
An Extensible and Secure Framework for Distributed
Applications

Aneesha Sharma1, Shilpi Gupta2

1Department of Computer Science and Engineering, Amity University
Noida (201301), Uttar Pradesh, India

2Department of Computer Science and Engineering, Amity University
Noida (201301), Uttar Pradesh, India

Abstract
Availability, Scalability, Reliability, Security and resource
sharing are the key issues for success of any application, that
are well addressed by distributed applications. Distributed
applications provide services to different computers located at
various locations that are connected by some means of
communication network. In distributed systems a particular site
consists of various computing facilities and an interface to local
users and to a communication network. This paper provides
various issues that must be taken into consideration while
developing distributed systems. The issues discussed in this
paper offer a secure framework for developing any distributed
application on the top. Of these issues there are certain most
commonly occurring issues that a distributed system fall victim
to.
Keywords: distributed system, message passing, consensus,
clock Synchronization, deadlock detection, concurrency
management.

1. Introduction

A Distributed System is viewed as a set of computers
that are independent in nature and in which each
computer has its own local memory, operating system
and clock[1]. The means of communication in a
distributed system is through message passing method. In
message passing method there is a sender and a receiver.
A sender communicates with the receiver by means of
passing messages. The information to be shared is copied
from the sender process’s address space to the address
space of all the receiver processes, and this is done by
transmitting the data to be copied in the form of
messages [2]. There are several issues that must be
considered while developing a distributed system these
include message passing, deadlocks, concurrency etc. All
of these and many more will be discussed in detail in this
paper.

2. Problem Statement

As we know that distributed system is widely used in
building many applications. So, through this paper an
idea is given to build a Multi User Virtual Drawing
Board (MUVDB) that uses the concept of distributed
systems. Multi user virtual drawing board can suppor t
mult ip le users a t the same t ime
s imultaneously and all the changes made by each user
are reflected in all the virtual boards. The aim is to
increase avai labi l i ty and provide scalabi l i ty .
Mult i user v ir tual drawing board for
extensible dis t r ibuted framework is bas ical ly
a drawing appl icat ion that can suppor t many
users s imultaneously so that a l l can work to
achieve a common task considering views and
ideas of a l l the users dedicated to perform the
same task to design an appl icat ion that is best
in i ts design.

U s e r 1

U s e r 2

U s e r 3

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 257

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

U s e r 4

 S e c o n d a r y w i n d o w

User 3 and 4 will have the same view

 Secondary window

User 1 and 2 will have the same view

Fig. 1 interface design for MUVDB

The interface for the Multi User Virtual Drawing Board
will look in the same manner as shown through the fig. 1.
The users working on a design are free to give their
respective views on a particular part of the design. The
users that agree on the same design will be grouped
together and a secondary window is also provided on the
main window. This secondary window is provided in
order to have the view of the designs made by other
users. The number of secondary windows and groups can
be controlled. The threshold can be decided by the
number of users interested and supporting a particular
design. The design instances can be discarded if no users
are interested.The proposed idea of the MUVDB will be
carried out in three parts. First a message passing model
will be designed using sockets and threads. Secondly, an
interface will be designed as shown in figure. 1 using
swings. Lastly, concurrency or serialization protocol will
applied. Through this paper only an idea for building
such an application is given and no implementation is
been provided for the same. The paper is divided into
various sections starting from introduction, problem
statement, basic architecture, issues in distributed
systems, conclusion and future scope. Through the issues
in distributed systems, an attempt is made to compare
the proposed idea with the various issues been discussed
in this paper. The aim is to state how these various issues
can be handled in the multi user virtual drawing board
and the basic advantage behind such an idea.

3. Basic Architecture

A distributed system consists of many computers located
at different locations and all are connected via
communication network. Each of these computers have
their own local memory, operating system and clock
apart from a Global clock. All of these clocks are
synchronized in order to have effective error free
communication. A machine at a particular site consists of
two types of processes running on it. These processes
are:

i. Local process (LP)
ii. Coordinator process (CP)

Communication between two machines in a network is
carried out via Sockets. And communication between
local process and a coordinator process is carried out via
Inter Process Communication (IPC). Local process is
basically used to draw an application and coordinator
process helps the local process to see what is happening
on other machines.

Fig. 2 Distributed Framework

 4. Issues in Distributed Systems

Various issues in distributed systems are:
 4.1 Message Passing Framework- In distributed
systems there is a concept of inter process
communication. There are two most important types of
IPC’s that are most commonly used these are shared
memory model and message passing model. In both of
these types of models failure may occur.
Conventional message passing technologies are:
 4.1.1 Unreliable datagrams- identifies the corrupted
messages among the stream of messages and then
discards such messages. This technology generally fails
because of its limitations to provide additional
processing because of which most of the messages get
through, some may get lost in transmission, duplicated or
are delivered out of order [3].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 258

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 4.1.2 Remote procedure call (RPC) - is said to be a
reliable service. It works by providing communication by
invoking a procedure that returns a result. But in this
situation also failure may occur at the sender or at the
receivers site. Failure may also occur in the network
which may cause delay in the delivery of request or reply
[3].
 4.1.3. Reliable data streams- in this form of message
passing technology communication is carried out over
channels and these channels provide sequenced message
delivery in a flow control and reliable manner [3].
ISIS is a system that provides various tools to support the
construction of a reliable distributed system [3].
According to ISIS, Group communication involves
various types of groups these are:
 i. Peer groups- this type of scenario can be seen
when the set of processes cooperate with each other, for
example ,to replicate data [3].
 ii. Client-server groups- in this type of group
communication a process can communicate with any
group provided the group name and permissions are
given [3].
 iii. Diffusion groups- are formed by a client-server
group. In diffusion group clients register themselves and
the members of the group send messages to the full client
set and the clients are the passive sinks.
 iv. Hierarchical groups- are built from multiple
component groups, for the reason of scalability.
H. Attiya et al. [4] proposed a message passing model, in
which various computations performed in the system are
viewed as sequences of steps. In this model each step is
of two types either a message delivery step delivering a
message to the processor or a computation step of a
single processor.
Message passing approach can be used in Multi User
Virtual Drawing Board as the medium to exchange
messages between number of users working on a
common design and this can be achieved by building a
message passing model using sockets and threads.

4.2 Clock Synchronization- distributed system is a
collection of independent computers. The main reason
behind the development of such a system is to achieve
load balancing and resource sharing in the network. For
this purpose it is necessary that the clocks of the
communicating nodes should agree to a common clock
value [1]. Now if the system is being employed to work
for a real time application then it is must that all the
clocks of the processors must match with Coordinated
Universal Time, UTC.
Factors that cause errors in the clock are:
 i. Clock skew- occurs when two clocks run at an exact
same speed but have a constant difference.

 Clock Skew

 Node1 Node2

Fig. 3 Clock Skew

 ii. Drift rate- occurs when the clocks do not run at an
exact same speed. And this difference increases to a
considerable level after some time and continues to be
so.
 Drift

Fig. 4 Clock Drift

In the paper written by Kasim Sinan Yildirim [11], a tool
is provided for finding the lower bounds of the
distributed clock synchronization algorithms. And with
the help of this tool the lower bound on the clock
synchronization error between two processors in a
distributed system can be proved.
In the method for clock synchronization proposed by
Latha CA et al. the nodes in a distributed system are
connected in the form of a ring. A Sync Token is a
specific bit pattern that is made to rotate in the ring. Out
of all the nodes in a ring one node is allowed to have a
direct connection with the UTC server and this node is
referred to as chief time server (CTS). In the beginning,
CTS has the sync token and acts as a time server. It can
then get the UTC value from UTC server. CTS then sets
its clock value as the received UTC value and then
broadcast that value to all the nodes connected in a ring
[1].

 UTC Server

 Fig. 5 Clock synchronization

4.2.1 Event ordering- for ordering of various events
Lamport [7] defined a relation known as “happened
before” and introduced the concept of logical clocks.
According to happened before relation on a set of events:

 If a and b are events in the same process, and a
comes before b, then a b.

 If a is the sending of a message by one process
and b is the receipt of the same message by
another process, then a b.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 259

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 If a b and b c, then a c.
4.2.2 Logical clock- lamport [7] gave the concept of
logical clocks. A clock say Ci is associated with each
process Pi and this process assigns a number Ci (a) to any
event a in that process.Logical clocks are a way to
associate a timestamp to the events in a system. This
allows the events to be properly ordered that are related
to each other by the happened-before relation [2].
4.2.3 Vector clock- a vector clock system basically
involves timestamping mechanism. Vector clocks were
designed with the aim to allow processes to track the
concurrency between the events produced by these
processes [12]. The events that are produced by
processes are mainly message sendings, message
receives or internal events. A vector clock is defined as
an array of n integers in which one entry is for one
process for example if we take entry j it will tell us the
number of events that are produced by the process pj.
Now the timestamp associated with each event defines
the current value of the vector clock for a particular
process that produced that event. With the help of these
vector clocks it becomes easy to identify that whether
two events are casually related or not.
Vector clocks are mostly preferred to achieve an
extensible distributed framework like the Multi User
Virtual Drawing Board because they provide global
ordering and can solve various problems of casual
broadcast, detection of message stability and detection of
an event pattern [12]. A casual broadcast was first
introduced by Birman and Joseph [12, 13].
The main problem of vector clock is scalability,
R.Baldoni [12] in his paper presented a method to
overcome this problem by giving the concept of Bounded
Vector Clocks.
In the paper written by Li-Hsing Yen [14], a method for
preserving the functionality of vector clock was given by
performing correct clock resetting mechanism.

4.3 Deadlock- a deadlock is a situation where in the
resources held by other processes are being requested by
some other process in the same set [5].
Deadlock handling techniques:
4.3.1 Deadlock prevention- can be achieved by two

ways:
 By allowing a process acquire all the resources it
needs before it can actually begin execution. But this
method involves various drawbacks like it effects the
systems concurrency, may lead to certain processes enter
into a deadlocked condition and also in certain systems it
is difficult to actually predict what resources a process
might need in future.
 By pre-empting the process that holds all the
resources needed by a particular process. This method
also have drawback like several processes are pre-empted
without any deadlock.

4.3.2. Deadlock Avoidance- in case of distributed
systems deadlock avoidance is achieved by granting
resource to a process if the resulting system state is safe
[5].This includes various drawbacks and makes it
impractical to be used in distributed systems:
 In order to keep account for the safe state of the
system by every site, large storage capacity and wide
communication capability is required.
 A condition might occur where in several sites
perform the safe state checking but the resulting net state
may not be safe.
 This method for performing check for safe state is
computationally expensive when large number of
processes and resources are involved.
4.3.3. Deadlock Detection-Involves studying the
relationship between the process and the resource to
identify the presence of cyclic wait [5]. In distributed
systems deadlock detection is advantageous in
comparison to deadlock prevention and deadlock
avoidance due to following reasons:
 Detecting a cycle in the system does not hinders the
usual activities of a system.
 When a cycle is formed in the state graph it remains
there in the system. Until it is detected and broken.
Issues in deadlock detection:

 State graph maintenance.
 To search a state graph for the presence of

cycles.
Deadlock detection algorithms are divided into three
parts:
 4.3.3.1. Centralized deadlock detection algorithm-
in centralized algorithms for deadlock detection, a
control site is there that maintains the state graph for the
entire system and performs the checks for the existence
of any deadlock cycle. All sites are capable to request or
release resources by sending “request resource message’
and “release resource message”. The control site updates
its state graph whenever it receives such a message. This
algorithm is though simple and feasible to implement but
it is inefficient because it requires all the messages to go
all way to the control site which in turn causes long
delays for user request, traffic problem near the control
site. All these reasons make this algorithm unreliable
because everything depends on the control site [5].
 Ho-Ramamoorthy presented two centralized
deadlock detection algorithm :
 i. Two-phase algorithm- a status table is maintained
by every site in order to record the status of all the
processes initiated at that particular site. A state graph is
constructed by a designated site by requesting the state
table from all the sites and it is then checked for the
presence of cycle. If no cycle is formed then the system
is not deadlocked. Then this designated site again
constructs a state graph using only the transactions
common to both reports by requesting status table from

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 260

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

all sites. A system is declared deadlocked if the same
cycle is detected again [5]. In this algorithm there may be
a possibility of detecting a false deadlock so it is not that
efficient.
 ii. One-phase algorithm- involves only one phase of
status reports from each site. However, two status tables
are maintained by each site one for resource status and
another for process status. The resource status table
records all the transactions that have locked or are
waiting for the resources stored at a particular site. The
process status table keep a record of all the resources

locked by or the resources that are being waited by all the
transactions at a particular site [5]. A state graph is
constructed by a designated site, by requesting both the
tables from all the other sites and by using only the
transactions that are same for both the resource table and
process table and then performs check for the cycle. This
algorithm does not detect the false deadlocks as it
eliminates any inconsistency in state information by
using only the information common to both tables. The
one-phase algorithm is efficient in comparison to two-
phase algorithm.

Table 1: Deadlock detection algorithms in distributed systems

Basis for distinction Centralized Algorithm Distributed Algorithm Hierarchical Algorithm
1.State graph Maintained at a single site

called control site.
Distributed over several
sites.

Sites are arranged in form of
hierarchy.

2.Implementation Easy Difficult Intermediate
3.Deadlock resolution Simple Cumbersome Deadlocks are localized to

as few clusters as possible.
4.Single point of failure Yes No Employs to get best of both

centralized and distributed.
5.Example Ho-Ramamoorthy algorithm Goldman’s algorithm,

Isloor-Marsland algorithm
etc.

Menasce-Muntz algorithm.

 4.3.3.2. Distributed deadlock detection algorithm-
the work of detecting the deadlock cycle is distributed to
all sites as all the sites co-operate each other to detect a
deadlock cycle.
Various distributed deadlock detection algorithms are:
 i. Goldman’s algorithm- involves the use of an
ordered blocked process list (OBPL), for exchanging
deadlock related information. In OBPL each process is
blocked by its successor and the last process in it will be
either waiting to get an access to a particular resource or
will be in a running state [5]. In this algorithm deadlock
is detected by expanding the OBPL by attaching the
process that holds the resource that is needed by the last
process in the OBPL list at the end and this process is
continued until a deadlock is detected or the OBPL is
removed. Advantage of Goldman’s algorithm is that
whenever deadlock detection is to be carried out then
only OBPL list is constructed.
 ii. Isloor-Marsland algorithm- is also known as
“online” deadlock detection algorithm. This algorithm
detects deadlocks at the time of making decisions about
resource allocation at a particular site. A reachable set for
a particular node is constructed that consists of all the
nodes that can be reached from it. A specific process is
deadlocked if in a reachable set of a particular node,
consists of that node also in the set. Deadlocks are
detected by constructing reachable sets for all nodes.
Each and every site maintains a state graph for the

system and also the reachable sets for each node in the
state graph.
 iii. Obermarck’s algorithm- provides a method to
detect multisite deadlocks without the necessity to
maintain a huge global transaction wait for graph (TWF)
that is to be stored at each site. A node called “external”
or Ex is a basic entity involved in this algorithm that
abstracts nonlocal portion of the global TWF graph. Ron
Obermarck [15] in his paper gave a proof of correctness
for this algorithm of distributed deadlock detection
including an example of the algorithm in operation along
with the performance characteristics of the algorithm.
The process for deadlock detection is as follows:
 A particular site waits for deadlock-related
information to be received from other sites.
 As soon as the information is received by this
site it then combines this information with its local TWF
graph. And then detects all cycles and the cycle that does
not contain the node Ex is broken.
 If the node Ex is contained in the cycles
Ex T1 T2 Ex, the particular site sends them in a
string form Ex, T1, T2, Ex to all the other sites.
In this algorithm message traffic is reduced and a string
say Ex, T1, T2, T3, Ex is sent to other sites only if T1 is
higher than T3 in the lexical ordering [5].
 iv. Chandy- Misra- Haas algorithm- a concept of
special message called probe is used in this algorithm. A
probe is defined by a set (i, j, k). It means that in this set

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 261

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

a deadlock detection is initiated for process Pi that is
being sent by home site of process Pj to the home site of
process Pk. The probe message travels along the edges of
the global TWF graph and we say deadlock is detected
when this message returns to its initiating process.
Chandy, Misra and Haas [16] in their paper presented a
distributed deadlock models and also said that no false
deadlocks are reported.
 4.3.3.3. Hierarchical deadlock detection algorithm-
in this algorithm all the sites are arranged in hierarchical
manner. A particular site is responsible for detecting
deadlocks that involves only its children sites [5].
 i. Menasce-Muntz algorithm- in this algorithm all the
resource controllers are arranged in the form of a tree. In
the hierarchy the controllers that manage resources are
locate at the lowest level, and are referred to as leaf
controllers. These leaf controllers also perform the task
of deadlock detection and also maintains the part of the
global TWF graph that is concerned with resource
allocation at the leaf controller. A TWF graph is
maintained by a non leaf controller that spans only its
children controller and detects deadlocks that involves its
own leaf controllers. Any change in the TWF graph of a
controller as a result of resource allocation, wait, or
release causes an appropriate change in its parent
controller [5]. Now this parent controller makes
appropriate changes in the TWF graph and searches for
any cycle. And if necessary these changes are sent up in
the hierarchy.
 ii. Ho-Ramamoorthy algorithm- in Ho and
Ramamoorthy ‘s hierarchical algorithm the sites are
grouped to form several clusters. A site is periodically
chosen as the central control site and it then dynamically
chooses control site for each cluster. This central site can
request other control sites for their inter cluster
transaction status information and wait-for relations.
With the help of this process at a particular control site,
status tables of all the sites is collected in its cluster and
then one-phase deadlock detection algorithm is applied
to detect all deadlocks involving only intra cluster
transactions. This site then sends the inter cluster
transactions status information and wait-for relations to
the central site. This helps the central site to construct the
system state graph, and thus perform checks for the
presence of any cycle. Therefore, it can be summed up
and said that the control site detects deadlocks that are
present in its own cluster and central site detects all inter
cluster deadlocks.
Edgar Knapp [17], in his paper presented basic principles
on which distributed deadlock detection schemes are
based. He also said that these principles provide a
method to develop distributed algorithms. In his paper he
discussed number of algorithms and also their respective
complexities.

Out of all the deadlock detection algorithms discussed so
far, for Multi User Virtual Drawing Board the distributed
approach is the best to be used in order to achieve an
extensible distributed framework. All the distributed
deadlock algorithm aims to detect cycles not only at a
particular site but spans several sites in the system. Now
the way this aim is achieved by distributed deadlock
detection algorithm differs according to the method used
that is the type of distributed algorithm used (Goldman’s,
Obermarck’s, Isloor Marsland’s etc.)
Therefore, it depends on the type of distributed deadlock
detection algorithm we are using that have its associated
advantages and disadvantages that makes an application
more reliable and secure.

4.4 Concurrency management- several processes in
a distributed system are said to be concurrent if they
perform their task at the same time. Now this
concurrency may give rise to several problems like
‘inconsistent update’ problem and ‘inconsistent
retrievals’ problem [6]. Inconsistent retrieval refers to the
situation when a particular transaction reads some data
objects of a database before another transaction has
completed some modifications on those data objects [9].
Inconsistent update refers to the situation when on a
common set of data objects many transactions perform
read and write that leads to the inconsistency in the
database [9].
Various concurrency control algorithms are:
 4.4.1. Locking- is most widely used algorithm for
concurrency control. In locking method a transaction
locks a data item before actually accessing it. Now this
transaction can access this data item any number of
times. And no other transaction can have access to this
data unless it is released by the transaction that acquired
a lock over it[2].
 4.4.2. Optimistic concurrency control- was given by
Kung and Robinson [8]. This method allows the
transactions to continue until the end of first phase. But
in the second phase the before a transaction is committed
, the transaction is first validated to check any
inconsistency caused by any other transaction since it is
started. The transaction is committed only if it is found
valid otherwise it is aborted.
 4.4.3. Timestamps- in this method a transaction is
assigned a unique timestamp at the time it is started.
Every data is assigned two timestamps that is read
timestamp and write timestamp. Whenever a transaction
wants to access a data then the data item’s read
timestamp or write timestamp is updated according to the
transactions timestamp depending on the type of access
[2].
Ricart and Agrawala in 1981 [18] said that if a process
wants to enter the critical section it should ask the other
processes to give it the permission to enter into the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 262

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

critical section. Therefore, it waits for the appropriate
permissions for the same. For this reason Ricart-
Agrawala proposed the timestamp mechanism in order
to associate a timestamp for each request. Since these
timestamps are ordered therefore, conflict problem is
resolved. The request having the lowest timestamp
amongst all the conflicting requests gets the highest
priority and by this conflicts are resolved.
Michel Raynal [19], in his paper discussed the principles
from which the distributed mutual exclusion algorithms
are designed. These principles include permission-based
and token-based principles.
Permission-based algorithms include the one that was
given by Ricart and Agrawala that is based on
timestamps.
In token-based method, tokens are used to grant
permissions to the processes that want to enter into the
critical section and these processes waits until the token
arrives.
Kerry Raymond [20] in his paper proposed a tree-based
algorithm for distributed mutual exclusion. According to
this method in a system there are N nodes that
communicate to each other by means of passing
messages. In this algorithm a spanning tree of the system
is used. The number of messages exchanged per critical
section depends on the topology of the tree. Each node in
this tree has the capability of storing information about
their immediate neighbour rather than about all nodes
that are not in the spanning tree. The nodes that fail can
recover all the necessary information from their
neighbours. This algorithm does not require the use of
sequence numbers because it operates correctly without
the use of it also.

Suzuki and Kasami [21] in their paper gave a distributed
mutual exclusion algorithm. In this algorithm mutual

exclusion is carried out among N nodes in a system and it
requires N message exchanges for each mutual exclusion
invocation. With this algorithm the delay that was caused
to invoke mutual exclusion is much smaller in
comparison to the algorithm for mutual exclusion given
by Ricart and Agrawala in which 2*(N-1) message
exchanges are required per invocation. The drawback of
this algorithm given by Suzuki and Kasami is that it uses
sequence number concept and these sequence numbers
contained in the messages are unbounded but in this
paper a method is given to resolve this problem by
slightly increasing the number of message exchanges.
For Multi User Virtual Drawing Board concurrency
management can be done by applying serialization
protocol in order to perform simultaneous updates.

4.5 Consensus- a consensus problem is a situation
where each and every processor broadcasts its initial
value to all the other processors in the system [9]. Now
this initial value may be different for all the processors.
So a protocol for reaching consensus is required and this
protocol should meet the following conditions:
 Agreement: all the processors that are non-faulty
must agree on the same single value.
 Validity: now if the non-faulty processors have an
initial value of v then the common value on which the
processors must agree should be v.
Michael J. Fischer et.al [10] in his paper discussed about
consensus problem. In his paper he said that consensus
problem involves an asynchronous system of processes
and some of these processes may be unreliable. He also
discussed about “Byzantine Generals” problem.
For Multi User Virtual Drawing Board consensus
problem can be solved by using a primary replication
server which can be used to continuously send updates
and check for acknowledgement.

Table 2: Distinction between three Agreement problems in Distributed Systems

Byzantine Agreement Consensus Interactive Consistency

1.Initiator of the value One processor initiates the
value

All processors All processors

2.Final agreement Single value Single value A vector of values
3.solution of the problem Solved by solution to the

consensus problem
Solved by solution to the
interactive consistency
problem.

Byzantine agreement
problem is a primitive to
solve this problem.

4.6 Security in distributed systems- since in a
distributed system, nodes are located at various locations.
So a major concern in a distributed system is the security
of an application. Robert Cole [22] in his paper gave a
model of security in distributed systems. And also certain
issues on the use of this security model were given.
There are various threats that are needed to be addressed
in a distributed system [22] like information disclosure,

use of resources by unauthorised means, repudiation of
information flow, denial of service, information
contamination, misuse of resources.
A model of security in a distributed system should be
such that it should cover all the security threats and this
model should well adapt to suit different security
policies. He also defined the concept of security
information that is always generated by a specific

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 263

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

security services in response of an authenticated requests.
And the main purpose of any security service is to use
security information appropriately in a distributed system
[22].
Dan M. Nessett [23] in his paper gave certain factors that
affect the security of distributed systems including factor
like node evaluation levels and network topology.
Rob Dobry [24] in his paper discussed various aspects of
security required in distributed systems. The various
aspects include cryptography, data confidentiality, and
data integrity. He said in order to develop a secure
distributed system , a system should not only make use
of traditional computer security concepts but must also
utilize communication security concepts.
Alan H. Karp [25] in his paper gave three components of
the system architecture to make it easier to manage and
monitor distributed systems. The work he presented was
based on certain assumptions like large number of
machines and users, dynamic, heterogeneous, hostile,
different environments. The three components used in
this paper were separate granting of rights from access
control, mediate between applications and user and lastly
using a proxy for remote users.
Security in MUVDB will be achieved in a way that no
user should be able to delay network traffic or cause
denial of service and during consensus a user is not able
to vote multiple times. We handle the first issue by
diagnosing abrupt traffic generating nodes and further
eliminating them from our multicast network. The
second issue is handled by authenticating users with user
database and allowing only authentic users to participate
in the application. We also make voting during
consensus as an idempotent operation.

5. Conclusion

A distributed system consists of various computers
located at different sites. Each of these computers have
their own local memory and processors. All these
computers are connected by means of a communication
network. As seen through this paper that there are several
issues related to the distributed system and all these
issues have their respective advantages and
disadvantages. A message passing system should be such
that it should deliver the message from sender to receiver
without leading to any type of error. Clocks must be
synchronized to avoid the problem of clock skew and
clock drift. And for a distributed system it is appropriate
to use vector clocks for global ordering of events. As
already discussed that amongst the three deadlock
handling techniques deadlock detection is most
advantageous in comparison to deadlock avoidance and
deadlock prevention and there are various deadlock
detection algorithms that can be applied depending upon
the need of the system. In case of concurrency

management through this paper it can be concluded that
timestamps technique for concurrency control is better in
comparison to the other two techniques discussed in the
paper. As far as consensus problem is concerned it is
clear through the table for the three agreement problems
that all these agreement problems are complementary to
each other. The security of the distributed system is the
key aspect while developing any distributed system.
Security includes various threats that should be
addressed whenever distributed systems are taken into
account.

6. Future Scope

The idea presented in this paper for an extensible
distributed framework can be implemented to develop a
Multi User Virtual Drawing Board. A Multi User Virtual
Drawing Board can support multiple users at a same time
to solve the problem of collaborative designing. The idea
behind this Multi User Virtual Drawing Board is to
provide users with a virtual drawing board and all
changes made by each user are reflected in all the virtual
boards. For this various concepts of distributed system
can be used like message passing, sending updates,
making consensus for agreement in case of conflicts,
concurrency management etc. Interface for such an
application can be designed using swings and a message
passing model using sockets and threads.

References

 [1] Latha CA, Dr. Shashidhara HL, “Clock Synchronization in
Distributed Systems”, 2010 5th International Conference on
Industrial and Information Systems, ICIIS 2010, Jul 29-Aug 01,
India.
[2] Pradeep K. Sinha “Distributed Systems” concepts and
design, Prentice-Hall, India.
[3] Kenneth P. Birman, “The Process Group Approach to
Reliable Distributed
Computing”, communication of the ACM December
1993/vol.36, no.12.
[4] Hagit Attiya, Amotz Bar-Noy and Danny Dolev, “Sharing
Memory Robustly in Message-Passing Systems”, journal of the
association for computing machinery, vol 42, no. 1, January
1995, pp 124-142.
[5] Mukesh Singhal, “Deadlock Detection in Distributed
System”, Ohio State University, November 1989, IEEE.
[6] George Coulouris, “Distributed Systems concepts and
design”, fourth edition, pearson education.
[7] Leslie Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System, communication of the ACM, july
1978,vol 21,no. 7.
[8] Kung and Robinson, “On Optimistic Methods for
Concurrency Control”, ACM transactions on database systems,
vol. 6, no. 2, pp. 213-226 (1981).
[9] Mukesh Singhal, Niranjan G. Shivaratri, “Advanced
Concepts in Operating Systems”, Tata McGraw-Hill edition.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 264

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[10] Michael J. Fischer, Nancy A. Lynch and Michael S.
Paterson, “Impossibility of Distributed Consensus with One
Faulty Process”, journal of the Association for Computing
Machinery, vol. 32, no. 2.
[11] Kasim Sinan Yildirim and Aylin Kantarci, “Clock
Synchronization in Distributed Systems”, Computer
Engineering Department, Ege University. The Turkish
Scientific and Technical Research Council (TUBITAK).
[12] R.Baldoni, M.Raynal, “Fundamentals of Distributed
Computing: A Practical Tour of Vector Clock Systems”.
[13] Birman K and Joseph T, “Reliable Communication in the
presence of failures”. ACM Transactions on Computer
Systems, 5(1): 47-76, 1987.
[14] Li-Hsing Yen and Ting-Lu Huang, “Resetting Vector
Clocks in Distributed Systems”, Journal of Parallel and
Distributed Computing 43, 15-20 (1997, Article No.PC971330.
[15] Ron Obermarck, “Distributed Deadlock Detection
Algorithm”, ACM Transactions on Database Systems, vol.7,
No.2, June 1982, 187-208.
[16] K. Mani Chandy, Jayadev Misra and Laura M. Haas,
“Distributed Deadlock Detection”, ACM Transactions on
Computer Systems, Vol. 1, No. 2, May 1983, 144-156.
[17] Edgar Knapp, “Deadlock Detection in
Distributed Databases”, ACM Computing Surveys, Vol. 19, No.
4, December 1987.
[18] Ricart G. Agrawala A.K, “An Optimal Algorithm for
Mutual Exclusion in Computer Networks”, Comm.ACM, Vol.
24, 1, (1981) , pp.9-17.
[19] Michel Raynal, “A Simple Taxonomy for Distributed
Mutual Exclusion Algorithms”.
[20] Kerry Raymond, “A Tree-Based Algorithm for Distributed
Mutual Exclusion”, ACM Transactions on Computer Systems,
Vol. 7, No. 1, February 1989,pages 61-77.
[21] Ichiro Suzuki and Tadao Kasami, “A Distributed Mutual
Exclusion Algorithm”, ACM Transaction on Computer
Systems, Vol. 3, No.4, November 1985, pages 344-349.
[22] Robert Cole, “Security for Distributed Systems”, Hewlett-
Packard Laboratories.
[23] Dan .M. Nessett, “Factors Affecting Distributed System
Security”, IEEE Transactions on Software Engineeering, Vol.
SE-13, No. 2, February 1987.
[24] Rob Dobry and Mary D. Schanken, “Security Concerns for
Distributed Systems”, IEEE 1994.
[25] Alan H. Karp and Kevin Smathers, “Three Design Patterns
for Secure Distributed Systems”, Hewlett-Packard Company
2003.

Aneesha Sharma is a student who
has received her B.Tech degree in
Computer Science and Engineering
in 2010 with first division from Amity
School of Engineering and
Technology, Amity University, Noida,
Uttar Pradesh, India. Currently, the
author is pursuing M.Tech in
Computer Science and Engineering
from Amity School of Engineering
and Technology, Amity University,

Noida, Uttar Pradesh, India. The author is currently undergoing a
dissertation period in the field of Distributed Systems.

Shilpi Gupta is working as an assistant
professor in Department of Computer
Science and Engineering of Amity School
of Engineering & Technology, Amity
University, Noida. She has 05 years of
experience in the field of Academics and
is actively involved in research &
development activities. She has received
her B.Tech degree in 2006. She is
M.Tech Gold medalist in the stream of
Computer Science and Engineering from
Jaypee Institute of Information

Technology, Noida. Her area of interest includes Software
Engineering, Artificial Intelligence, Soft Computing, Cognitive
Informatics, Affective Computing. She has successfully
published national and international research papers.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 265

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

