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Abstract 
In this paper, a new algorithm based on case base reasoning and 
reinforcement learning is proposed to increase the rate 
convergence of the Selfish Q-Learning algorithms in multi-agent 
systems. In the propose method, we investigate how making 
improved action selection in reinforcement learning (RL) 
algorithm. In the proposed method, the new combined model 
using case base reasoning systems and a new optimized function 
has been proposed to select the action, which has led to an 
increase in algorithms based on Selfish Q-learning.  The 
algorithm mentioned has been used for solving the problem of 
cooperative Markov’s games as one of the models of Markov 
based multi-agent systems. The results of experiments on two 
ground have shown that the proposed algorithm perform better 
than the existing algorithms in terms of speed and accuracy of 
reaching the optimal policy. 

Keywords: Reinforcement learning, Selfish Q-learning, Case-
base reasoning Systems, Multi-agent Systems, Cooperative 
Markov Games. 

 
1. Introduction 
 
Case Based Reasoning (CBR) is a knowledge based 
problem solving technique, which is based on reusing on 
the previous experiences and has been originated from the 
researches of cognitive sciences [1]. In this method, it is 
assumed that the similar problems can possess similar 
solutions. Therefore, the new problems may be solvable 
using the experienced solutions to the previous similar 
problems. A multi-agent system (MAS) is comprised of a 
collection of intelligent agents that interact with each other 
in an environment to optimize a performance measure [2]. 

Agents are computational entities that can see their 
environments with their sensors. These agents should do 
appropriate action in per moment based on their 
observations. In multi agent system research, cooperative 
and non-cooperative perspective. In cooperative multi-
agent systems, the agents pursue a common goal and the 
agents can be built expect benevolent intentions from other 
agents. In contrast, a non-cooperative multi agent system 
setting has non-aligned goals, and individual agents try to 
obtain only to maximize their own profits. In multi-agent 
systems, the need for learning and adoption is essentially 
caused by the fact that the environment of the agent is 
dynamic and just empirically observed while the 
environment (the reward functions and the transition 
states) is unknown. Hence, the reinforcement learning 
methods may be applied in MAS to find an optimal policy 
in MGs. In addition, agents in a multi-agent system face 
the problem of incomplete information with respect to the 
action choice. If agents get information about their own 
choice of action as well as that of the others, then we have 
joint action learning [3][4]. Joint action learners are able to 
maintain models of the strategy of others, and the 
explicitly takes into account the effects of joint actions.  In 
contrast, independent agents only know their own action 
which is often a more realistic assumption since 
distributed multi-agent applications are typically subject to 
limitations such as partial observability, communication 
costs, and stochastic. 
 There are several models proposed in the literatures for 
multi-agent systems based on Markov models. One of 
these models is stochastic games (also called Markov 
Game – MG). Markov games are extensions of Markov 
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Decision Process (MDP) to multiple agents. In an MG, 
actions are the result of joint action selection of all agents, 
while rewards and the state transitions depend on these 
joint actions. In a fully cooperative MG called a multi-
agent MDP (or MMDP), all agents share the same reward 
function and they should learn to agree on the same 
optimal policy [5].  
There are several methods for finding an optimal policy in 
MMDPs. In [6], an algorithm is proposed for learning 
cooperative MMDPs, but it is only suitable for 
deterministic environments. In [7] an algorithm called 
Selfish Q-Learning has been introduced  which changes 
the Q values of each action used a special Q-function. In 
[8] MMDPs are approximated as a sequence of 
intermediate games. The authors present optimal adaptive 
learning and prove convergence to Nash equilibrium of the 
game. In [9], an algorithm called CAQL has been 
introduced, which acts through a Q - learning algorithm. 
In [10], a Q-learning algorithm based method has been 
proposed.  
In Reinforcement Learning (RL), learning is carried out 
online, through trial-and-error interactions of the agent 
with the environment. Unfortunately, convergence of any 
RL algorithm may only be achieved after extensive 
exploration of the state-action space, which can be very 
time consuming. However, the rate of convergence of an 
RL algorithm can be increased by using heuristic functions 
for selecting actions in order to guide the exploration of 
the state-action space in a useful way. In [11], [12] 
investigates how to make improved action selection 
functions based on heuristics in on-line policy learning for 
robotic scenarios. These functions have been applied to 
select the action in every state. Although these methods 
have been successfully used to find the optimal policy in 
Markov games, the problem of using the previous 
experiences of agents for solving the new problem is still 
disregarded in these methods. Since in the environment is 
unknown in multi-agent systems, and the agent should 
upgrade its knowledge of environment through 
observation, so the problem of keeping and reusing the 
previously acquired knowledge causes an increase in 
learning rate. In this paper, to increase the speed of 
learning rate to get the optimal policy for Markov Games 
in the independent agent’s state, a hybrid algorithm called 
Case-based Best Heuristically Accelerated Selfish Q-
learning (CB-BHASQL) is proposed in which, a modified 
function is used to select the action and the Case Base 
Reasoning technique and a special Q-function called 
Selfish Q-Learning has been used to increase the learning 
rate. To evaluate the proposed methods, they have been 
applied to two examples of MMDP called Grid Game and 
Tunnel To Goal. The results of computer simulations have 
shown that these algorithms outperform the previous 
approaches from both cost and speed perspective. In the 
next part of the paper, at first fundamental concepts are 

explained in section 2 and in section 3, the proposed 
algorithm is presented. Simulation results, and discussions 
are reported in section 4 and in section 5, evaluation of the 
algorithm’s behavior and its analysis is done and section 6 
is the conclusion. 
 

2. Reinforcement Learning 

In this section, we first review some basic principles of 
Markov decision Process (MDP) and then present the 
basic formulation of the Q-learning algorithm, a well-
known reinforcement learning technique for solving 
MDPs. A reinforcement learning agent defines its behavior 
through interaction with an unknown environment and 
observation of the results of its behavior [12].  

2.1 Markov decision Process 

Markov decision process is formally defined as follows: 
 
Definition 1. A Markov decision process (MDP) is a 
quadruple S, A, R, T ( where S is a finite state space; A is 
the space of actions the agent can take; R: S×A ( is a 
payoff function (R (s, a) is the expected payoff for taking 
action an in state s); and T: S×A×S ([0,1] is a transition 
function (T (s, a, s’) is the probability of ending in state s’, 
given that action a  is taken in state s). 
  
In a Markov decision process, an agent’s objective is to 
find a strategy (policy) π: S A so as to maximize the sum 
of discounted expected rewards, 
 

V (s, ߨ) =∑ ,ߨ|௧ݎሺܧ௧ߛ ଴ݏ ൌ ஶ						ሻݏ
௧ୀ଴     (1) 

 
Where s is a particular state, s0 indicates the initial state, rt 
is the reward at time t, and  ߛ [0,1) is the discount factor. 
There exists an optimal policy π* such that for any state s, 
the following equation holds: 
 

V (s,  =  (* ߨ
,ݏሺݎ௔ሼݔܽ݉ ܽሻ ൅ ߛ ∑ ܲሺݏᇱ|ݏ, ሻݒሺݏᇱ, ሻ௦ᇲ∗ߨ ሽ 

        (2) 

where r(s, a) is the reward for taking action a at state s, 
and v(s,*) is called optimal value for  that  state while  

P(s0|s, a) is the probability of transiting to state ݏ′ After 
taking action an in state s. If the agent knows the reward 
and state transition functions, it can solve * by iterative 
search method, otherwise this method cannot be used 
while an algorithm called Q is employed [13] [14]. 
The variety of Q-functions has been used in [6,7,8,9,10]. 
Selfish Q-learning algorithm pseudo-code, which has been 
used in [7], is shown in Figure 1. In this algorithm, for 
every action a  in each state S the value of that action (Q 
(s, a)) is used according to Equation 3. Each state S the 
value of that action (Q (s, a)) is used according to 
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Equation 3. In Equation3, α is the rate of learning and γ  
[0, 1] is the discount factor. The algorithm ends when the 
optimum policy doesn’t change for a definite while.  
 
ܳሺܵ௧, ܽ௧ሻ ൌ ܳሺܵ௧, ܽ௧ሻ ൅ ௧ݎ	ሾߙ ൅ ሺߛmaxܳሺܵᇱ, ܽᇱሻሻ െ ܳሺܵ௧, ܽ௧ሻሿ   (3) 

To select an action in every state, the Boltzmann’s 
distribution method (EQ 4) is usually used. This function 
has been used  in some articles such as [6,7,8,9,10,19]. 
 

πଵሺܵሻ ൌ argmax	ሺ
௘
ೂሺೄ,೟ሻ
ഓ

∑ ௘
ೂሺೄ,೟ሻ
ഓ೘

೔సభ

ሻ  
(4) 

In which, m is the number of allowable actions for state S 
and ߬	is a constant. Q (S, a) shows the value of evaluation 
function of state S while action a is done. 
 
Algorithm Selfish Q‐Learning 
1. Initialize Q(S,a) arbitrarily 
2. Repeat (for each episode) 
3. Initialize S randomly 
4. Repeat (for each step) 

5. Select an action using πଵሺܵሻ ൌ argmax	ሺ
௘
ೂሺೄ,೟ሻ
ഓ

∑ ௘
ೂሺೄ,೟ሻ
ഓ೘

೔సభ

ሻ EQ(4) 

6. Execute the action a 
7. Observe reward r(s,a) ,state s’ 
8. Update the value of Q(S,a) according to ܳሺܵ௧, ܽ௧ሻ ൌ ܳሺܵ௧, ܽ௧ሻ ൅ ௧ݎ	ሾߙ ൅
ሺߛmaxܳሺܵᇱ, ܽᇱሻሻ െ ܳሺܵ௧, ܽ௧ሻሿ  EQ(3) 
9. ܵ ← ܵ′ 
10. Until S is Terminal State 
11. Until some stopping Criteria is reached. 
12. End             

Fig 1. Selfish Q-Learning Algorithm 

 
 
 
2.2. Markov Games 
 
Markov games are a generalization of MDPs to multiple 
agents and can be used as a framework for investigating 
multi-agent learning. In the general case (general-sum 
games), each player would have a separate payoffs. A 
standard formal definition follows: 
 
Definition 2.  A stochastic game (Markov game) is a tuple 
n, S, A1..n, T, R1..n  , where n is the number of agents, s is 
a set of states, Ai is the set of actions available to agent i 
(and A is the joint action space A1× A2×. . . ×An ), T is a 
transition function S×A×S [0,1] ), and r is a reward 
function for the ith agent S×A.  
 
In a discounted Markov game, the objective of each player 
is to maximize the discounted sum of rewards, with a 

discount factor ߛ [0,1). Let ߨ i be the strategy of the 
player i. For a given initial state s, player i tries to 
maximize:  

,ݏሺݒ ,ଵߨ ,ଶߨ … , ௡ሻߨ ൌ
∑ ,ଵߨ|௧ݎሺܧ௧ߛ ,ଶߨ … , ,௡ߨ ଴ݏ ൌ ஶ	ሻݏ
௧ୀ଴   

(5) 

 
Markov games are categorized based on the agent’s 
rewards into cooperative and non-cooperative games. Non-
cooperative games may be classified as competitive games 
and general-sum games. Strictly competitive games, or 
zero-sum games, are two-player games where one player’s 
reward is always the negative of the others. General-sum 
games are ones where the reward sum is not restricted to 
zero or any constant, and allow the agents’ rewards to be 
arbitrarily related.  However, in full cooperative games, or 
team games, rewards are always positively related. In a 
fully cooperative MG (or team MG) called a multi-agent 
MDP (or MMDP), all agents share the same reward 
function. Nevertheless, in general MG (or general-sum 
MG) there is no constraint on the sum of the agents’ 
rewards and the agents should learn to find and agree on 
the same optimal policy. However, in a general Markov 
Game, an equilibrium point is sought; i.e. a situation in 
which no agent alone can change its policy to improve its 
reward when all other agents keep their policy fixed [15], 
[16]. 
One of the Markov’s games used for multi-agent Markov’s 
games is the Grid World game. In this game, two agents 
start from a corner of the page and try to reach a goal with 
the least possible number of moves. Players' actions are 
defined as four actions in four different directions, namely 
Up, Down, Left, Right. A state space set is defined 
as 	ܵ ൌ 	 ሼݏ|ݏ ൌ ሺ݈ଵ, ݈ଶሻሽ , In which each state s= ሺ݈ଵ, ݈ଶሻ 
Indicates the coordinates of agents 1 and 2. Agents cannot 
take the same coordinates at the same time. In other words, 
if both agents try to move to the same square, both of their 
moves will fail. If agents move to two different non-goal 
positions, both receive zero rewards and if one reaches the 
goal position, it receives 100 units of reward. However, if 
they collide with each other both receive one unit of 
punishment and stay in their previous position. In this 
game, the state transition is deterministic, i.e. the next state 
is uniquely determined by the current state and the joint 
action of the agents. In this game, agents are assumed not 
to know the goal position and the other agent's reward 
functions. Agents choose their actions simultaneously and 
can only know about the previous moves of the other 
agents and their own current state.  

Another game which we have used it, called Tunnel to 
Goal. In this game, there are some barriers. If an agent 
collision these barriers, it receives one unit of  punishment.  

A path in these games represents sequences of actions 
from the starting to the end position. In game terminology, 
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such a path is called a policy or strategy. The shortest path, 
not interfering the path taken by the other agent, is called 
the optimal policy or Nash path. Figure 2 is an example of 
these games. The optimal policy in Figure 2.a includes 9 
movements and in Figure 2.b includes 10 movements. 

 

 

 
               (a)                                                     (b) 
Fig2 . examples of Markov Games.  (2.a) An example of Grid World 

Game.   2.b. An example of Tunnel to Goal  Game 
 
 
2.3. Case Base Reasoning 
 
Case Based Reasoning (CBR) technique uses the previous 
experiences (Case) to solve the new problems [17], [18]. 
In the case base reasoning systems, the experiences gained 
from solving the problems are saved in case base (CB). In 
these systems, for solving the new problem (Cnew), the 
most similar cases to Cnew are extracted from the case base 
(CB) and the solutions presented by the extracted cases are 
used to solve the new problem C new. If a similar case is 
not found, Cnew is inserted is inserted to the case base as a 
new case. Unlike the classical knowledge-based methods, 
CBR focuses on a particular problem-solving experience, 
which is originated from the cases collected in the case 
base. These cases show a particular experience on a 
problem solving domain. It must be noted that CBR 
doesn’t recommend a definite solution, but presents 
hypothesis and theories pass the solution space.  

 

3. The Proposed method 

     
In this section, a new algorithm called CB-BHASQL is 
proposed to increase the rate of convergence in Markov’s 
games. In the proposed algorithm, the case base reasoning 
and also a new function are used to select the action in 
each state to increase the convergence rate toward the 
optimal policy. We previously used our new function with 
Decentralized Q-Learning according to EQ(6) and called 
CB-BHADQL. In this paper, We proposed a new 

algorithm with Selfish Q-Learning according to EQ(3)  
and called CB-BHASQL.  

ܳሺܵ, ܽሻ ൌ
ሺ1 െ ,ሻܳሺܵߙ ܽሻ ൅ ݎሺߙ ൅ max௕ߛ ܳᇱሺܵ, ܽሻሻ																							ሺ6ሻ  

 

We know that solving a problem using CBR includes the 
steps: creating a description of the problem, evaluating the 
similarity of the current problem to the previously-solved 
problems saved in case base, and trying to reuse the 
solutions presented by the detected cases to solve the 
current problem. The structure of the cases used in the 
recommended algorithm is a duplex in the form of 
Case=<Prob, Sol> in which, Prob describes the problem 
and Sol is the solution presented to solve the problem. The 
problem describer (Prob) includes the properties in each 
state. In the proposed algorithm, the problem describer is 
defined as Prob (S) = {m, <Up, Down, Right, Left>, 
index} in which, m is the number of actions for each state 
and the set <Up, Down, Right, Left> are the actions 
allowable for each action and index is the index for each 
state. The solution recommended for the problem is Sol (S) 

= <E, V>, in which vector ܧሬԦ	In the form of ܧሬԦ= (ܧሬԦ[1], ܧሬԦ 

 ሬԦ [m]) is a list of experiences collected from theܧ ,… ,[2]
environment by the agent for state S and each vector 

 includes a tuple <Ai, Ni, Qi, πi> where Ai is the space of	ሬԦܧ

actions for state S and Ni is the number of times that ai Ai 
has been updated and Qi is the value estimated by 
Equation 1 and πi is the possibility of occurrence of action 
ai , which is estimated by EQ(7).  

πଶሺܵሻ ൌ argmaxቆ
݁௡ሺௌ,௔ሻொሺௌ,௔ሻ

∑ ݁௡ሺௌ,௔ሻொሺௌ,௔ሻ௠
௜ୀଵ

ቇ			  

 

(7) 

Where m is the number of allowable actions for state S and 
n (S, a) is the number of times that so far the action a has 
been selected. Q (S, a) shows the value of evaluation 
function of state S while action  a  is done.  

V is the justification of using the solution recommended by 
the detected agent and if each of the actions of state S at 
least has been selected once, the solution of the detected 
agent can be used for solving the new problem. In the 
recommended algorithm, once the agent enters a new state, 
extracts the most similar case to the new state of the case 
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base and if the justification is available (V = True), the 
detected case is used to determine the next state. 

 To detect the similar cases of current state, the nearest 
neighbor algorithm is used. Euclidean distance of the new 
case to each of the cases available in case base is 
calculated according to EQ(8) and the most similar case 
(c) is detected and if the justification is available (V = 
True), the solution of detected case is used to solve the 
new problem. The proposed algorithm is shown in Figure 
3. 

 ܰܰሺܵሻ ൌ arg݉ܽݔ௖∈஼஻ ܵ݅݉ሺܥ. ,ܾ݋ݎ݌ .ܥ  	ሻ݈݋ݏ
ൌ arg݉ܽݔ

௖∈஼஻
.ܥሺݐݏ݅݀	 ,ܾ݋ݎ݌ .ܥ                 (8)																								ሻ݈݋ݏ

 

4. Experiments  

In order to evaluate the performance of the proposed 
algorithm several experiments have been conducted whose 
results are reported below. In Section 4.1, The 
environment of the experiments is a Grid-world game that 
includes a 5 ൈ6 Grid according to Figure 2.a. In  section 
4.2, the environment of the experiments is a Tunnel to 
Goal game that includes a 5 ൈ6 Grid according to Figure 
2.b. These experiments are conducted to study the 
improvement obtained by the proposed algorithm (CB-
BHASQL) in comparison with three CBR and QL 
algorithms and CB-BHADQL. So, CB-BHASQL 
algorithm is compared with three algorithms: 1) Selfish Q-
Learning algorithm, and 2) Boltzmann’s CBR algorithm, 
which its pseudo-code is similar to Figure 3 and the only 
difference is in the selection of the actions which is based 
on the Boltzmann’s distribution (Equation 4) and 3) CB-
BHADQL. In all experiments, each reported value is 
obtained by averaging over 200 runs and the average 
results are gained for the algorithms. Parameters given are 
߬ = 0.05 and γ = 0.7. 
 
 
 
4.1. Experiments in Grid World Games 
 
In this section, we show results of our experiments in Grid 
word Games. 
 
Experiment 1. In this experiment, we compare the 
proposed algorithm (CB-BHASQL) in Grid World Games   
environment ( Fig 2.a) with the other algorithms in terms 
of the number of movements made by agent 1 to reach the 
optimal path in 2000 episode.  Figure 4 illustrates the 
results of this experiment. Figure 5 shows the average 
results after 200 runs.  From the result, it is evident that the 

CB-BHASQL algorithm has lower numbers of moves in 
comparison with the other algorithms. 
 
Experiment 2. In this experiment, we compare the 
proposed algorithm (CB-BHASQL)  in Grid World Games  
environment ( Fig 2.a) with the other algorithms in terms 
of the averaged reward received by agent 1during an 
episode. Figure 6 shows the result of this experiment. As it 
is seen (CB-BHASQL) algorithm outperforms the other 
algorithms in terms the average reward received during an 
episode.  
 

Algorithm CB-BHASQL 
1.   Let t be the global time, n be the number of agents,   the  

discount   factor  ,CBi=  an empty case base for each
 
Set ݏ ൌ ݏ ′ ∈ ܵto 

the initial state of the system
   

 

2.        Repeat 
3.        Set s=s’ 

4.        forall agent ]...1[ ni  do 

5.                if  CBi= or addcasecriterion(s) is true  

6.                      CCBCB   with c.Prob=s and c.Sol=empty_solution (i) 
7.                       for each j=Sol(s).m do 

8.      Compute Sol(s).E[j]. i  according  to EQ(7)  and Set index ix  the Maximum 

             value of them. 

9.       Select elementary action   ii axEsSol ].[).( . 

10.   Observe Successor state Ss'  and reward Rr  . 
11.               end if. 
12.        end for. 

13.        for all agents ]...1[ ni  do 

14.         Retrieve nearest neighbour according to EQ(8) of state s’. 

15.            Set Learning Rate 
ii

i nxEsSol ].[).(1

1


  

16.            Set ii QxEsSol ].[).(  according to ܳሺܵ௧, ܽ௧ሻ ൌ ܳሺܵ௧, ܽ௧ሻ ൅ 

௧ݎ	ሾߙ																						 ൅ ሺߛmaxܳሺܵᇱ, ܽᇱሻሻ െ ܳሺܵ௧, ܽ௧ሻሿ  EQ(3) . 
17.            Increment ii nxEsSol ].[).(  by one. 

18.            Resort decremently the experience list Q in Sol(s).E 
19.   Until Stop_Criterion () becomes true. 
 

Fig 3. Pseudo-code for the Proposed Algorithm CB-BHASQL 

 

 

Fig4. Comparison of different methods in terms of the number of 
movements Needed for reaching to the optimal path in Grid World. 
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Fig5. Comparison of four Algorithms in terms of average of the number 
of moves to reaching optimal path in 200 runs in Grid World. 

Figure 6. Comparison of Three Algorithms in term of the average of 
rewards gained in 200 runs in Grid World. 

 
 

4.2. Experiments in Tunnel to Goal Games 
In this section, we show results of our experiments in 
Tunnel to Goal Games. 
 
Experiment 3. In this experiment, we compare the 
proposed algorithm (CB-BHASQL) in Tunnel to Goal 
Games environment ( Fig 2.b) with the other algorithms in 
terms of the number of movements made by agent 1 to 
reach the optimal path in 2000 episode.  Figure 7 
illustrates the results of this experiment. Figure 8 shows 
the average results after 200 runs.  From the result, it is 
evident that the CB-BHASQL algorithm has lower 
numbers of moves in comparison with the other 
algorithms. 
 
Experiment 4. In this experiment, we compare the 
proposed algorithm (CB-BHASQL) in Tunnel to Goal 
Games environment ( Fig 2.b) with the other algorithms in 
terms of the averaged reward received by agent 1during an 
episode. Figure 9 shows the result of this experiment. As it 
is seen (CB-BHASQL) algorithm outperforms the other 
algorithms in terms the average reward received during an 
episode.  
 

 

Fig7. Comparison of different methods in terms of the number of 
movements Needed for reaching to the optimal path in Tunnel to Goal. 

Fig8. Comparison of four Algorithms in terms of average of the number 
of moves to reaching optimal path in 200 runs in Tunnel to Goal. 

 

Fig 9. Comparison of Three Algorithms in term of the average of rewards 
gained in 200 runs in Tunnel to Goal. 

 
 

5. Evaluation of the Algorithm’s Behavior 

5.1. Examination of the Behavior of the Proposed 
Algorithms  

 
In this section, an analysis of the performance the 
proposed algorithm is conducted in which the advantage of 
the function π2 (S) (EQ 7) is compared with π1 (S) (EQ 4). 
We want to show that in the proposed method, π2 (S) in 
comparison with π1 (S) converges to the optimum solution 
with a higher rate. In other words, the rate of variation for 
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π2 (S) in relation to Q, is more than the rate of variation for 
π1 (S) in relation to Q.  
To show the advantage of the behavior of the proposed 
action selection function, the CB-BHASQL algorithm was 
evaluated for state S0 and action a1 regarding to different 
values of n and the results below were gained: 
 
Experiment 5. In this experiment, variations of π2 (S) 
were evaluated in comparison with π1 (S). Figures 10-12 
show these variations As it is seen, we note that regarding 
to the increase in n, the growth of π2 (S) is much more than 
π1 (S).  
 
Experiment 6. In this experiment, we study evaluation of 
variations for function Q (S, a) (EQ(3)) regarding to the 
increase in n. The results of this analysis are shown in 
Figures 11-13. As it is seen, we conclude that with 
increasing n, the value of function Q (S, a) also increases 
in Equation 3.  
 
Experiment 7. In this experiment, we study evaluation of 
variations for π1 (S) and π2 (S) based on values for Q (S, a). 
The results of this evaluation are shown in Figure 14. 
Looking at the diagram we note that with increasing value 
of Q (S, a), the value of π1 (S) increases. Since always 
limt→∞ not (S, a) = ∞, according to the result of 
Experiment 6, value of Qt (S, a) increases and according to 
the result of Experiment 6, with increasing n, the function 
π2 (S) grows faster than π1 (S). Based on the previous 
subjects, it is concluded that with increasing value of Qt (S, 
a), the function π2 (S) must grow faster than π1 (S).  Figure 
15 shows the results. 
  

5.2. Mathematical Analysis of the Functions 
Behavior 

To facilitate the calculations, we rewrite functions π1 (S) 
and π2 (S) as EQ (9) and EQ (10)  respectively.  
 

ଵሺܵሻߨ ൌ 	
௘
ೂ
ഓ

∑ ௘
ೂೕ
ഓ೘

ೕసభ

                                                              (9) 

 
ଶሺܵሻߨ ൌ 	 ݁௡ொ                                                                  (10) 
 
The variable rate of π1 (S) in relation to Q with parameter t 
= 0.05, is shown in  EQ (11). 
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The variable rate of π1 (S) in relation to Q is shown in EQ ( 
12). 
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ൌ
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ௗ௡
ൈ

ௗ௡

ௗொ
  

          ൌ ܳ݁௡ொ ൈ
ௗ௡

ௗொ
													  

(12) 

 
Through the comparison of the EQ(11) and EQ(12), we 

conclude that the growth of the rate 
ᇞగଵሺௌሻ

ᇞொ
  Is less 

than
ᇞగଶ	ሺௌሻ

ᇞொ
. 

In Equation 11, because Q is positive, the value of 

function 
ᇞగଵ	ሺௌሻ

ᇞொ
	 is always positive. According to equation 

3 and the diagram in Figure 11, with increasing n, the 

value of Q (S, a) always increases. Thus, 
ௗ௡

ௗொ
 > 0 and from 

the other hand, n> 0 and Q> 0. So, 
ᇞగଶ	ሺௌሻ

ᇞொ
	 is always 

positive. 
In Equation 10, ݁ଶ଴ொ  is multiplied by the constant value 
20. This is while in Equation 12, ݁௡ொ  is multiplied by 
variant Q. With increasing n, the value of Q increases. 

Thus, the growth rate of 
ᇞగଵ	ሺௌሻ

ᇞொ
	  is less than

ᇞగଶሺௌሻ

ᇞொ
. The 

diagram in Figure 15 also supports the result gained.  
 
 

 

Fig 10. Examining the growth of π2 (S) and π1 (S) based on the different n 
values 

  
 

 

Fig 11. Examination of π2(S) variations based on the different n values. 
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Fig 12. Examination of π1 (S) Variations based on the Different n values. 

 

 

Fig 13. Examination of Q (S, a) Variations based on the Different n 
values. 

 

 

Fig 14. Examination of π1 (S) Growth based on the Different Q (S, a) 
values. 

 

 

Fig 15. Examination of π1 (S) and π2 (S) Growth based on the Different Q 
(S, a) values 

 
 
6. Conclusion 
In this paper, a new hybrid model called CB-BHAQL has 
been introduced to solve Markov’s games based on 
reinforcement learning and case base systems, in which a 

new function has been applied to select the action in each 
state. The results gained were compared with the current 
algorithms. Based on the results gained in two different 
environments, in comparison with Selfish Q-Learning and 
Boltzmann’s CBR algorithms and CB-BHADQL,  our 
proposed algorithm CB-BHASQL algorithm has a very 
high efficiency from the perspective of convergence rate to 
the optimum answer, average of total reward gained and 
the number of the movements needed for convergence to 
the optimal policy. 
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