

Design of Efficient Dynamic Replica Control Algorithm for
Periodic/Aperiodic Transactions in Distributed Real-Time Databases

Torky Sultan1, Hazem El-Bakry 2 and Hala Abdel Hameed3

1 Information Systems Department, Helwan University, Cairo, Egypt.

2 Information Systems Department, Mansoura University, Mansoura, Egypt

3 Faculty of Information Technology, Misr University for Science and Technology, 6th of October City, Egypt.

Abstract

There are many issues that affect modeling and designing of real-
time databases. One of those issues is maintaining consistency
between the actual state of the real-time object of the external
environment and its images as reflected by all its replicas
distributed over multiple nodes. An efficient replica control
algorithm can contribute significantly to maintain this
consistency. In this paper, a replica control algorithm for medium
and large scale distributed database systems is presented. Such
algorithm relies on a hybrid combination of optimistic and
pessimistic replication approaches. Both the theory and
implementation of the proposed algorithm are described. It
maintains an independent degree of consistency for each data
object because it is adaptive dynamic replication control
algorithm. Furthermore, it employs some system factors to
increase the chance of having an updated data item locally;
avoiding remote access to meet timing constrains and achieves
both availability and consistency for the replicated data as much
as possible. A detailed simulation shows that the proposed
algorithms can greatly improve the system performance
compared to the systems either without replication or with full
replication.

Keywords: Distributed database, Real-time databases, Real-
time transaction, and Replica control algorithm.

1. Introduction

Many real-time systems are inherently distributed in
nature, and need to share data that are distributed among
different sites. For example, military tracking, medical
monitoring, naval combat control systems and factory
automation etc. All of those critical systems need data to
be obtained and updated in a timely fashion [1]. But,
sometimes data that is required at a particular location is
not available when it is needed and getting it from remote
site may take too long before which the data may become
invalid. This potentially leads to large number of tardy
transactions (transaction that miss their deadline).

One of the solutions, for the above-mentioned problem, is
replication of data in real-time databases. By replicating

temporal data items, instead of asking for remote data
access requests, transactions that need to read remote data
can now access the locally available copies. This helps
transactions meet their time and data freshness
requirements. In order to suite the different needs of the
distributed real-time systems such as different data
workloads and database specifications, multiple ways to
handle the replication control and different replication
schemes are proposed.

In the distributed systems, replication is seen as a cost
effective way to increase availability. However, replication
is used for both performance and fault-tolerant purposes
thereby introducing a constant trade-off between
consistency and efficiency. There are two main approaches
for replication; synchronize (also called Active or state
machine) in which a collection of identical servers
maintain the same copies of the system state, client write
operations are applied synchronously to all of the replicas
[2,3,4]. Although this approach increases consistency of
the replicated data, it increases system overhead.
Asynchronous (also called lazy or passive) replication on
the other hand where changes introduced by a transaction
are propagated to other sites only after the transaction has
been committed. However, this approach reduces system
overhead at the expense of temporal consistency.

Replication algorithms can also be characterized according
to what and where the objects are replicated. The most
extreme is full replication in which all data items are
replicated to all sites in the distributed system. The benefit
of full replication is that all data are available to read
locally, thus, leads to increasing performance. But this
slow down the system since updating one copy creates
transactions for updating all other sites, also issues like
concurrency control and recovery become more

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 72

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

complicated. Regarding the locations and number of
replicas, we can distinguish between static replication
algorithms in which both locations and number of replicas
are fixed and dynamic replication when the locations and
number of replicas are dynamically changing according to
system conditions and data needs.

In this work, a replica control algorithm for medium and
large scale distributed database system is presented. This is
done by trying to maintain an independent consistency
degree for each data object by presenting an adaptive
dynamic replication control algorithm. This algorithm is
based on the entire system workload of the distributed site
and increase the chance to have an updated data item
locally to avoid remote access to meet timing constrains
and achieves both availability and consistency for the
replicated data as much as possible.

2. Related Work

In replicated database systems, copies of the data items
can be stored at multiple sites, which achieve two
complementary features: performance improvement and
high availability. On the other hand, data replication
introduces its own problems; Access to a data item is no
longer controlled exclusively by a single site, instead the
access control is distributed across each site storing a copy
of the data item. It is also necessary, to ensure that mutual
consistency of the replicated data is provided, in other
words, replicated copies must behave like a single copy.
This is possible by preventing conflicting accesses on the
different copies of the same data item, and by making sure
that all data sites eventually receive all updates. Therefore,
major issue is the development of replication
protocol/policy. The problem of finding an optimal
replication scheme in a general network (i.e., a replication
scheme that has a minimum cost for a given read-write
pattern), has been shown to be NP-complete for the static
case.

Several classifications are possible for replication [4, 5, 6,
7, and 8]. In [4] Wiesmann & Schiper distinguish five
different techniques (active, weak-voting, certification-
based, primary copy and lazy replication). All these
techniques dealt only with fully replicated databases and
need a reliable total order broadcast in order to propagate
the transaction updates.

All the replication models that have been developed so far
can be classified into optimistic replication or pessimistic
ones [9]; in the optimistic replication, all the operations are
performed locally at each node as if there were alone in the
system and optimistically assumes that there is no conflict
with the other replicated copies located in the other nodes.

This approach will increase both response time and
performance by avoiding all the remote access. But, it
leads to temporal inconsistency between different nodes
which require a good conflict resolution and compensation
polices to eliminate this inconsistency. Other models are
pessimistically avoiding conflict between concurrent
operations running in the other nodes by different methods
such as, global lock or primary copy in which only the
primary site is permitted to update its items.

There have been a number of research papers about data
replication in traditional database systems where some
sporadic efforts have been made for the development of
different types of protocols/policies [10, 11, 12, 13, 14],
but it is not for real-time systems. In the literature there is
a little replication models for real-time database systems
[15,16,17], one of those models [ORDER] is found in [18]
where full replication is used in medium-scale or large-
scale distributed real-time database systems. It presents the
ORDER algorithm that is designed to work in an
environment where all data types and relations in the
system are known a priori. In term of scalability, the
algorithm has been enhanced to a replication algorithm
called On-demand Real-time Decentralized Replication
with Replica Sharing (ORDER-RS). In [19], Peddi et al.
present a replication algorithm called Just-In-Time Real-
Time Replication (JITRTR), which creates replication
transactions based on client’s data requirements in a
distributed real-time object-oriented database. In [20] a
replication protocol named PRiDe designed for optimistic
replication with forward conflict resolution in distributed
real-time databases was described. The model defines four
phases for the replication protocol: the local update phase,
the propagation phase, the integration phase, and the
stabilization and compensation phase. In that model, the
transactions are executed locally and the replicated items
are updated as if they are alone in the system, after
completing the transaction, the model check s for conflict
in the other nodes and a conflict resolution policy is used
to resolve it.

3. The Proposed Model for Replication in
Distributed Real-Time Database

Here, a replica control algorithm used by the dynamic
allocation module for replication in distributed real-time
database (DoMORE) is described. DoMORE is a
replication model based on increasing the probability of
providing the updated data for the real-time transactions to
meet their timing constrains by increasing their chance to
have these data locally without the need to get it remotely
from other sites. This goal can be achieved by dynamically
allocating data to distributed nodes according to their
access pattern. The model also allows different degree of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 73

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

consistency for each data object which is dynamically
calculated according to different factors (entire workload
and system requirements). DoMORE model allows most
of the transactions to execute and commit locally as if the
transaction is executed in a local, centralized database. It
uses a strict-2PL commit protocol for distributed
transaction, upholding the ACID properties [21], and
transaction processing is guaranteed to be serializable with
respect to other local transactions. As it was mentioned,
the objective of the replication model is to give the clients
the illusion of service that is provided by one server and
the clients have no knowledge about the data existence
behind. Of course, maintaining redundant data adds
overhead to the system, and this can be reduced by
exploring week consistency semantics of applications.
This tradeoff between consistency and system cost is the
main problem of all the replication models.

Generally, consistency is a term for discussing the
correctness of data in a database, the database is said to be
consistence if all consistency predicates are hold. For real-
time database, consistency predicates can refer to the
relationships between database objects and external
environment that are modeled by the database from time
point of view. In a replicated system we can define three
different types of predicates for consistency[22]; external
temporal consistency which deals with the relationship
between an object of the external world and its image on
the database, inter-object temporal consistency which is
the relationship between different objects or events (within
a single node), and it also includes the relationship
between temporal data item and non-temporal data item
that depend on that item, and mutual consistency, which
reflects the relationship between the object and its copy
(replica) in different remote sites.

DoMORE employs both eager and lazy replication
according to the types of database items, and it guarantees
that all the transactions will read an updated valid data
items and maintain both Temporal Consistency and
Mutual Global Consistency [23, 24, 25]. In DoMORE,
global consistency is achieved through continuously
propagation and integration of updates (typically,
transaction updates are propagated and integrated as soon
as possible, but propagation or integration may be deferred
under certain circumstances, such as if there is a transient
overload).

DoMORE is also based on the concept of Virtual Full
Replication (ViFuR) [26] that has been introduced in
DeeDS [27, 28]. It creates a perception of full replication
by ensuring that all used data objects are available at the
local node so that user can interact with the database as if
it is full replicated and all data are available locally. Thus
this approach can take the advantages of full replication

such as, reducing the resource usage compared to full
replication, and transaction timeliness, simplified
addressing of communication between nodes, as well as
support for fault tolerance. Accordingly, the database user
cannot distinguish a virtually fully replicated database
from a fully replicated one.

3.1 System Model

The system model consists of a group of distributed main
memory real-time databases connected by high-speed
networks. It was assumed that a reliable real-time
communication is maintained, i.e., any messages sent over
the network is eventually delivered and have predictable
transmission time [25]. The whole database is segmented
on different nodes, we can define segment as a group of
data objects that share properties, capturing some aspects
of the application semantics, and is allocated to a specified
subset of the nodes (possibly temporarily inconsistent with
each other). Each segment is considered as a partition of
the database and as units of allocation of replicas, which
can be individually replicated based on specified
replication requirements from all the clients at a certain
database node. If the specification indicates that a data
object will never be used by any clients on a node, it does
not need to be replicated to that node, and also a certain
database object may not be available at a node, but the
clients at the node do not need to be aware of that, because
they will never access it. This is called call virtual full
replication where the client assumption of full replication
of the database is still valid.

Traditional RDBMs are based on the assumption that data
resides primarily on disk and in a dynamic runtime
environment data might be on disk or cached in main-
memory at any given moment. Because disk input/output
(I/O) is far more expensive than memory access, main
memory databases have been used because of the high
performance of memory accesses and the decreasing cost
of main memory [29,30]. Because access to main memory
is so much faster than disk access, we can expect
transactions to complete more quickly in a main memory
system. So, in the distributed transactions that use lock-
based commit protocol locks will not be held as long, thus,
lock contention may not be as important as it is when the
data is disk resident.

In the system, a firm real-time database model is used;
tardy transactions (transactions that have missed their
deadlines) are aborted. Fig. 1 illustrates the main
components of the model; the monitor is periodically
collects the workload data of the entire system and sends
them to the admission controller. It also, checks the system
performance periodically and records the statistics data
about the transactions' miss ratio. The admission controller
is responsible for accepting or rejecting the remote

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 74

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

requests from the other nodes. Transaction manager is
responsible for generating local update transactions and
replication transactions for their nodes. We assumed here
that transactions are executed sequentially and there is no
concurrent transactions, however, if concurrent transaction
execution is required, the algorithm can be extended to
allow concurrent transaction execution, e.g., through a
locking scheme. In the next work we will consider
concurrent execution of transactions and use one of the
concurrency control protocol suitable for real-time
systems. In the priority assignment and scheduler
component, it is known that scheduling is necessary to
choose an action to execute when several guards are
enabled. So, it is necessary that each transaction is
assigned a priority (such as prioritizing local operation),
local read and update actions should have precedence over
propagation and replication actions. For simplicity, in this
paper, Earliest Deadline First (EDF) policy is used and
transactions are processed accordingly.

Replication Manager

Transaction Manager

Admission

Controller

Priority Assignment &
scheduler

Real-time Database

&

System resources

Monitor

Trans. Queue

Work Load &
performance Data

Application

Transaction Admitted Transactions

Mapped
Trans

Propagated
Trans Integrated Trans

As mentioned above, the model implements both eager
and lazy replication, for eager replication where a
synchronies replication is performed, all the sites
participated in a transaction’s execution are engaged in an
atomic commit protocol (ACP). The model use a strict
2PL committing protocol to ensure consistent termination
of distributed transactions despite site and communication
failures. The two-phase commit (2PC) protocol [31] is the
simplest and most used ACP. The primary goal of a two-
phase commit protocol is to ensure that all participants
agree on whether a transaction commits or aborts. Since
2PC consumes a substantial amount of a transaction’s
execution time due to the cost of its coordination messages
and forced log writes to stable storage required for
recovery, a number of 2PC variants appear in the
literature, most notably, presumed abort (PrA) and

presumed commit (PrC) [32]. As opposed to PrA, PrC has
been designed to reduce the cost associated with
committing transactions rather than aborting ones.

3.2 Data Model

The data model used in this paper categorizes the data
used into two main categories; Sensor Data objects, as the
real-time systems interacts with the environment through
various sensors, e.g. temperature and pressure sensors and
it is important to maintain consistency between the states
of the environment as perceived by the sensor and with the
actual state of the environment. The sensed data is
processed further to derive new data called Derived Data
that depends on past sensor data, for example the
temperature and pressure information pertaining to a
reaction may be used to derive the rate at which the
reaction appears to be progressed which is in turn could be
used to derive a new data. So we can define two different
types of data items; Temporal data items that changes with
time and have a validity interval and Non-temporal data
items which is not change with time and thus they don't
have a validity interval. If we define each site or node as a
segment for a set of data items, it is called a primary site
for them (Psite). For a specific data item, the copy of data
item at the primary site is called primary copy and the
copies that are replicated are called replicated copies or
replicas. As illustrated in a previous work [33], the
proposed database framework will be used, whereas there
are two types of data located at each node; local or shared
data. Local data object can only be updated by its primary
site, and the shard data items can be updated by any site in
the network in cooperation with its primary site. It was
assumed that for each site, a backup site is predefined to
be used as a backup site in case of site failure and to
guarantee the minimum degree of replication.

Each replica has associated a version number (VN) which
reflects the last update number for this data object. When
an update is received, the receiving node (primary)
increases the updating node’s Version Number of local
replica of the updated object. Any object has the following
specifications shown in Fig.2, each

),,,,,,,,,(FRVNBUFVITSValuePsiteIdNameTypeIdoOo =∃∈

Id / type / name/ PsiteId / VI / BUF/ FR

Value
Current Value

TS
(Time Stamp

VI
Validity Interval

Id: is a unique identifier for the object on his primary site.
Type: whether it is local or shard data object.
PsiteId: the object's primary site id where the object was
originates, this attribute gives an indication of whether the
object is a primary data object or it is a replica e.g., if
PsiteId = local site, this object is a primary object

Network

Fig. 1: The main components of the model.

Fig. 2: The structure of real-time attribute.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 75

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

originated at this site, otherwise it is a replica for a remote
data object.
Value: is used to store the final attribute value captured by
the related last update method.
TS: is used to store the last time at which the attribute's
value was updated.
VI: denotes object's absolute validity interval i.e., the
length of the time interval following timestamp during
which the object is considered to have absolute validity.
BUF: is the Basic Update Frequency, for each temporal
data object it is updated periodically at a given update
frequency received from its primary.
FR: A predefined freshness requirement to maintain the
consistency level between different replicas scattered over
all sites for the same data object.
VN: is the version number that reflects the last update
number of that object.

3.3 Transaction Model

For the local type data objects, the Read Phase is
performed locally at each site for only the active replicas
located in this site. The Propagation phase of the
replication process for any transaction updates of a local
data item to remote nodes is delayed until after the
transaction commits. The propagation messages for remote
transactions that have been received at a node are
integrated locally according to a local scheduling policy.

For the shared data item the commitment of the transaction
that update it is conditional by at least the agreement of its
primary site to which it is belongs using the (2PC)
protocol. In that case, the integration task maintains local
conflict detection data structures and is responsible for
making updates by remote transactions visible to local
transactions. The integration task is serialized with respect
to local transactions. A transaction T and all of its updates
are said to be integrated on node N if T has been
committed locally and propagated to N from the other
node and has been processed by the local integration task
on N. The transactions are divided into read (query)
transaction in which all its operations are read the data
objects, while the update transaction can contain at least
one write operation. Transaction can be also classified into
remote or local transaction; the transaction is considered
local if all its operations are performed in the local site,
and it is remote if at least one remote operation. Note that
only transactions of one operation are considered here.

3.4 Formal Definition

Before we describe the algorithm, we need to define some
terms formally used to describe the algorithm. When a
temporal data item (whether it is local or shared data item)
is updated in a specific node, the Replication Degree (R D)

defines the number of nodes to which it must be replicated
and the number of propagation messages that must be
created by the Replication Manager. Replica Allocation
Set (R AS) defines a set of sites or nodes to which the
replica updates or the propagation messages must be sent.

Definition 1: Replication Degree R D is the number of
sites/nodes to which the propagation messages will be sent
for a particular update. It is calculated by a Replica Degree
Function R D F which takes specific parameters (Node
Workload, Object Freshness requirements (O F R), User
Defined Level. Note that the upper bound for R D is the
total number of nodes in the distributed system.

Definition 2: The R ep lica A llocation Set (R AS) of a
propagation transaction T propagation = (Tid , L site Id , R site id ,

W S, G U F , D L , e) is the set of remote nodes hosting
replicas of objects in the write set of T . That is:

ϕ≠∈∃∈=),(({)(noRnToNnTRAS

To determine the R AS, the model maintains for each data
object -at its primary site- a new data structure called a
needlist, which is an array that contains a list of sites ID
requesting that data item, and is arranged by the highest
frequency rated site for demanding that object.

Definition 3: Let D = (O ,R ,N) be a distributed replicated
database, and let Rr ∈ be the replica of object Oo∈ on
node Nn ∈ . The NeedList N L (o) for o is a vector of | N |
elements containing the latest N site use this object. This
vector is of the form < N 1id , N 2id , ..., N (N −1)id > , where each
element n, 0 ≤ n < |N | represents an identifier for a unique
node or site use this data object recently.

Needlist (N L) implements the methods in Fig. 3, the first
method for adding a new site id in the need list for the
intended object, this method is implemented when the
object is accessed or updated by that node. When adding a
new site, it is added in the head of the array. The order of
the elements located in the array indicates the priorities for
selecting that site to be added in the R AS.

Definition 4: For a propagation transaction T propagation
executing in site Nn ∈ the R eplica A llocation F unction R A F:

R AS (T) is the function that maps a node N located in

void append(S
i
 (id)) // Append ith Site to the end of

the needlist.
int HighestPriority () // Returns the SiteId located at
the head of the array.
void RAF (S

i
 (id)) // Append ith Site to the RAS

void RemoveSite(S
i
 (id)) // Remove the ith Site from

the needlist after performing the RAF function on it.
// HighestPriority () and RemoveSite () both return -1
if the queue is empty.

Fig. 3: The methods performed in the need list.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 76

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the head of the needlist to R eplica A llocation Set of that
transaction.

As illustrated earlier, each node N hosts a set of temporal
data objects as a primary site, and also maintains a set of
replicas of temporal data objects hosted by other nodes.
All replicas of a particular data item are updated using the
fresh value from their primary copy. When a replica
existed in a remote site, and periodically receives an
update from its primary site within its validity interval V I
it is called an Active Replica, otherwise, it is called an
Inactive Replica. An active replica will become inactive if
it is not updated within its validity interval.

Definition 5: For a set of replicas R of logical objects in a
set O , replica Rr ∈ of a logical object Oo∈ (where o is a
sensor data object) on a particular node is called Active
Replica R (o ,N), if :

).())((oVIoTSeCurrentTim ≥−

Active Replicas for the derived data objects are determined
according to their relative consistency, for example if we
considered two objects O 1 and O 2 which have two
timestamps TS 1 and TS 2 respectively, O 1 and O 2 satisfied the
relative consistency called Relative Valid Interval R V I if:

 RVITSTS ≤− 21

Definition 6: For two replicas r1, r2 where Rri ∈ of
logical objects O 1, O 2 in a set O, (where o is a derived data
object) on a particular node is called Active Replica
R(O i,N) if: RVITSTS ≤− 21

.

3.5 The Replica Control Algorithm

The goal of the proposed Replica Control Algorithm is to
gain efficiency over Virtual Full Replication (ViFuR)
strategy by dynamically changing the replication degree
(R D) and replica allocation set (R AS). The main question of
any replication model is how to determine an appropriate
replication level and placement for an object? In some
replication schemas the replication level for an object is
predefined (e.g., 5 copies) leaving the run-time system to
determine the placement of the five replicas in the network
[34], while in others, it also specifies the locations of the
replicas. These interfaces require the system designers to
make a mapping from the desired characteristics of the
(replicated) object, such as fixed level of availability, to a
replication level and placement that will achieve those
characteristics.

For using in this algorithm, a new replication schema is
defined in which neither the replication degree nor the
allocation sites is defined. Rather, for each object the
replication degree and the allocation table is dynamically
changing according to data access and system
requirements at each site, e.g. if we have N nodes each has

a set of data items (segment) that it considered as a
primary site for them, the Replication Manager (RM) is
responsible for dynamically calculating the replication
degree R D that must be propagated to the other remote
sites at each object update. R D =N-1 in case of full
replication and R D ≠ 0 for fault tolerance purposes. R D is
calculated by a separate module in the replication manager
according to specific factors affecting this value (here, we
consider only two factors; System workload and a
predefined freshness requirement for each data object).

Using Work Load (L) as a factor, the R D L is calculated as
follows:
If we have N sites to propagate a new replica, and we have
100 percentage to represent the entire workload for each
node, we can divide that workload into n ranges, the
difference between any two consecutive ranges is x, where
x = 100/n.

 (1)

For example; if there are 5 sites in the network, and
according to the entire workload, the range is calculated as
follows: x = 100/5 where x=20% of workload. And when
the entire workload is between 40% and 60%, then using
(1) R D L= 3.

Because different factors can affect R D differently, the
following weighted average equation can be used to
calculate the value of R D to be used by the algorithm.

(2)

Where m is the number of factors and w is the weight for
each factor and (w 1+w 2… ..+w m) =1 . The freshness
requirement (F R) for each object is taken as another factor
affecting the Replication Degree (The F R is given for each
object), accordingly, the R D can be calculated as:

 (3)

The model divides the replication process into 4 phases,
(Read Phase, Update Phase, Propagation Phase, and
Cooperation and Integration Phase). As it was illustrated
previously that data objects are classified to either local or
shared data object. For the local data items, the primary
site is responsible for both updating and propagating
phases, while for shard data items, any site can update it,
and only the primary site is taking the responsibility of the
propagating phase.

Updating a replica is another decision made by the model;
the primary site begins pushing replicas to the other sites
when the primary site receives a new value for a specific
data item from the external environment (sensor data). The

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 77

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

algorithm calculates R D as illustrated in the last section
and determines the R AS by mapping the objects in the
needlist to R AS using R AF function. When the primary site
pushes an update for a specific site and that data item is
used by a local transaction, after committing the
transaction, the site sends a need request (need req.) to the
primary site which in turn add it to its need list. Note that,
if the selected site use that data item one more time, it will
not sends a need request unless the primary sends a new
replica.

Algorithm 1 shows the pseudocode for the proposed
replica control algorithm when a specific node receives a
read transaction. Algorithm 2 illustrates the steps when an
update transaction is received at node N. When a read
transaction is received at node N, the algorithm checks for
an existence of active replica(s) by checking the validity
interval of the required object(s), if it exists, it will be used
by the transaction, otherwise a requested transaction is
created and sends to the primary site containing that
object(s). Note we assume that only one site can be
requested by the transaction.

If an updated transaction is received, a check for that if the
requested object(s) is a primary object (Local, Shared) is
maintained, as it was previously illustrated that the
primary site is responsible for updating its local data
objects. If the requested object(s) is a shared data object, a
validity check is done, and the cooperation phase is done
between this site and the object primary site. When the
primary site receives the update request, it first checks the
conflict existence using (V N) of the object. And it then
starts the propagation phase to other sites using the R D and
R AS values generated by the Replication Manager.
Transaction Manager must differentiate between the
update transactions and the propagation transactions to
avoid a cycle of endless propagation process, simply, a
transaction type could be used.

4. Performance Evaluation of the Proposed
Algorithm

A full simulation environment have been developed to test
the proposed allocation algorithm, we have chosen system
parameter values that are typical of today’s technology
capabilities, e.g., network delays. The settings for the
system parameters are given in table1, while the settings
for user transaction are given in Table 2. A user
transaction consists of operations on temporal data objects
including both sensor and derived data objects.

The transactions arrival rate follows Poisson arrival
pattern, the arrival rate ג varied from (10- 80) transactions
per second, accordingly, the workload applied is

approximately varied from (50%-100%) when the arrival
rate varied from (10-80) respectively. The execution time
for one operation is between 100 microseconds to 1000
microseconds, and the transaction execution time is
exponentially distributed with mean (3). The sensor
execution time is uniformly distributed between (0.1 – 1)
second, and the slack factor of transactions is set to 5. The
Remote Data Ratio is the ratio of the number of remote
data operations (operations that access data hosted by
other sites) to that of all data operations. The remote data
ratio is set to 20%, which means 20 percent of transaction
operations are remote data operations. At each node, the
entire workload varied from 20-100%.

All simulation results rely on at least ten runs, to evaluate
our algorithm we use no replication and full replication as
two baseline protocols. These two algorithms are the
simplest, but widely used replication control strategies.
The transaction miss ratios and number of messages
(reflects the network overhead) of the three algorithms are
shown in Fig. 4. It is clear that, among the three
algorithms, the proposed algorithm gives the best
transaction miss ratios under different transaction
workloads.

Table 1: System Parameter Settings

Table 2: Transaction Parameter Settings

Parameter Value

Node # 10 – 50

Network Delay 1 – 3 ms

Temporal Derived Data # 200/Node

Temporal Sensor Data # 100/Node

Base Update Frequency Uniform(0.1 - 1) sec

System Load 20-100%

Parameter Value

Sensor Transaction # 300

User transaction # 700

Write Operation Time 5 ms

Read Operation Time 3 ms

Slack Factor 5

Remote Transaction ratio 20%

Read/Write operation Prob. (0.4 – 0.6) Respectively

Execution Time Of Sensor Tran. Uniform (0.1 – 1) s

Execution Time Of user Tran. Exp (3)

Execution Time Of Propagation
Tran.

Exp (3)

Transaction Arrival Rate

(10 – 80) Trans/s

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 78

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. Conclusion and Future Work

A new dynamic replica control algorithm has been
designed for medium and large scale distributed real-time
database systems. Such algorithm has been designed to
receive both periodic and aperiodic transactions while the
system has no prior knowledge of its data requirements.
The replicas of the data items are being dynamically
allocated to the distributed nodes according to their access
pattern. In addition, the proposed model allows a degree of
consistency for each data object which is dynamically
calculated according to different factors. A detailed
simulation has shown that the presented algorithm can
greatly improves the system performance compared to the
system without replication or system with full replication
strategy. It is desirable to enhance and extend the
presented algorithm to deal with transactions of many
operations instead of one operation, and deal with other
parameters that affect the performance issues for
distributed real-time database, such as using one of the
concurrency control protocol to enable concurrent
execution of transactions.

Appendix

References

[1] K. Ramamritham, ‘Real-time databases’, International Journal of
Distributed and Parallel Databases 1(2), pp. 199–226, 1993.

[2] J. Gray, P. Helland, P. O’Neil, D. Shasha, "The dangers of
replication and a solution". In: Proc. of the ACM SIGMOD
International Conf. On Management of Data, Vol. 25, No. 2 of
ACM SIGMOD Record. ACM Press, 1996, pp. 173–182.

[3] F.B. Schneider, “Implementing Fault-Tolerant Services Using the
State Machine Approach A Tutorial,” ACM Computing Surveys,
Vol.22, No.4, 1990, pp. 299-319.

[4] W. Matthias, S. André "Comparison of Database Replication
Techniques Based on Total Order Broadcast," IEEE Trans.
Knowledge Data Eng. Vol.17, No.4, 2005, pp. 551-566.

[5] F. Pedone, R. Guerraoui and A. Schiper "The Database State
Machine Approach", Journal of Distributed and Parallel Databases
and Technology, Vol.14, No.1,July 2003, pp. 71-98.

[6] J. Holliday, D. Agrawal, and A.E. Abbadi, “The Performance of
Replicated Databases Using Atomic Broadcast Group
Communication,”Technical Report TRCS99-11, Computer Science
Dept.,Univ. of California, Santa Barbara, 1999.

// Define NeedList[n]array of nodes for each object o O:initially empty;
// LSiteId:the id of the local site where the transaction is initiated.
// RSiteId:the Id of the remote site to which the transaction is sent.
// O =(Id,Type,Name,PsiteId,Value,TS,VI,BUF,VN,FR)
// Tupdate :{ (T id ,LsiteId,Rsiteid,WS,RS,D,RGUF,DL,e)has been received}.
// Define RD int : replication degree 1< RD <N.
// Define RAS[n] array of nodes for each object o O: initially empty;
// Define i int;

Begin
If LSiteId = RsiteId //Check if the transaction is local
Then
If O(PsiteId)= RsiteId
Then // check if the object is primary object

Return result from executing Tupdate on O;
Commit (TRead);
VN+1; // enter the propagation phase
For j:=1 to RD do
Perform RAF (Si (id)) // Append ith Site located in the needlist(o) to the RAS
End For
For each site S in RAS Do
Begin
Create Tupdate (S(id));
End
End For;

Else Return result from executing Tupdate on O;
Receive Acknowledgment from the primary site.
Commite Tupdate;

Else //if the transaction is a remote update transaction ;
Return result from executing Tupdate on O;
If O(PsiteId) ≠ RsiteId Then // check if the opject is not a local object;
Commite (Tupdate);
End if
VN(o)+1;
Else
Send Aknowleadgment to the Tupdate(Lsiteid);
append(Si (id)) // Append ith Site to the end of the needlist

VN(o)+1;
Commite (Tupdate); // enter the propagation phase
For j:=1 to RD do

Perform RAF (Si (id)) // Append ith Site located in the needlist(o) to
the RAS

End for
For each site S in RAS Do

Begin
Create Tupdate (S(id));

End for
End

//Define NeedList[n] array of nodes for each object o O : initially empty;
// LSiteId : the id of the local site where the transaction is initiated.
// RSiteId: the Id of the remote site to which the transaction is sent.
// O =(Id,Type,Name,PsiteId,Value,TS,VI,BUF,VN,FR)
// TRead :{ (Tid,LsiteId,Rsiteid,RS,D,RGUF,DL,e) has been submitted}
Begin

If LSiteId = RsiteId //Check if the transaction is local transaction
Then // check if the object is primary object
If O(PsiteId) = RsiteId
Then Return result from executing Tread on O;
Commit (TRead);
End

Else If Current time – O(TS)<= O(VI)
Then //check if it is active replica;
Return result from executing Tread on O;
Commit (TRead);
End

Else Create A remote Read transaction
Create local update transaction;
Return result from executing Tread on O;
Commit (TRead);
End

Else Return result from executing Tread on O;
Commit (TRead);

append((LsiteId)) // Append ith Site to the top of the needlist
End

Algorithm 1: Replica control algorithm on receiving a Read transaction

Algorithm 2: Replica control algorithm on receiving an update transaction

Fig. 4: Transaction miss ratio.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 79

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[7] F. Pedone, “The Database State Machine and Group
Communication Issues,” PhD Thesis, EEcole Polytechnique
Fe´de´rale de Lausanne, EPFL, Switzerland, 1999.

[8] B. Kemme and G. Alonso, “A New Approach to Developing and
Implementing Eager Database Replication Protocols,” ACM Trans.
Database Systems, vol. 25, no. 3, pp. 333-379, 2000.

[9] Y. Saito, M. Shapiro, Optimistic replication. ACM Comput.
Surv. Vol.37, No.1, pp. 42-81, 2005

[10] S. Hyuk Son."Replicated data management in distributed database
systems", SIGMOD Rec. Vol.17, No.4, 62-69, 1988

[11]] O. Wolfson, S. Jajodia, Y. Huang, "An adaptive data replication
algorithm", ACM on Database Systems (TODS) , Vol.22,No. 2, pp.
255-314, 1997

[12]] B. Kemme, G. Alonso, " A Suite of Database Replication
Protocols based on Group Communication Primitives",
In Proceedings of the The 18th International Conference on
Distributed Computing Systems (ICDCS '98). IEEE Computer
Society, Washington, DC, USA, pp. 156-.1998

[13] M. Wiesmann, F. Pedone, A. Schipe, B. Kemme, G. Alonso,"
Understanding replication in databases and distributed systems",
In: Proc. 20th International Conference on Distributed Computing
Systems (ICDCS 2000), Taipei, Taiwan, R.O.C., pp. 264–274,
2000.

[14] S. Cook, J. Pachl, I. Pressman, "The optimal location of replicas in
a network using a READ-ONE-WRITE-ALL policy", Distrib.
Comput, Vol. 15, No.1, pp. 57-66, 2002.

[15] M. Xiong, K. Ramamritham, J. Haritsa, J. Stankovic, " MIRROR A
state conscious concurrency control protocol for replicated real-time
databases", In Proc. 5th IEEE Real-Time Technology and
Applications Symposium (RTAS 99), pp. 100–110,1999.

[16] G. Mathiason, S. Andler," Virtual full replication: Achieving
scalability in distributed real-time main-memory systems. In: Proc.
of theWork-in-Progress Session of the 15th Euromicro Conf. on
Real-Time Systems. (2003)

[17] J. Barreto, "Information sharing in mobile networks: a survey on
replication strategies " Technical Report RT/015/03Instituto
Superior T´ecnico/Distributed Systems Group, Inesc-ID Lisboa,
2003.

[18] Y. Wei, A. Aslinger, S. H. Son, J.A. Stankovic, " ORDER: A
Dynamic Replication Algorithm for Periodic Transactions in
Distributed Real-Time Databases", In Proceedings of Real-time and
Embedded Computing Systems and Applications, pp.152—16,
2004.

[19] P. Peddi, L. DiPippo, "A replication strategy for distributed real-
time object oriented databases", In: Fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing.
(2002)

[20] Sanny Syberfeldt, "Optimistic Replication with Forward Conflict
Resolution in Distributed Real-Time Databases", Dissertation No.
1150, Linköping 2007

[21] T. Haerder, A Reute, " Principles of transaction-oriented database
recovery", ACM Comput. Surv, Vol.15, No.4, pp. 287—317,
December 1983.

[22] M. Shapiro, K. Bhargavan, Y. Chong, Y. Hamadi "A formalism for
consistency and partial replication", Distributed Computing (DISC)
3274/2004, 2004.

[23] T. Gustafsson, "Maintaining Data Consistency in Embedded
Databases for Vehicular Systems", Licentiate Thesis, Linköping
Studies in Science and Technology Thesis No. 1138. Linköping
University, 2004.

[24] S. Gustavsson, S.F. Andler , "Self-stabilization and eventual
consistency in replicated real-time databases ", in Proceedings of
the first workshop on Self-healing systems", (WOSS ’02),
Charleston, SC, USA, ACM, pp. 105—107, 2002.

[25] Gustavsson, S. F. Andler, S. (2005), Continuous consistency
management in distributed real-time databases with multiple writers
of replicated data", Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS'05) -
Workshop 2 – Vol. 03, 2005.

[26] S. Gustavsson, S. F. Andler, " Real-time conflict management in
replicated databases", in ‘Proceedings of the Fourth Conference for
the Promotion of Research in IT at New Universities and University
Colleges in Sweden (PROMOTE IT 2004), Karlstad, Sweden’, Vol.
2, pp. 504–513, 2004.

[27] S. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, B.
Eftring, "DeeDS towards a distributed and active real-time database
system", SIGMOD Record, Vol. 25, No.1, pp. 38–51, 1996.

[28] S. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, B.
Eftring, An overview of the DeeDS real-time database
architecture" , in ‘Proceedings of the Sixth International Workshop
on Parallel and Distributed Real- Time Systems’, 1998.

[29] J. Baulier, P., Bohannon, S., Gogate, C., Gupta, S., Haldar,
"DataBlitz storage manager : Main memory database performance
for critical applications", Proceedings SIGMOD '99 of the 1999
ACM SIGMOD international conference on Management of data,
ACM SIGMOD Record, Vol.28, No. 2, pp. 19–520, 1999.

[30] G. Mathiason, "Segmentation in a distributed real-time main
memory database", Master’s thesis, University of Sk¨ovde, Sweden,
2002.

[31] R. Elmasri , S. Navathe, "Fundamentals of Database Systems", 6th
Edition, Addison Wesley, 2010.

[32] C. Mohan, B.Lindsay, and R.Obermarck," Transaction management
in the R* distributed database management system", ACM Trans.
Database Syst. Vol.11, No.4 , pp.378-396, 1986.

[33] Torky Sultan, Hazem M. El-Bakry, Hala A. Hameed, " General
Framework for Modeling Replicated Real-Time
Database", International Journal of Electrical and Computer
Engineering, Vol. 4, No. 8, pp. 505-511, 2009.

[34] D.L. McCue, M.C. Little, "Computing Replica Placement in
Distributed Systems" A Position Paper for the Second Workshop on
the Management of Replicated Data. University of Newcastle upon
Tyne Appeared in the Proceedings of the IEEE Second Workshop
on Replicated Data, Monterey, pp 58-61, 1992.

T. Soltan is Professor with Faculty of Computer Science and Information
Systems – Helwan University, Helwan – Egypt.

Hazem M. El-Bakry (Mansoura, EGYPT 20-9-1970) received B.Sc.
degree in Electronics Engineering, and M.Sc. in Electrical
Communication Engineering from the Faculty of
Engineering, Mansoura University – Egypt, in 1992 and 1995
respectively. Dr. El-Bakry received Ph. D degree
from University of Aizu - Japan in 2007. Currently, he is assistant
professor at the Faculty of Computer Science and Information Systems –
Mansoura University – Egypt. His research interests include neural
networks, pattern recognition, image processing, biometrics, cooperative
intelligent systems and electronic circuits. In these areas, he has
published many papers in major international journals and refereed
international conferences. According to academic measurements, now the
total number of citations for his publications is 502. The H-index of his
publications is 12 and G-index is 19. Dr. El-Bakry has the United States
Patent No. 20060098887, 2006. Furthermore, he is associate editor for
journal of computer science and network security (IJCSNS) and journal
of convergence in information technology (JCIT). In addition, is a referee
for IEEE Transactions on Signal Processing, Journal of Applied Soft
Computing, the International Journal of Machine Graphics & Vision, the
International Journal of Computer Science and Network Security,
Enformatika Journals, WSEAS Journals and many different international
conferences organized by IEEE. Moreover, he has been awarded the
Japanese Computer & Communication prize in April 2006 and the best
paper prize in two conferences cited by ACM. He has also been awarded
Mansoura university prize for scientific publication in 2010 and 2011. Dr.
El-Bakry has been selected in who Asia 2006 and BIC 100 educators in
Africa 2008.

H. Abdel Hameed is assistant lecturer with Faculty of Information
Technology – Misr University for Science and Technology – Al-
Motamayez District 6th of October City – Egypt.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 80

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

