (METF) method is given in the
below Fig 2.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 29

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 2 Extraction path of Reusable Component Extraction (METF)

5. 2 Analysis of reusability metrics

For a better explanation of reusability metrics, consider
the example of a Local Area Network Environment
consists of N=500 components and for 10 scenarios in
various cases, the Reuse Utility Percent metric is
calculated by using the equation (1) and the linguistic
variables are assigned for the range of metric value which
is already assigned in the Table 1

Total No. of Standard Components n(SC) = 500

Table 5: Linguistic variables for Reuse-Utility-Percent for different Test

cases from NIL to VERY HIGH

Test
Cases

No. of Reused
Components
n(RSC)

Reuse
Utility
Percent

Linguistic
variables

1 59 11.8 VERY LOW

2 385 77 HIGH

3 193 38.6 LOW

4 412 82.4 HIGH

5 323 64.6 MEDIUM

6 215 43 LOW

7 89 17.8 VERY LOW

8 5 1 NIL

9 455 98 VERY HIGH

10 299 59.8 MEDIUM

Table 5, summarizes the number of test cases collected
under the LAN environment and Reuse Utility Percent is
calculated using the equation (1) and linguistic variables
are assigned. From this table, it is inferred that the reuse-
utility percent increases when number of component
reused is increases

From the below graph in Fig.3 we can infer the
relationship between the No. of Reused Components and
Reuse-Utility-Percent as Reuse-Utility-Percent is directly
proportional to the no. of Reused Components.

Fig. 3 Analysis Graph for Reuse Utility Percent metric

Consider an another example application of a local area
network consists of N=10 reusable components in an
application for various references, the reuse frequency
metric is calculated and the linguistic variables are
assigned for the range of metric value which is already
assigned in the Table 2

Total No. of reference for Standard Components Σn(Si) =
225

Table 6: Linguistic variables for Reuse-Frequency for the reused
Components

Component
Number

No. of Reference
to a Component
n(C)

Reuse
Frequency

Linguistic
variables

1 8 0.35 LOW

2 0 0 LOW

3 15 0.6 LOW

4 54 2.4 HIGH

5 23 1 LOW

6 33 1.46 HIGH

7 4 0.1 LOW

8 42 1.86 HIGH

9 19 0.84 LOW

10 27 1.2 HIGH

Table 6, summarizes the number of components reused
under the LAN environment and reuse-frequency is
calculated using the equation (2) and linguistic variables
are assigned. From this table, it is inferred that the reuse-
frequency for a component increases when number of
references for a component is increases
From the below graph in Fig.4 we can infer the
relationship between No. of references to a Component
and Reuse-frequency as Reuse-frequency is directly
proportional to the total no. of references to a Component
in the existing environment.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 30

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4 Analysis Graph for Reuse Frequency metric

6. Conclusions

In this paper, we described a framework for reusing the
software components in context level. This framework
also provides diversity in the execution environment
leading to a higher level of reliability of the system. By
this new approach we can includes the reuse benefits as
reduction in development effort and maintenance effort.
This approach is feasible for building reliable software
systems using the reusable components. Finally, the
complete cycle of phases can enable the reuser to
determine which components have high reuse potential
with regards to specific functional requirements, minimum
extraction time and measures of reusability metric. This
research also shows how metrics can be used to find the
quality attributes of a software component. The long term
goal of this approach is to provide a distributed software
component repository to support the system development
though internet and cloud services.

References

[1] Matteo Gaeta, Francesco Orciuoli, Stefano Paolozzi, and
Saverio Salernol, “Ontology Extraction for Knowledge Reuse:
The e-Learning Perspective “, IEEE Transactions on Systems,
Man and Cybernetics, Vol. 41, No. 4, pp. 789-809 Jul 2011.

[2] Gan Wang, Ricardo Valerd and Jared Fortune, “Reuse in
Systems Engineering IEEE Systems Journal, Vol. 4, No. 3, pp.
376-384, Sep. 2010

[3] Hokamura, K., Ubayashi, N., Nakajima, S., Iwai. A,
“Reusable aspect components for Web applications” in
TENCON 2010 - 2010 IEEE Region Conference , pp. 1059 –
1064, Nov. 2010

[4] Freya H. Lin, Timothy K. Shih, , and Won Kim, “An
Implementation of the CORDRA Architecture Enhanced for
Systematic Reuse of Learning Objects”, IEEE Transactions on
Knowledge and Data Engineering , Vol. 21, No. 6, pp 925 – 938,
JUNE 2009

[5] Parvinder Singh Sandhu and Hardeep Singh, “A Fuzzy-
Inference System Based Approach for the Prediction of Quality
of Reusable Software Components”, International Conference on

Advanced Computing and Communications, ADCOM 2008.
On page(s): 349 – 352

[6] Parvinder Singh Sandhu and Hardeep Singh, “Automatic
Reusability Appraisal of Software Components using Neuro-
Fuzzy Approach”, International Journal Of Information
Technology, vol. 3, no. 3, 2006, pp. 209-214.

[7] Richard W. Selby ,“Enabling Reuse-Based Software
Development of Large-Scale Systems,” IEEE Transaction of
Software Engineering, Vol. 31, No. 6, PP. 495-510, Jun 2005

[8] Tomer, L. Goldin, T. Kuflik, E. Kimchi, and S.R. Schach,
“Evaluating Software Reuse Alternatives: A Model and its
Application to an Industrial Case Study,” IEEE Trans. Software
Eng., vol. 30, no. 9, pp. 601-612, Sept. 2004

[9] Marcus A. Rothnberger, Kevin j. Dooleg, Uday R. Kulkarni
and Nader Nada, “ Strategies of Software Reuse : A Principal
Component Analysis of Reuse Practices”, IEEE Trans. Software
Eng., vol. 29, no. 9, pp. 825-837, Sep. 2003.

[10] Morel. B and Alexander, “A Slicing Approach for Parallel
Component Adaptation,” Proc. 10th IEEE International
Conference and Workshop the Eng. of Computer-Based Systems,
pp. 108-114, Apr. 2003

[11] Vitharana. P, Zahdi. F and Jain. H, “Design, retrieval and
assembly in component-based software development”,
Communications of the ACM, 46(11), 97-102, 2003

[12] Guo. J, Luqui, “A Survey of Software Reuse Repositories”,
7th IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, pp. 92-100, Apr. 2000.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 31

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

