
Inversion of Web Service Invocation using Publish/Subscribe
Push-Based Architecture

Thanisa Numnonda1 and Rattakorn Poonsuph2

 1 School of Applied Statistics, National Institute of Development Administration,

Bangkok, 10240, Thailand

2 School of Applied Statistics, National Institute of Development Administration,
Bangkok, 10240, Thailand

Abstract
Among enterprise application integration solutions, Web services
technologies are promising technologies to achieve the
interoperability in heterogeneous environments. However,
traditional Web service invocation may lead to unnecessary
network traffic, long response time, and bottleneck problems at
service providers. While a publish/subscribe model provides an
advantage of prompt notification which can eliminate
unnecessary network traffic, its achievement in interoperability is
limited. By integrating Web services technologies with a
publish/subscribe model, a pull-based architecture and a push-
based architecture are mentioned in this paper. The pull-based
architecture uses the integrated solution based on traditional Web
service invocation, still the bottleneck problems at service
providers are likely to occur. Therefore, we propose an
alternative, the push-based architecture which presents an
innovative approach of using inversion of Web service
invocation. Instead of letting service clients invoke services at
service providers as usual, the service clients simply wait for
updated information from the service providers. Experimental
results showed that the response time was significantly
minimized and the bottleneck problems at service providers were
eliminated in the push-based architecture. Thus, service providers
can be very small and thin in ubiquitous computing such as
sensor or mobile devices.
Keywords: Traditional Web Service Invocation, Inversion of
Web Service Invocation, Publish/Subscribe, Pull-Based
Architecture, Push-Based Architecture.

1. Introduction

Sharing information between applications among or within
enterprises is a major business strategy. There are several
solutions and concepts for sharing information to
streamline the business workflow and to apply in
enterprise application integration (EAI). In recent years,
service-oriented architecture (SOA) concept is
significantly getting industry attention by using Web
service technologies which are promising technologies to
achieve interoperability in heterogeneous environments.

However, SOA may also create mesh connections to
multiple applications within an enterprise which is difficult
to maintain. In addition, traditional Web service invocation
(traditional-WSI) may lead to unnecessary network traffic
and long response time when service clients are required to
periodically poll for updated information. Moreover,
bottleneck problems at service providers may occur when
service providers confront with numerous active polling
from service clients simultaneously. An overview of the
polling architecture using traditional-WSI is shown in Fig.
1.

Fig. 1 An overview of the polling architecture using traditional-WSI.

Instead of using periodically polling mechanism, message-
oriented middleware (MOM) and a publish/subscribe
(pub/sub) model can be used for prompt notification which
can eliminate unnecessary network traffic. After service
providers and service clients register as publishers and
subscribers respectively, all registered service clients can
be notified of updated information when available. By
integrating Web services technologies based on
traditional-WSI with a pub/sub model, a pull-based
architecture is used in the way that after service clients
receive notification message, they have to send requests to
service providers in order to get updated information.
Therefore, when there are numerous requests
simultaneously, the bottleneck problems at service
providers are still likely to occur. An overview of the pull-
based architecture using traditional-WSI with a pub/sub
model is shown in Fig. 2.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 17

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 2 An overview of the pull-based architecture using traditional-WSI
with a pub/sub model.

Finally, we propose an alternative, a push-based
architecture which is a complete solution for resolving
shortcomings of EAI. The push-based architecture presents
an innovative approach of using inversion of Web service
invocation (inversion-WSI) with a pub/sub model. After
service providers push Web service messages to the
broker, those messages are propagated to all registered
service clients. Therefore, instead of letting service clients
invoke services at service providers as usual, service
clients simply wait for updated information from service
providers. Apparently, the response time can be reduced
since service clients are able to receive updated
information once available without sending any requests.
The bottleneck problems at service providers are
eliminated as the broker, designed to acquire high
performance, is responsible for handling all services
instead. Thus, service providers can be very small and thin
in ubiquitous computing such as sensor or mobile devices.
An overview of the push-based architecture using
inversion-WSI with a pub/sub model is shown in Fig. 3.

Fig. 3 An overview of the push-based architecture using inversion-WSI
with a pub/sub model.

The rest of this paper is organized as follows. Section 2
provides some backgrounds on a pub/sub model and Web
services technologies. Section 3 describes related works.
Section 4 explains conceptual models of inversion-WSI,
pull-based architecture, and push-based architecture.
Section 5 clarifies research methodology in two
approaches: mathematical models for total response time
of pull-based and push-based architectures including
comparison between them and implementation of the
push-based architecture in details. Section 6 shows
performance comparison results between pull-based and
push-based architectures. Finally, section 7 discusses
conclusion and future work.

2. Background

To share information or process among or within
enterprises, EAI of heterogeneous systems is inevitable.
Heterogeneous systems are normally developed by using
several computer programming languages, different
technologies, and deployed on various platforms.
Therefore, integrating them is non-trivial. In the mid-
1990s, evolution of EAI was started as enterprises tried to
integrate the systems by using point-to-point connections
between their applications [1]. It was successful in that era
since there were only limited applications. However, the
complexity of linkages between applications and difficulty
of maintenance integration portions turned into problems
when there were many applications. Additionally, data
transformation and code conversion increased difficulty to
implement. Therefore, several systematic approaches have
been introduced to improve efficiency with minimal
maintenance.

In the late 1990s, MOM became a very popular
methodology used in EAI. The middleware concept is to
allow applications to pass messages to others with single
connection to MOM and more maintainable. MOM
supports two types of communication: queue and topic.
The queue in MOM can send a message to one consumer
at a time whereas the topic in MOM with a pub/sub model
is a better model and can send a message to multiple
consumers concurrently [2]. This model usually consists of
three basic elements: publisher, subscriber, and broker.
The publisher is any application that wants to produce a
message. The subscriber is any application registered to
receive a copy of the message. The broker is the
intermediary between publishers and subscribers. An
application can be both a publisher and a subscriber at the
same time. In EAI life cycle, number of publishers and
subscribers can grow and shrink over time. Updated
information can be either pulled by subscribers or pushed
by publishers. Publishers can multicast a message of a
topic to subscribers who subscribed on the topic via a
broker [3]. Although publishers and subscribers are
loosely coupled and transparent to each other, they are
required to operate on the middleware infrastructure.

Web services technologies are promising technologies to
achieve the interoperability in heterogeneous
environments. An application often communicates with
other applications using XML to encapsulate data and
context. Using XML makes Web services platform,
language, and vendor independent. As a result, Web
services are ideal to be candidates for EAI solutions. Two
main cores of first-generation Web services standard are
SOAP (originally defined as Simple Object Access

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 18

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Protocol) [4], a simple XML-based protocol and WSDL
(Web Service Description Language) [5], an XML-based
language to describe Web services. For traditional-WSI,
any application wants to be a service provider must
provide WSDL as a Web service interface. Service clients
can then invoke services through stubs generated from the
WSDL. An overview of traditional-WSI is shown in Fig. 4
Second-generation of Web services can form complex
Web service applications. WS-* deals with aspects such as
security, transactions, messaging, and notification [6].

 Fig. 4 An overview of traditional-WSI.

Enterprise service bus (ESB) [7], another approach to EAI,
allows applications to communicate via a bus. The bus acts
as a broker which basically supports multiple protocols
such as being in the form of a pub/sub broker between
message-based services. ESB is considered the next
generation of MOM and it also extends functionality of
MOM. However ESB normally requires extra level of
translation which can decease performance. As a result, we
decide to use the integration of Web services technologies
with a pub/sub model in this research due to its
interoperability and performance for EAI.

3. Related Work

Some existing specifications and works already used the
integration of Web services technologies as traditional-
WSI with event notifications. Two competing
specifications, Web Services Notification (WS-
Notification) [8] and Web Services Eventing (WS-
Eventing) [9], are crucial for asynchronous Web service-
based event notifications. WS-Messenger supports both
WS-Notification and WS-Eventing along with mediation
between them. We briefly summarize WS-Notification,
WS-Eventing, and WS-Messenger including some other
related works in this section.

3.1 WS-Notification

WS-Notification endorsed by OASIS, is to standardize the
message protocols for topic-based or content-based
pub/sub mechanisms based on Web services. There is a
family of related three specifications: WS-

BaseNotification (mechanisms for basic notification), WS-
BrokeredNotification (intermediary brokering capability),
and WS-Topics (means to categorize notifications). WS-
Notification implementation and extension are described
in [10-12]. WS-BrokeredNotification is very similar to the
pull-based architecture of this research.

3.2 WS-Eventing

WS-Eventing is a new version and much simpler than WS-
Notification. WS-Eventing basically relies upon WS-
Addressing [13] for endpoint addresses. However, it only
defines key pub/sub related functions such as subscribe,
unsubscribe, and renew. Y.Huang et al. [14] compares
WS-Notification and WS-Eventing in almost all aspects
such as the delivery mode, message structure, and filter.

3.3 WS-Messenger

WS-Messenger is a project from Indiana University [15].
It aims to support both WS-Notification and WS-Eventing
specifications and conveys mediation between them by
using Normalization-Processing-Customization (NPC)
model. WS-Messenger can reduce some overheads in
SOAP message processing since it processes SOAP
messages directly at the XML message level without
creating data binding between XML elements and Java
objects. R. Jayasinghe et al. [16] presents few approaches
motivated by WS-Messenger to improve message delivery
of pub/sub system at the broker.

3.4 Other Work

X. Feng et al. [17] used message-driven pub/sub system to
help servers push recommended Web Services to
customers based on subscribed conditions. The
architecture for push-based Web service wrappers is
focused by L. Brenna and D. Johansen [18], but it still uses
the wrapper to regularly pull Web services. Therefore,
some pull requests may return unchanged data which
cause unnecessary network traffic and run down server
resources. To the best of our knowledge, however, all of
the related works we mentioned do not use the concept of
inversion-WSI. Thus, they cannot eliminate the bottleneck
problems at service providers whereas our push-based
architecture can.

4. Conceptual Models

Since we use the concept of inversion-WSI in our push-
based architecture, an overview of inversion-WSI is
demonstrated in this section. To understand the response
time comparison in the next section, sequence diagrams of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 19

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

pull-based and push-based architectures are also provided
here.

4.1 Inversion of Web Service Invocation (Inversion-
WSI)

Instead of letting service clients invoke services at service
providers as usual, service clients simply wait for updated
information from service providers. This is called
inversion-WSI which is an opposite of traditional-WSI.
The broker is responsible for defining the canonical
message comprising of a name and WSDL of a topic. A
service provider must generate a stub from the WSDL so
that it can invoke a service at the broker through the stub.
Meanwhile, service clients must also provide Web service
interfaces of the same WSDL for the broker to invoke
services. Therefore, to make inversion-WSI possible, all
service providers (as publishers) and service clients (as
subscribers) of the same topic must use the same canonical
message. An overview of inversion-WSI is shown in Fig.
5.

Fig. 5 An overview of inversion-WSI.

4.2 Pull-based Architecture

This architecture is based on traditional-WSI. When a
predefined event occurs at a publisher, the publisher sends
a notification message to a broker. The broker will then
propagate that notification message to all registered
subscribers. After that, subscribers have to send requests to
the publisher in order to get updated information. Finally,
acknowledgements must be sent from subscribers to the
broker so that the broker can keep track of successful or
failed transmissions. A sequence diagram of the pull-based
architecture is shown in Fig. 6.

Fig. 6 A sequence diagram for the pull-based architecture.

However, this architecture has two shortcomings. First, the
workload on publishers can be very high when they face
numerous requests from subscribers simultaneously.
Second, the response time is likely to be time-consuming
since this architecture requires at least four one-way
communications for a subscriber to get updated
information.

4.3 Push-based Architecture

This architecture is based on inversion-WSI. The transfer
of updated information is triggered by a predefined event
at a publisher. The publisher first pushes the updated
information to a broker, then the broker multicasts that
information to all corresponding subscribers. As a result,
subscriber can receive updated information without
sending any requests. Acknowledgements of subscribers
must be sent to the broker in order to keep track of
successful or failed transmissions. Fig. 7 shows a sequence
diagram to describe this architecture.

Fig. 7 A sequence diagram for the push-based architecture.

The push-based architecture is good for wide area
distributed systems since publishers have no necessity to
process numerous requests from subscribers. For this
reason, publishers can be very small and thin. Besides, the
response time for a subscriber to receive updated
information is minimized to merely two one-way
communications. We can briefly compare performance
between three architectures shown in the Table 1.

Table 1: Performance comparison between three architectures

Polling
Architecture
(traditional-

WSI)

Pull-based
Architecture
(traditional-

WSI +
pub/sub)

Push-based
Architecture

(inversion-WSI +
pub/sub)

Unnecessary
Network
Traffic

occur is eliminated is eliminated

Response
Time

is long is shorter is shortest

Bottleneck
Problems

occur still occur are eliminated

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 20

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. Research Methodology

To clarify our research methodology, mathematical models
for total response time of pull-based and push-based
architectures are provided and compared. Implementation
details in two phases of the push-based architecture; pre-
installation phase and runtime phase are also described in
this section.

5.1 Mathematical Models

There are five steps of the pull-based architecture and only
three steps of the push-based architecture to calculate the
total response time. We approximate that processing time
at a publisher and at a broker of sending a notification
message are the same and equal to pn. All important
symbols and their meanings are listed in Table 2.
Mathematical models of the pull-based and push-based
architectures are shown in Fig. 8 and Fig. 9 respectively.

Table 2: Symbols and meanings

Fig. 8 A mathematical model of pull-based architecture.

Step 1: When a predefined event occurs at a publisher, the
publisher sends a notification message to a broker. The
summation of processing time at the publisher and sending

time of a notification message from the publisher to the
broker (P to B) is defined as

pn + tn

Step 2: After the broker receives the notification message
from the publisher, it forwards that message to all
registered subscribers. The summation of processing time
at the broker and sending time of a notification message
from the broker to all registered subscribers (B to S1... Sn)
is defined as

(n * pn) + (n * tn)

Step 3: In order to get updated information, a subscriber
has to send a request message to the publisher. In this
research, we assume that all registered subscribers send
requests to the publisher. Therefore, the summation of
processing time at the subscriber and sending time of a
request message from all registered subscribers to the
publisher (S1... Sn to P) is defined as

(n * ps) + (n * tr)

Step 4: After the publisher gets a request, it will process
the request and send updated information as a response.
Sending time of updated information depends on size of
updated information (si), therefore ti is equal to the time
constant (τ) multiplied by si. The summation of processing
time at a publisher and sending time of updated
information from the publisher to all registered subscribers
(P to S1... Sn) is defined as

(n * ppi) + (n*ti) where ti = τ * si (1)

Step 5: After receiving updated information from the
publisher, a subscriber must return an acknowlegement
message to the broker. The summation of processing time
at the subscriber and sending time of an acknowledgement
message from all registered subscribers to the broker (S1...
Sn to B) is defined as

n * ta

By summarizing all the above five steps, the formula of
the total response time for m publishers of the pull-based
architecture (tpull) is defined as

tpull = m (step 1 + step 2 + step 3 + step 4 + step 5)

tpull = m * ((pn + tn) + ((n * pn) + (n * tn)) + ((n * ps) +
 (n * tr)) + ((n * ppi) + (n*ti)) + (n * ta))

Symbol Meaning

pn Processing time of sending a notification
message

ppi Processing time at a publisher of sending
updated information

pbi Processing time at a broker of sending updated
information

tn Sending time of a notification message

tr Sending time of a request message

ti Sending time of updated information

ta Sending time of an acknowledgement message

ps Processing time at a subscriber

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 21

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

tpull = m * (((n+1) * (pn + tn)) + (n * ps + tr + ppi + ti +
 ta))) (2)

To simplify the formula (2) when n is large (n + 1 ~ n), the
summation of the step 1 (from P to B) can be ignored.
Therefore, the formula (2) can be rewritten into the
formula (3) as

tpull ~ m * n * (pn + tn + ps + tr + ppi + ti + ta) (3)

Fig. 9 A mathematical model of push-based architecture.

Step 1: When a predefined event occurs at a publisher, the
publisher will send updated information to a broker. The
summation of processing time at the publisher and sending
time of updated information from the publisher to the
broker (P to B) is defined as

ppi + ti

Step 2: After the broker receives updated information
from the publisher, the broker will retrieve all endpoint
addresses of registered subscribers and forward that
updated information to them. Sending time of updated
information depends on size of updated information (si),
therefore ti is equal to the time constant (τ) multiplied by
si. The summation of processing time at the broker and
sending time of updated information from the broker to all
registered subscribers (B to S1... Sn) is defined as

(n * pbi) + (n * ti) where ti = τ * si (4)

Step 3: All registered subscribers can receive updated
information from the publisher via the broker without
sending any request. After receiving updated information,
a subscriber should return an acknowledgement to the
broker. The summation of processing time at the
subscriber and sending time of an acknowledgement
message from all registered subscribers to the broker (S1...

Sn to B) is defined as

(n * ps) + (n * ta)

By summarizing all the above three steps, the formula of
the total response time for m publishers of the push-based
architecture (tpush) is defined as

tpush = m (step 1 + step 2 + step 3)

tpush = m * ((ppi + ti) + ((n * pbi) + (n * ti)) + ((n * ps)
 + (n * ta))) (5)

To simplify the formula (5) when n is large (n + 1 ~ n), the
summation of the step 1 (from P to B) can be ignored.
Therefore, the formula (5) can be rewritten into the
formula (6) as

tpush ~ m * (ppi + (n * (pbi + ti + ps + ta))) (6)

Comparing the difference total response time between tpull

from (3) and tpush from (6)

tpull ~ m * n * (pn + tn + ps + tr + ppi + ti + ta)

tpush ~ m * (ppi + (n * (pbi + ti + ps + ta)))

tpull - tpush ~ m * ((n * (ppi - pbi)) + (n * (pn + tn + tr + ti)))(7)

Let δ be the difference processing time between at a
publisher and at a broker of sending updated information,
δ = ppi - pbi, the formula (7) can be rewritten into the
formula (8) as

tpull - tpush ~ m * n * (δ + pn + tn + tr) (8)

If the publisher and broker have the same specifications
(δ=0), the difference total response time between the pull-
based and push-based architectures will depend mainly on
(pn + tn + tr) as shown in the formula (9). However, the
processing time at the broker is normally much less than
that of the publisher and if δ is much greater than (pn + tn +
tr), the difference time between the pull-based and push-
based architectures is mainly depended on δ as shown in
the formula (10).

tpull - tpush ~ m * n * (pn + tn + tr) when δ=0 (9)

tpull - tpush ~ m * n * (δ) when δ >> (pn + tn + tr) (10)

5.2 Implementation of the Push-based Architecture

Implementation processes of the push-based architecture
are set up and carried out based on the following
conditions:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 22

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 There is only one operation in unique WSDL per
topic.

 There can be multiple publishers per topic and a
publisher can also be a subscriber of the same topic. It
means that one or more publishers can simultaneously
publish similar messages to subscribers of the same
topic.

 When a publisher, at the same time acts as a
subscriber of the topic, sends a message to the broker,
the broker will handle this situation by not sending
that message back to the publisher.

There are two phases of the push-based architecture
needed to be explained: pre-installation phase and runtime
phase. For the pre-installation phase, to be able to make
inversion-WSI possible, any application interested to be a
source of updated information must register as a publisher
of a topic at a broker. After that, it can obtain WSDL of
that topic from the broker. Any application interested to
receive the updated information must get a related file to
the WSDL of the topic from the broker and can implement
in its desired way. Finally, interested subscribers must
register and provide their endpoint addresses to the broker.
An overview of the pre-installation phase of push-based
architecture is shown in Fig. 10.

Fig. 10 An overview of the pre-installation phase of push-based
architecture.

For the runtime phase, when a predefined event occurs at a
publisher, the publisher invokes Web service at a broker
and the broker then invokes Web services of all registered
subscribers. Each subscriber must return an
acknowledgement back to the broker so that the broker can
keep track of successful or failed transmissions. An
overview of the runtime phase of push-based architecture
is shown in Fig. 11.

Fig. 11 An overview of the runtime phase of push-based architecture.

6. Experimental Results

In this section, experimental results are presented for
performance comparison between pull-based and push-
based architectures. The simulation of both architectures
was set up within the same running environment such as
the same processor speed and the same network
bandwidth. We used twelve identically configured
machines: Pentium 2.4 GHz and 2GB of RAM on Window
7 for both architectures. Ten machines were used for
subscribers with up to 10 simulated subscribers on each
machine. Each subscriber on the same machine was
operated on a separated but identical server. A broker and
a publisher each acquired own machine.

We started to measure the total response time after the
broker received a notification message or updated
information from the publisher. The summation time from
the publisher to the broker was ignored as explained from
the formula (2) to (3) of the pull-based architecture and
from the formula (5) to (6) of the push-based architecture.
The total response time would end after the broker
received acknowledgements from all subscribers. We
experimented in 20 times of each total response time and
calculated the average of them.

Three scenarios were experimented to find the average
total response time with following factors:
1. The number of subscribers was increased from 10 to

100 with a step of 10 by fixing the size of updated
information to 1 Kbyte and using only 1 publisher.

2. The size of updated information was increased from
4Kbyte to 40Kbytes with a step of 4 by fixing the
number of subscribers to 40 and using only 1
publisher.

3. The number of publishers was increased from 1 to 10
with a step of 1 by fixing the number of subscribers to
20 and the size of updated information to 1 Kbyte.
Some publishers may also be subscribers of the same
topic.

Experimental results of the first scenario are shown in Fig.
12. When the number of subscribers was increased from
10 to 20 and continuously into 100, we found that average
total response time of the pull-based architecture was
rising higher than that of the push-based architecture.
Since the same specification of machine was used for the
broker and the publisher (δ=0) and the number of
publisher was fixed to 1 (m=1), (pn + tn + tr) in the formula
(9) could be approximated to 10 ms. Therefore, the
number of subscribers (n) is influential to difference total
response time between the pull-based architecture and the
push-based architecture by around n * 10 ms.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 23

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 12 Average total response time when the number of subscriber was
increased.

Experimental results of the second scenario are shown in
Fig. 13. When the size of updated information was
increased from 4Kbytes to 8Kbytes and continuously into
40Kbytes, we found that difference average total response
time between the pull-based architecture and the push-
based architecture remained nearly the same. From the
formula (3) and (6), both architectures need to send
updated information (ti = τ * si in the formula (1) and (4)),
thus the difference time does not rely on the size of
updated information. In this scenario, we set up 4
subscribers per machine for 10 machines to be the total of
40 subscribers.

Fig. 13 Average total response time when the size of updated
information was increased.

To be able to measure the average total response time from
many publishers, lots of notification messages or updated
information were sent out from publishers in the pull-
based and push-based architecture respectively.
Experimental results of the last scenario are shown in Fig.
14. When the number of publisher was increased up to 5,
the average total response time of the pull-based
architecture was higher than that of the push-based
architecture. However, when the number of publisher went

beyond 5, bottleneck problems occurred in the pull-based
architecture which caused the total response time could not
be determined. The main reason of the bottleneck
problems came from that some publishers who at the same
time acted as subscribers were not able to handle
concurrent Web services invocation properly. In this
scenario, we set up 2 subscribers per machine for 10
machines to be the total of 20 subscribers.

Fig. 14 Average total response time when the number of publisher was
increased.

7. Conclusion and Future Work

The results of this research show that the push-based
architecture surpasses the pull-based architecture by
integrating Web services technologies with a pub/sub
model. Using inversion-WSI instead of traditional-WSI,
the broker is a core component of the push-based
architecture. It acts as a middleware for receiving and
sending updated information, as well it may perform
several functions such as data transformation, code
conversion, and conditional routing. Therefore, the broker
should be designed to be able to handle heavy workloads
whereas service providers can be very small and thin.

Since the push-based architecture can significantly
minimize overall response time and workload on service
providers, it is potentially applicable for some machine-to-
machine (M2M) applications that need to speedily
distribute updated information in urgent situation such as
Tsunami alert system. The push-based architecture can
efficiently support tracking updated information for many
purposes as well.

Although this paper does not mention about the security,
quality of service (QoS), and transaction, the concept of
Web Services Atomic Transaction (WS-Atomic
Transaction) [19] can be applied to enhance the reliability
which is considered to be our future work. For further
work, service clients may be able to choose which data

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 24

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

they want to receive via the pull-based architecture or the
push-based architecture. The factor to choose between
architectures may depend on a category or size of updated
information. This may be called hybrid Web service
invocation (hybrid-WSI).

Acknowledgments

This research was partially funded by the National
Institute of Development Administration (NIDA). We also
would like to thank the School of Applied Statistics of
NIDA for providing us supports on this research work.

References

[1] J. Lee, K. Siau, and S. Hong, "Enterprise integration with

ERP and EAI", in Communications of the ACM, 2003, 46
(2), pp. 54–60.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec, "The Many Faces of Pub/sub", in ACM
Computing Surveys, 2003, 35 (2), pp. 114-131.

[3] I. Gorton, Essential Software Architecture, Springer, 2006.
[4] W3C, SOAP Version 1.2 Part 1, Available:

http://www.w3.org/TR/soap12-part1/
[5] W3C, Web Services Description Language (WSDL)

Version 2.0 Part 1, Available:
http://www.w3.org/TR/wsdl20/

[6] Erl, Thomas, SOA Principles of Service Design, Service
Oriented Computing Series, Prentice Hall, 2007.

[7] J. Wu and X. Tao, "Research of Enterprise Application
Integration Based-on ESB", in 2nd International Conference
on Advanced Computer Control (ICACC), 2010.

[8] OASIS, Web Services Notification (v 1.3), Available:
http://docs.oasis-open.org/wsn/

[9] W3C, Web Services Eventing, Available:
http://www.w3.org/Submission/WS-Eventing/

[10] M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M.
Rodriguez, Joe Bester, J. Gawor, S. Lang, I. Foster, S.
Meder, S. Pickles, and M. McKeown, "State and Events for
Web Services: A Comparison of Five WS-Resource
Framework and WS-Notification Implementations", in 4th
IEEE International Symposium on High Performance
Distributed Computing (HPDC-14), 2005.

[11] A. Quiroz and M. Parashar, "Design and Implementation of
a Distributed Content-based Notification Broker for WS-
Notification", in Grid Computing Conference, 2006.

[12] S. D. Labey and E. Steegmans, "Extending WS-Notification
with an Expressive Event Notification Broker", in 2008
IEEE International Conference on Web Services, 2008.

[13] W3C, Web Services Addressing 1.0 – Core, Available:
http://www.w3.org/TR/ws-addr-core/

[14] Y. Huang and D. Gannon, "A Comparative Study of Web
Services-based Event Notification Specifications", in
Proceedings of the 2006 International Conference on
Parallel Processing Workshops (ICPPW’06), 2006.

[15] Y. Huang, A. Slominski, C. Herath, and D. Gannon, "WS-
Messenger: A Web Services-based Messaging System for
Service-Oriented Grid Computing", in Proceedings of the

Sixth IEEE International Symposium on Cluster Computing
and the Grid (CCGRID’06), 2006.

[16] R. Jayasinghe, D. Gamage, and S. Perera, "Towards
Improved Data Dissemination of Publish-Subscribe
Systems", in 2010 IEEE International Conference on Web
Services, 2010.

[17] X. Feng, F. Xue, and T. Zhang, "Research on data exchange
push technology based on message-driven", in 2009
International Joint Conference on Artificial Intelligence",
2009.

[18] L. Brenna and D. Johansen, "Configuring Push-Based Web
Services", in Proceedings of the International Conference on
Next Generation Web Services Practices (NWeSP’05),
2005.

[19] OASIS, WS-AtomicTransaction (v 1.2), Available:
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html

Thanisa Numnonda is a Ph.D. candidate at the School of Applied
Statistics, National Institute of Development Administration,
Bangkok, Thailand. She received a Master’s Degree in Computer
Engineering from the Department of Electrical and Computer
Engineering, University of Southern California, USA. Her research
interests are in Web Services and Service-Oriented Architecture.

Rattakorn Poonsuph is a lecturer at the School of Applied
Statistics, National Institute of Development Administration,
Bangkok, Thailand. He received a Ph.D. degree in Computer
Science from University of Massachusetts Lowell, USA. His fields
of research include Software Engineering and Software
Architecture. He has published several papers in various
international conferences.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 25

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

