
Improving Multi agent Systems Based on Reinforcement
Learning and Case Base Reasoning

 Sara Esfandiari1, Behrooz Masoumi1, Mohammad Reza Meybodi2, Abdolkarim Niazi3

1 Department of Computer Engineering and Information Technology, Islamic Azad University, Qazvin
 Branch, Qazvin, Iran

 2 Departments of Computer Engineering, Amirkabir Industrial University, Tehran, Iran,

3 Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering,
Universiti Teknologi Malaysia, 81310 UTM Skudai, Malaysia

Abstract
In this paper, a new algorithm based on case base reasoning and
reinforcement learning is proposed to increase the rate
convergence of the Selfish Q-Learning algorithms in multi-agent
systems. In the propose method, we investigate how making
improved action selection in reinforcement learning (RL)
algorithm. In the proposed method, the new combined model
using case base reasoning systems and a new optimized function
has been proposed to select the action, which has led to an
increase in algorithms based on Selfish Q-learning. The
algorithm mentioned has been used for solving the problem of
cooperative Markov’s games as one of the models of Markov
based multi-agent systems. The results of experiments on two
ground have shown that the proposed algorithm perform better
than the existing algorithms in terms of speed and accuracy of
reaching the optimal policy.

Keywords: Reinforcement learning, Selfish Q-learning, Case-
base reasoning Systems, Multi-agent Systems, Cooperative
Markov Games.

1. Introduction

Case Based Reasoning (CBR) is a knowledge based
problem solving technique, which is based on reusing on
the previous experiences and has been originated from the
researches of cognitive sciences [1]. In this method, it is
assumed that the similar problems can possess similar
solutions. Therefore, the new problems may be solvable
using the experienced solutions to the previous similar
problems. A multi-agent system (MAS) is comprised of a
collection of intelligent agents that interact with each other
in an environment to optimize a performance measure [2].

Agents are computational entities that can see their
environments with their sensors. These agents should do
appropriate action in per moment based on their
observations. In multi agent system research, cooperative
and non-cooperative perspective. In cooperative multi-
agent systems, the agents pursue a common goal and the
agents can be built expect benevolent intentions from other
agents. In contrast, a non-cooperative multi agent system
setting has non-aligned goals, and individual agents try to
obtain only to maximize their own profits. In multi-agent
systems, the need for learning and adoption is essentially
caused by the fact that the environment of the agent is
dynamic and just empirically observed while the
environment (the reward functions and the transition
states) is unknown. Hence, the reinforcement learning
methods may be applied in MAS to find an optimal policy
in MGs. In addition, agents in a multi-agent system face
the problem of incomplete information with respect to the
action choice. If agents get information about their own
choice of action as well as that of the others, then we have
joint action learning [3][4]. Joint action learners are able to
maintain models of the strategy of others, and the
explicitly takes into account the effects of joint actions. In
contrast, independent agents only know their own action
which is often a more realistic assumption since
distributed multi-agent applications are typically subject to
limitations such as partial observability, communication
costs, and stochastic.
 There are several models proposed in the literatures for
multi-agent systems based on Markov models. One of
these models is stochastic games (also called Markov
Game – MG). Markov games are extensions of Markov

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 130

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Decision Process (MDP) to multiple agents. In an MG,
actions are the result of joint action selection of all agents,
while rewards and the state transitions depend on these
joint actions. In a fully cooperative MG called a multi-
agent MDP (or MMDP), all agents share the same reward
function and they should learn to agree on the same
optimal policy [5].
There are several methods for finding an optimal policy in
MMDPs. In [6], an algorithm is proposed for learning
cooperative MMDPs, but it is only suitable for
deterministic environments. In [7] an algorithm called
Selfish Q-Learning has been introduced which changes
the Q values of each action used a special Q-function. In
[8] MMDPs are approximated as a sequence of
intermediate games. The authors present optimal adaptive
learning and prove convergence to Nash equilibrium of the
game. In [9], an algorithm called CAQL has been
introduced, which acts through a Q - learning algorithm.
In [10], a Q-learning algorithm based method has been
proposed.
In Reinforcement Learning (RL), learning is carried out
online, through trial-and-error interactions of the agent
with the environment. Unfortunately, convergence of any
RL algorithm may only be achieved after extensive
exploration of the state-action space, which can be very
time consuming. However, the rate of convergence of an
RL algorithm can be increased by using heuristic functions
for selecting actions in order to guide the exploration of
the state-action space in a useful way. In [11], [12]
investigates how to make improved action selection
functions based on heuristics in on-line policy learning for
robotic scenarios. These functions have been applied to
select the action in every state. Although these methods
have been successfully used to find the optimal policy in
Markov games, the problem of using the previous
experiences of agents for solving the new problem is still
disregarded in these methods. Since in the environment is
unknown in multi-agent systems, and the agent should
upgrade its knowledge of environment through
observation, so the problem of keeping and reusing the
previously acquired knowledge causes an increase in
learning rate. In this paper, to increase the speed of
learning rate to get the optimal policy for Markov Games
in the independent agent’s state, a hybrid algorithm called
Case-based Best Heuristically Accelerated Selfish Q-
learning (CB-BHASQL) is proposed in which, a modified
function is used to select the action and the Case Base
Reasoning technique and a special Q-function called
Selfish Q-Learning has been used to increase the learning
rate. To evaluate the proposed methods, they have been
applied to two examples of MMDP called Grid Game and
Tunnel To Goal. The results of computer simulations have
shown that these algorithms outperform the previous
approaches from both cost and speed perspective. In the
next part of the paper, at first fundamental concepts are

explained in section 2 and in section 3, the proposed
algorithm is presented. Simulation results, and discussions
are reported in section 4 and in section 5, evaluation of the
algorithm’s behavior and its analysis is done and section 6
is the conclusion.

2. Reinforcement Learning

In this section, we first review some basic principles of
Markov decision Process (MDP) and then present the
basic formulation of the Q-learning algorithm, a well-
known reinforcement learning technique for solving
MDPs. A reinforcement learning agent defines its behavior
through interaction with an unknown environment and
observation of the results of its behavior [12].

2.1 Markov decision Process

Markov decision process is formally defined as follows:

Definition 1. A Markov decision process (MDP) is a
quadruple S, A, R, T (where S is a finite state space; A is
the space of actions the agent can take; R: S×A ( is a
payoff function (R (s, a) is the expected payoff for taking
action an in state s); and T: S×A×S ([0,1] is a transition
function (T (s, a, s’) is the probability of ending in state s’,
given that action a is taken in state s).

In a Markov decision process, an agent’s objective is to
find a strategy (policy) π: S A so as to maximize the sum
of discounted expected rewards,

V (s, ߨ) =∑ ,ߨ|௧ݎሺܧ௧ߛ ଴ݏ ൌ ஶ						ሻݏ
௧ୀ଴ (1)

Where s is a particular state, s0 indicates the initial state, rt
is the reward at time t, and ߛ [0,1) is the discount factor.
There exists an optimal policy π* such that for any state s,
the following equation holds:

V (s, = (* ߨ
,ݏሺݎ௔ሼݔܽ݉ ܽሻ ൅ ߛ ∑ ܲሺݏᇱ|ݏ, ሻݒሺݏᇱ, ሻ௦ᇲ∗ߨ ሽ

 (2)

where r(s, a) is the reward for taking action a at state s,
and v(s,*) is called optimal value for that state while

P(s0|s, a) is the probability of transiting to state ݏ′ After
taking action an in state s. If the agent knows the reward
and state transition functions, it can solve * by iterative
search method, otherwise this method cannot be used
while an algorithm called Q is employed [13] [14].
The variety of Q-functions has been used in [6,7,8,9,10].
Selfish Q-learning algorithm pseudo-code, which has been
used in [7], is shown in Figure 1. In this algorithm, for
every action a in each state S the value of that action (Q
(s, a)) is used according to Equation 3. Each state S the
value of that action (Q (s, a)) is used according to

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 131

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Equation 3. In Equation3, α is the rate of learning and γ 
[0, 1] is the discount factor. The algorithm ends when the
optimum policy doesn’t change for a definite while.

ܳሺܵ௧, ܽ௧ሻ ൌ ܳሺܵ௧, ܽ௧ሻ ൅ ௧ݎ	ሾߙ ൅ ሺߛmaxܳሺܵᇱ, ܽᇱሻሻ െ ܳሺܵ௧, ܽ௧ሻሿ (3)

To select an action in every state, the Boltzmann’s
distribution method (EQ 4) is usually used. This function
has been used in some articles such as [6,7,8,9,10,19].

πଵሺܵሻ ൌ argmax	ሺ
௘
ೂሺೄ,೟ሻ
ഓ

∑ ௘
ೂሺೄ,೟ሻ
ഓ೘

೔సభ

ሻ
(4)

In which, m is the number of allowable actions for state S
and ߬	is a constant. Q (S, a) shows the value of evaluation
function of state S while action a is done.

Algorithm Selfish Q‐Learning
1. Initialize Q(S,a) arbitrarily
2. Repeat (for each episode)
3. Initialize S randomly
4. Repeat (for each step)

5. Select an action using πଵሺܵሻ ൌ argmax	ሺ
௘
ೂሺೄ,೟ሻ
ഓ

∑ ௘
ೂሺೄ,೟ሻ
ഓ೘

೔సభ

ሻ EQ(4)

6. Execute the action a
7. Observe reward r(s,a) ,state s’
8. Update the value of Q(S,a) according to ܳሺܵ௧, ܽ௧ሻ ൌ ܳሺܵ௧, ܽ௧ሻ ൅ ௧ݎ	ሾߙ ൅
ሺߛmaxܳሺܵᇱ, ܽᇱሻሻ െ ܳሺܵ௧, ܽ௧ሻሿ EQ(3)
9. ܵ ← ܵ′
10. Until S is Terminal State
11. Until some stopping Criteria is reached.
12. End

Fig 1. Selfish Q-Learning Algorithm

2.2. Markov Games

Markov games are a generalization of MDPs to multiple
agents and can be used as a framework for investigating
multi-agent learning. In the general case (general-sum
games), each player would have a separate payoffs. A
standard formal definition follows:

Definition 2. A stochastic game (Markov game) is a tuple
n, S, A1..n, T, R1..n  , where n is the number of agents, s is
a set of states, Ai is the set of actions available to agent i
(and A is the joint action space A1× A2×. . . ×An), T is a
transition function S×A×S [0,1]), and r is a reward
function for the ith agent S×A.

In a discounted Markov game, the objective of each player
is to maximize the discounted sum of rewards, with a

discount factor ߛ [0,1). Let ߨ i be the strategy of the
player i. For a given initial state s, player i tries to
maximize:

,ݏሺݒ ,ଵߨ ,ଶߨ … , ௡ሻߨ ൌ
∑ ,ଵߨ|௧ݎሺܧ௧ߛ ,ଶߨ … , ,௡ߨ ଴ݏ ൌ ஶ	ሻݏ
௧ୀ଴

(5)

Markov games are categorized based on the agent’s
rewards into cooperative and non-cooperative games. Non-
cooperative games may be classified as competitive games
and general-sum games. Strictly competitive games, or
zero-sum games, are two-player games where one player’s
reward is always the negative of the others. General-sum
games are ones where the reward sum is not restricted to
zero or any constant, and allow the agents’ rewards to be
arbitrarily related. However, in full cooperative games, or
team games, rewards are always positively related. In a
fully cooperative MG (or team MG) called a multi-agent
MDP (or MMDP), all agents share the same reward
function. Nevertheless, in general MG (or general-sum
MG) there is no constraint on the sum of the agents’
rewards and the agents should learn to find and agree on
the same optimal policy. However, in a general Markov
Game, an equilibrium point is sought; i.e. a situation in
which no agent alone can change its policy to improve its
reward when all other agents keep their policy fixed [15],
[16].
One of the Markov’s games used for multi-agent Markov’s
games is the Grid World game. In this game, two agents
start from a corner of the page and try to reach a goal with
the least possible number of moves. Players' actions are
defined as four actions in four different directions, namely
Up, Down, Left, Right. A state space set is defined
as 	ܵ ൌ 	 ሼݏ|ݏ ൌ ሺ݈ଵ, ݈ଶሻሽ , In which each state s= ሺ݈ଵ, ݈ଶሻ
Indicates the coordinates of agents 1 and 2. Agents cannot
take the same coordinates at the same time. In other words,
if both agents try to move to the same square, both of their
moves will fail. If agents move to two different non-goal
positions, both receive zero rewards and if one reaches the
goal position, it receives 100 units of reward. However, if
they collide with each other both receive one unit of
punishment and stay in their previous position. In this
game, the state transition is deterministic, i.e. the next state
is uniquely determined by the current state and the joint
action of the agents. In this game, agents are assumed not
to know the goal position and the other agent's reward
functions. Agents choose their actions simultaneously and
can only know about the previous moves of the other
agents and their own current state.

Another game which we have used it, called Tunnel to
Goal. In this game, there are some barriers. If an agent
collision these barriers, it receives one unit of punishment.

A path in these games represents sequences of actions
from the starting to the end position. In game terminology,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 132

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

such a path is called a policy or strategy. The shortest path,
not interfering the path taken by the other agent, is called
the optimal policy or Nash path. Figure 2 is an example of
these games. The optimal policy in Figure 2.a includes 9
movements and in Figure 2.b includes 10 movements.

 (a) (b)
Fig2 . examples of Markov Games. (2.a) An example of Grid World

Game. 2.b. An example of Tunnel to Goal Game

2.3. Case Base Reasoning

Case Based Reasoning (CBR) technique uses the previous
experiences (Case) to solve the new problems [17], [18].
In the case base reasoning systems, the experiences gained
from solving the problems are saved in case base (CB). In
these systems, for solving the new problem (Cnew), the
most similar cases to Cnew are extracted from the case base
(CB) and the solutions presented by the extracted cases are
used to solve the new problem C new. If a similar case is
not found, Cnew is inserted is inserted to the case base as a
new case. Unlike the classical knowledge-based methods,
CBR focuses on a particular problem-solving experience,
which is originated from the cases collected in the case
base. These cases show a particular experience on a
problem solving domain. It must be noted that CBR
doesn’t recommend a definite solution, but presents
hypothesis and theories pass the solution space.

3. The Proposed method

In this section, a new algorithm called CB-BHASQL is
proposed to increase the rate of convergence in Markov’s
games. In the proposed algorithm, the case base reasoning
and also a new function are used to select the action in
each state to increase the convergence rate toward the
optimal policy. We previously used our new function with
Decentralized Q-Learning according to EQ(6) and called
CB-BHADQL. In this paper, We proposed a new

algorithm with Selfish Q-Learning according to EQ(3)
and called CB-BHASQL.

ܳሺܵ, ܽሻ ൌ
ሺ1 െ ,ሻܳሺܵߙ ܽሻ ൅ ݎሺߙ ൅ max௕ߛ ܳᇱሺܵ, ܽሻሻ																							ሺ6ሻ

We know that solving a problem using CBR includes the
steps: creating a description of the problem, evaluating the
similarity of the current problem to the previously-solved
problems saved in case base, and trying to reuse the
solutions presented by the detected cases to solve the
current problem. The structure of the cases used in the
recommended algorithm is a duplex in the form of
Case=<Prob, Sol> in which, Prob describes the problem
and Sol is the solution presented to solve the problem. The
problem describer (Prob) includes the properties in each
state. In the proposed algorithm, the problem describer is
defined as Prob (S) = {m, <Up, Down, Right, Left>,
index} in which, m is the number of actions for each state
and the set <Up, Down, Right, Left> are the actions
allowable for each action and index is the index for each
state. The solution recommended for the problem is Sol (S)

= <E, V>, in which vector ܧሬԦ	In the form of ܧሬԦ= (ܧሬԦ[1], ܧሬԦ

 ሬԦ [m]) is a list of experiences collected from theܧ ,… ,[2]
environment by the agent for state S and each vector

 includes a tuple <Ai, Ni, Qi, πi> where Ai is the space of	ሬԦܧ

actions for state S and Ni is the number of times that ai Ai
has been updated and Qi is the value estimated by
Equation 1 and πi is the possibility of occurrence of action
ai , which is estimated by EQ(7).

πଶሺܵሻ ൌ argmaxቆ
݁௡ሺௌ,௔ሻொሺௌ,௔ሻ

∑ ݁௡ሺௌ,௔ሻொሺௌ,௔ሻ௠
௜ୀଵ

ቇ			

(7)

Where m is the number of allowable actions for state S and
n (S, a) is the number of times that so far the action a has
been selected. Q (S, a) shows the value of evaluation
function of state S while action a is done.

V is the justification of using the solution recommended by
the detected agent and if each of the actions of state S at
least has been selected once, the solution of the detected
agent can be used for solving the new problem. In the
recommended algorithm, once the agent enters a new state,
extracts the most similar case to the new state of the case

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 133

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

base and if the justification is available (V = True), the
detected case is used to determine the next state.

 To detect the similar cases of current state, the nearest
neighbor algorithm is used. Euclidean distance of the new
case to each of the cases available in case base is
calculated according to EQ(8) and the most similar case
(c) is detected and if the justification is available (V =
True), the solution of detected case is used to solve the
new problem. The proposed algorithm is shown in Figure
3.

 ܰܰሺܵሻ ൌ arg݉ܽݔ௖∈஼஻ ܵ݅݉ሺܥ. ,ܾ݋ݎ݌ .ܥ 	ሻ݈݋ݏ
ൌ arg݉ܽݔ

௖∈஼஻
.ܥሺݐݏ݅݀	 ,ܾ݋ݎ݌ .ܥ (8)																								ሻ݈݋ݏ

4. Experiments

In order to evaluate the performance of the proposed
algorithm several experiments have been conducted whose
results are reported below. In Section 4.1, The
environment of the experiments is a Grid-world game that
includes a 5 ൈ6 Grid according to Figure 2.a. In section
4.2, the environment of the experiments is a Tunnel to
Goal game that includes a 5 ൈ6 Grid according to Figure
2.b. These experiments are conducted to study the
improvement obtained by the proposed algorithm (CB-
BHASQL) in comparison with three CBR and QL
algorithms and CB-BHADQL. So, CB-BHASQL
algorithm is compared with three algorithms: 1) Selfish Q-
Learning algorithm, and 2) Boltzmann’s CBR algorithm,
which its pseudo-code is similar to Figure 3 and the only
difference is in the selection of the actions which is based
on the Boltzmann’s distribution (Equation 4) and 3) CB-
BHADQL. In all experiments, each reported value is
obtained by averaging over 200 runs and the average
results are gained for the algorithms. Parameters given are
߬ = 0.05 and γ = 0.7.

4.1. Experiments in Grid World Games

In this section, we show results of our experiments in Grid
word Games.

Experiment 1. In this experiment, we compare the
proposed algorithm (CB-BHASQL) in Grid World Games
environment (Fig 2.a) with the other algorithms in terms
of the number of movements made by agent 1 to reach the
optimal path in 2000 episode. Figure 4 illustrates the
results of this experiment. Figure 5 shows the average
results after 200 runs. From the result, it is evident that the

CB-BHASQL algorithm has lower numbers of moves in
comparison with the other algorithms.

Experiment 2. In this experiment, we compare the
proposed algorithm (CB-BHASQL) in Grid World Games
environment (Fig 2.a) with the other algorithms in terms
of the averaged reward received by agent 1during an
episode. Figure 6 shows the result of this experiment. As it
is seen (CB-BHASQL) algorithm outperforms the other
algorithms in terms the average reward received during an
episode.

Algorithm CB-BHASQL
1. Let t be the global time, n be the number of agents,  the

discount factor ,CBi= an empty case base for each

Set ݏ ൌ ݏ ′ ∈ ܵto

the initial state of the system

2. Repeat
3. Set s=s’

4. forall agent]...1[ni do

5. if CBi= or addcasecriterion(s) is true

6. CCBCB  with c.Prob=s and c.Sol=empty_solution (i)
7. for each j=Sol(s).m do

8. Compute Sol(s).E[j]. i according to EQ(7) and Set index ix the Maximum

 value of them.

9. Select elementary action ii axEsSol].[).(.

10. Observe Successor state Ss' and reward Rr .
11. end if.
12. end for.

13. for all agents]...1[ni do

14. Retrieve nearest neighbour according to EQ(8) of state s’.

15. Set Learning Rate
ii

i nxEsSol].[).(1

1




16. Set ii QxEsSol].[).(according to ܳሺܵ௧, ܽ௧ሻ ൌ ܳሺܵ௧, ܽ௧ሻ ൅

௧ݎ	ሾߙ																						 ൅ ሺߛmaxܳሺܵᇱ, ܽᇱሻሻ െ ܳሺܵ௧, ܽ௧ሻሿ EQ(3) .
17. Increment ii nxEsSol].[).(by one.

18. Resort decremently the experience list Q in Sol(s).E
19. Until Stop_Criterion () becomes true.

Fig 3. Pseudo-code for the Proposed Algorithm CB-BHASQL

Fig4. Comparison of different methods in terms of the number of
movements Needed for reaching to the optimal path in Grid World.

0

200

400

600

800

1000

200 400 600 800 1000 1200 1400 1600 1800 2000

N
u
m
b
e
r
o
f
M
o
ve
m
e
n
ts

Episode

CB‐BHADQL

Selfish Q‐Learning

Boltzmann CBR

CB‐BHASQL

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 134

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig5. Comparison of four Algorithms in terms of average of the number
of moves to reaching optimal path in 200 runs in Grid World.

Figure 6. Comparison of Three Algorithms in term of the average of
rewards gained in 200 runs in Grid World.

4.2. Experiments in Tunnel to Goal Games
In this section, we show results of our experiments in
Tunnel to Goal Games.

Experiment 3. In this experiment, we compare the
proposed algorithm (CB-BHASQL) in Tunnel to Goal
Games environment (Fig 2.b) with the other algorithms in
terms of the number of movements made by agent 1 to
reach the optimal path in 2000 episode. Figure 7
illustrates the results of this experiment. Figure 8 shows
the average results after 200 runs. From the result, it is
evident that the CB-BHASQL algorithm has lower
numbers of moves in comparison with the other
algorithms.

Experiment 4. In this experiment, we compare the
proposed algorithm (CB-BHASQL) in Tunnel to Goal
Games environment (Fig 2.b) with the other algorithms in
terms of the averaged reward received by agent 1during an
episode. Figure 9 shows the result of this experiment. As it
is seen (CB-BHASQL) algorithm outperforms the other
algorithms in terms the average reward received during an
episode.

Fig7. Comparison of different methods in terms of the number of
movements Needed for reaching to the optimal path in Tunnel to Goal.

Fig8. Comparison of four Algorithms in terms of average of the number
of moves to reaching optimal path in 200 runs in Tunnel to Goal.

Fig 9. Comparison of Three Algorithms in term of the average of rewards
gained in 200 runs in Tunnel to Goal.

5. Evaluation of the Algorithm’s Behavior

5.1. Examination of the Behavior of the Proposed
Algorithms

In this section, an analysis of the performance the
proposed algorithm is conducted in which the advantage of
the function π2 (S) (EQ 7) is compared with π1 (S) (EQ 4).
We want to show that in the proposed method, π2 (S) in
comparison with π1 (S) converges to the optimum solution
with a higher rate. In other words, the rate of variation for

0

50

100

150

200

200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve
ra
ge

 o
f
M
o
ve
s

Episode

CB‐BHADQL

Selfish Q‐Learning

Boltzmann CBR

CB‐BHASQL

0

20

40

60

80

100

120

140

160

200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve
ra
ge

 o
f
R
e
w
ar
d
s

Episode

CB‐BHADQL
Selfish Q‐Learning
Boltzmann CBR
CB‐BHASQL

0

50

100

150

200

250

300

350

400

450

500

200 400 600 800 1000 1200 1400 1600 1800 2000

N
u
m
b
e
r
o
f
M
o
ve
m
e
n
ts

Episode

CB‐BHADQL
Selfish Q‐Learning
Boltzmann CBR
CB‐BHASQL

0

50

100

150

200

250

300

350

400

450

200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve
ra
ge

 o
f
M
o
ve
s

Episode

CB‐BHADQL

Selfish Q‐Learning

Boltzmann CBR

CB‐BHASQL

0

20

40

60

80

100

120

200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve
ra
ge

 o
f
R
e
w
ar
d
s

Episode

CB‐BHADQL

Selfish Q‐Learning

Boltzmann CBR

CB‐BHASQL

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 135

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

π2 (S) in relation to Q, is more than the rate of variation for
π1 (S) in relation to Q.
To show the advantage of the behavior of the proposed
action selection function, the CB-BHASQL algorithm was
evaluated for state S0 and action a1 regarding to different
values of n and the results below were gained:

Experiment 5. In this experiment, variations of π2 (S)
were evaluated in comparison with π1 (S). Figures 10-12
show these variations As it is seen, we note that regarding
to the increase in n, the growth of π2 (S) is much more than
π1 (S).

Experiment 6. In this experiment, we study evaluation of
variations for function Q (S, a) (EQ(3)) regarding to the
increase in n. The results of this analysis are shown in
Figures 11-13. As it is seen, we conclude that with
increasing n, the value of function Q (S, a) also increases
in Equation 3.

Experiment 7. In this experiment, we study evaluation of
variations for π1 (S) and π2 (S) based on values for Q (S, a).
The results of this evaluation are shown in Figure 14.
Looking at the diagram we note that with increasing value
of Q (S, a), the value of π1 (S) increases. Since always
limt→∞ not (S, a) = ∞, according to the result of
Experiment 6, value of Qt (S, a) increases and according to
the result of Experiment 6, with increasing n, the function
π2 (S) grows faster than π1 (S). Based on the previous
subjects, it is concluded that with increasing value of Qt (S,
a), the function π2 (S) must grow faster than π1 (S). Figure
15 shows the results.

5.2. Mathematical Analysis of the Functions
Behavior

To facilitate the calculations, we rewrite functions π1 (S)
and π2 (S) as EQ (9) and EQ (10) respectively.

ଵሺܵሻߨ ൌ 	
௘
ೂ
ഓ

∑ ௘
ೂೕ
ഓ೘

ೕసభ

 (9)

ଶሺܵሻߨ ൌ 	 ݁௡ொ (10)

The variable rate of π1 (S) in relation to Q with parameter t
= 0.05, is shown in EQ (11).

୼గభሺௌሻ

୼ொ
ൌ

ଵ

ఛ
݁
భ
ഓ ൌ

ଵ

଴.଴ହ
݁

భ
బ.బఱ ൌ 20݁ଶ଴ொ																					 (11)

The variable rate of π1 (S) in relation to Q is shown in EQ (
12).

୼గమሺௌሻ

୼ொ
ൌ

ௗగమሺௌሻ

ௗ௡
ൈ

ௗ௡

ௗொ

 ൌ ܳ݁௡ொ ൈ
ௗ௡

ௗொ
													

(12)

Through the comparison of the EQ(11) and EQ(12), we

conclude that the growth of the rate
ᇞగଵሺௌሻ

ᇞொ
 Is less

than
ᇞగଶ	ሺௌሻ

ᇞொ
.

In Equation 11, because Q is positive, the value of

function
ᇞగଵ	ሺௌሻ

ᇞொ
	 is always positive. According to equation

3 and the diagram in Figure 11, with increasing n, the

value of Q (S, a) always increases. Thus,
ௗ௡

ௗொ
 > 0 and from

the other hand, n> 0 and Q> 0. So,
ᇞగଶ	ሺௌሻ

ᇞொ
	 is always

positive.
In Equation 10, ݁ଶ଴ொ is multiplied by the constant value
20. This is while in Equation 12, ݁௡ொ is multiplied by
variant Q. With increasing n, the value of Q increases.

Thus, the growth rate of
ᇞగଵ	ሺௌሻ

ᇞொ
	 is less than

ᇞగଶሺௌሻ

ᇞொ
. The

diagram in Figure 15 also supports the result gained.

Fig 10. Examining the growth of π2 (S) and π1 (S) based on the different n
values

Fig 11. Examination of π2(S) variations based on the different n values.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

n(S0,a1)

(
S

0
,a

1
)

1(S0,a1)

2(S0,a1)

0
0.5

1
1.5

2x 10
14 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

10

20

30

Q(S0,a1) 2(S0,a1)

n(
S

0
,a

1
)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 136

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 12. Examination of π1 (S) Variations based on the Different n values.

Fig 13. Examination of Q (S, a) Variations based on the Different n
values.

Fig 14. Examination of π1 (S) Growth based on the Different Q (S, a)
values.

Fig 15. Examination of π1 (S) and π2 (S) Growth based on the Different Q
(S, a) values

6. Conclusion
In this paper, a new hybrid model called CB-BHAQL has
been introduced to solve Markov’s games based on
reinforcement learning and case base systems, in which a

new function has been applied to select the action in each
state. The results gained were compared with the current
algorithms. Based on the results gained in two different
environments, in comparison with Selfish Q-Learning and
Boltzmann’s CBR algorithms and CB-BHADQL, our
proposed algorithm CB-BHASQL algorithm has a very
high efficiency from the perspective of convergence rate to
the optimum answer, average of total reward gained and
the number of the movements needed for convergence to
the optimal policy.

References
[1] R. A. C. Branchi, R. Raquel, R. L. D. Mantaras, ” Imroving

Reinforcement Learning by using Case Based Heuristics”,
Proceeding of the Int. Conference on Case Based Learning
2009 (ICCBR 2009), Springer , 2009.

[2] N. Vlassis, “A Concise Introduction to Multiagent Systems
and Distributed Artificial Intelligence”, 2007, Morgan and
Claypool Publishers.

[3] C. Boutilier, "Sequential optimality and coordination in
multi-agent systems", in: Proceedings of the 16th
International joint conference on Artificial intelligence, 1999
, Vol. 1, Morgan Kaufmann Publishers Inc., Stockholm,
Sweden.

[4] L. Bosniu, R. Babuska, and B. Schutter, "A Comprehensive
Survey of Multiagent Reinforcement Learning", IEEE
Transaction on System, Man, Cybern, 2008 ,vol. 38, pp. 156-
171.

[5] B. Masoumi, M. R. Meybodi, “Speeding up learning
automata based multi agent systems using the concepts of
stigmergy and entropy”, Journal of Expert Systems with
Applications, July 2011, Vol 38, Issue 7, PP. 8105-8118.

[6] M. Lauer and M. Riedmiller, "An Algorithm for Distributed
Reinforcement Learning in Cooperative Multi-Agent
Systems", in The 17th International Conference on Machine
Learning San Francisco, CA, USA, 2000: Morgan Kaufmann
Publishers Inc, pp. 535 – 542.

[7] A. G. Barto and R. S. Sutton, “Reinforcement Learning: an
introduction”, MIT Press, Cambridge, MA, 1998.

[8] X. Wang and T. Sandholm, "Reinforcement Learning to Play
an Optimal Nash Equilibrium in Team Markov Games", in
Advances in Neural Information Processing Systems, 2002,
vol. 15: MIT Press, pp. 1571-1578, 2002,

 [9] F. S. Melo, M. I. Ribeiro, “Reinforcement Learning with
Function Approximation for Cooperative Navigation Tasks”,
IEEE International Conference on Robotics and A Utomation
Pasadena, CA, USA, May 2008, pp. 3321-2237.

[10] M. Lauer and M. Riedmiller, “Reinforcement Learning for
Stochastic cooperative Multi-agent Systems”, In Proceeding
of AAMAS 2004, New York, NY, ACM Press, pp. 1514-
1515.

[11] R. A. C. Bianchi, C. H. C. Ribeiro, A. H. R. Costa, “
Accelerating autonomous learning by using a heuristic
selection of actions”, Journal of Heuristis , , 2008, Vol. 2,
pp.135-168.

[12] R. A. C. Bianchi, C. H. C. Ribeiro, A. H. R. Costa,
”Heuristic selection of actions in multi agent reinforcement

0.5

0.6

0.7

0.8

0.9

1 0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0

10

20

30

Q(S0,a1)1(S0,a1)

n
(S

0
,a

1
)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

n(t)

Q
(S

0
,a

1
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Q(S0,a1)

1
(S

0
,a

1
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10

Q(S0,a1)

(
S

0
,a

1
)

1(S0,a1)

2(S0,a1)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 137

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

learning”, 20th International conference on Artificial
Intelligence, India , Jan 2007, pp.690-695.

[13] L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming, John Wiley and Sons,
New York, 1994.

[14] R. S. Sutton, A. G. Barto, “Reinforcement Learning : An
 Introduction”, MIT Press, 1998.
[15] J. F. Nash, “Non-cooperative Games”, Annals of
 Mathematics, , 1951, Vol. 54, pp. 286–295.
[16] A. M. Fink, Equilibrium in a Stochastic N-person Game,

Journal of Science in Hiroshima University, Series A-I, 1964,
Vol. 28, pp. 89–93.

[17] A. Aamodt; E. Plaza, "Case-Based Reasoning: Foundational
Issues", Methodological Variations and System Approaches AI
Communications, IOS Press, 1994, Vol. 7, No. 1, pp. 39-59.

[18] R. Bergman; "Engineering Applications of Case Based
 Reasoning", Journal of Engineering Applications of Artificial
 Intelligence, 1999 , Vol. 12, pp.805.
[19] Gabel, T. And Riedmiller, M., “CBR for state value function

Approximation in Reinforcement Learning”, Proceeding of the
Inter. Conference on Case Based Learning 2005 (ICCBR 2005)
, Springer , Chicago, USA.

Sara Esfandiari received her BS degree in Computer
Engineering from the azad University, Tehran, Iran., in 2006 and
MS degree in Computer Engineering in 2011 from the azad
University, Qazvin, Iran. Her research interests include Learning
systems, multi agent systems, multi agent learning, Data Mining,
parallel algorithms.

Behrooz Masoumi received his BS and MS degrees in Computer
Engineering in 1995 and 1998, respectively. He also received his
PhD degrees in Computer Engineering from the Science and
Research University, Tehran, Iran., in 2011. He joined the faculty
of Computer and IT Engineering Department at Qazvin Azad
University, Qazvin, Iran, in 1998. His research interests include
learning systems, multi-agent systems, multi-agent learning, and
soft computing.

Mohammadreza Meybodi received his BS and MS degrees in
Economics from the Shahid Beheshti University in Iran, in 1973
and 1977, respectively. He also received his MS and PhD degrees
in Computer Science from the Oklahoma University, U.S.A., in
1980 and 1983, respectively. Currently he is a Full Professor in the
Computer Engineering Department, Amirkabir University of
Technology, Tehran, Iran. Prior to his current position, he worked
from 1983 to 1985 as an Assistant Professor at Western Michigan
University, and from 1985 to 1991 as an Associate Professor at
Ohio University, U.S.A. His research interests include channel
management in cellular networks, learning systems, parallel
algorithms, soft computing, and software development.

Abdolkarim Niazi is currently PhD Student in Mechanical
Engineering-Manufacturing engineering at Technical University of
Malaysia from 2010 up to now. His research interests include
Condition monitoring, Tools Condition monitoring, Tool wear and
tool vibration, Advance and Automated Manufacturing Systems,
Artificial Neural Networks.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 3, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 138

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

