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Abstract 

There are many issues that affect modeling and designing of real-
time databases. One of those issues is maintaining consistency 
between the actual state of the real-time object of the external 
environment and its images as reflected by all its replicas 
distributed over multiple nodes. An efficient replica control 
algorithm can contribute significantly to maintain this 
consistency. In this paper, a replica control algorithm for medium 
and large scale distributed database systems is presented. Such 
algorithm relies on a hybrid combination of optimistic and 
pessimistic replication approaches. Both the theory and 
implementation of the proposed algorithm are described. It 
maintains an independent degree of consistency for each data 
object because it is adaptive dynamic replication control 
algorithm. Furthermore, it employs some system factors to 
increase the chance of having an updated data item locally; 
avoiding remote access to meet timing constrains and achieves 
both availability and consistency for the replicated data as much 
as possible. A detailed simulation shows that the proposed 
algorithms can greatly improve the system performance 
compared to the systems either without replication or with full 
replication. 

Keywords: Distributed database, Real-time databases, Real-
time transaction, and Replica control algorithm. 

1. Introduction 

Many real-time systems are inherently distributed in 
nature, and need to share data that are distributed among 
different sites. For example, military tracking, medical 
monitoring, naval combat control systems and factory 
automation etc. All of those critical systems need data to 
be obtained and updated in a timely fashion [1]. But, 
sometimes data that is required at a particular location is 
not available when it is needed and getting it from remote 
site may take too long before which the data may become 
invalid. This potentially leads to large number of tardy 
transactions (transaction that miss their deadline).   
 

One of the solutions, for the above-mentioned problem, is 
replication of data in real-time databases. By replicating 

temporal data items, instead of asking for remote data 
access requests, transactions that need to read remote data 
can now access the locally available copies. This helps 
transactions meet their time and data freshness 
requirements. In order to suite the different needs of the 
distributed real-time systems such as different data 
workloads and database specifications, multiple ways to 
handle the replication control and different replication 
schemes are proposed.  

 
In the distributed systems, replication is seen as a cost 
effective way to increase availability. However, replication 
is used for both performance and fault-tolerant purposes 
thereby introducing a constant trade-off between 
consistency and efficiency. There are two main approaches 
for replication; synchronize (also called Active or state 
machine) in which a collection of identical servers 
maintain the same copies of the system state, client write 
operations are applied synchronously to all of the replicas 
[2,3,4]. Although this approach increases consistency of 
the replicated data, it increases system overhead. 
Asynchronous (also called lazy or passive) replication on 
the other hand where changes introduced by a transaction 
are propagated to other sites only after the transaction has 
been committed. However, this approach reduces system 
overhead at the expense of temporal consistency. 
 
Replication algorithms can also be characterized according 
to what and where the objects are replicated. The most 
extreme is full replication in which all data items are 
replicated to all sites in the distributed system. The benefit 
of full replication is that all data are available to read 
locally, thus, leads to increasing performance. But this 
slow down the system since updating one copy creates 
transactions for updating all other sites, also issues like 
concurrency control and recovery become more 
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complicated. Regarding the locations and number of 
replicas, we can distinguish between static replication 
algorithms in which both locations and number of replicas 
are fixed and dynamic replication when the locations and 
number of replicas are dynamically changing according to 
system conditions and data needs.  
 
In this work, a replica control algorithm for medium and 
large scale distributed database system is presented. This is 
done by trying to maintain an independent consistency 
degree for each data object by presenting an adaptive 
dynamic replication control algorithm. This algorithm is 
based on the entire system workload of the distributed site 
and increase the chance to have an updated data item 
locally to avoid remote access to meet timing constrains 
and achieves both availability and consistency for the 
replicated data as much as possible.  

2. Related Work 

In replicated database systems, copies of the data items 
can be stored at multiple sites, which achieve two 
complementary features: performance improvement and 
high availability. On the other hand, data replication 
introduces its own problems; Access to a data item is no 
longer controlled exclusively by a single site, instead the 
access control is distributed across each site storing a copy 
of the data item. It is also necessary, to ensure that mutual 
consistency of the replicated data is provided, in other 
words, replicated copies must behave like a single copy. 
This is possible by preventing conflicting accesses on the 
different copies of the same data item, and by making sure 
that all data sites eventually receive all updates. Therefore, 
major issue is the development of replication 
protocol/policy. The problem of finding an optimal 
replication scheme in a general network (i.e., a replication 
scheme that has a minimum cost for a given read-write 
pattern), has been shown to be NP-complete for the static 
case. 
 
Several classifications are possible for replication [4, 5, 6, 
7, and 8]. In [4] Wiesmann & Schiper distinguish five 
different techniques (active, weak-voting, certification- 
based, primary copy and lazy replication). All these 
techniques dealt only with fully replicated databases and 
need a reliable total order broadcast in order to propagate 
the transaction updates.  
 
All the replication models that have been developed so far 
can be classified into optimistic replication or pessimistic 
ones [9]; in the optimistic replication, all the operations are 
performed locally at each node as if there were alone in the 
system and optimistically assumes that there is no conflict 
with the other replicated copies located in the other nodes. 

This approach will increase both response time and 
performance by avoiding all the remote access. But, it 
leads to temporal inconsistency between different nodes 
which require a good conflict resolution and compensation 
polices to eliminate this inconsistency. Other models are 
pessimistically avoiding conflict between concurrent 
operations running in the other nodes by different methods 
such as, global lock or primary copy in which only the 
primary site is permitted to update its items.  
 
There have been a number of research papers about data 
replication in traditional database systems where some 
sporadic efforts have been made for the development of 
different types of protocols/policies [10, 11, 12, 13, 14], 
but it is not for real-time systems. In the literature there is 
a little replication models for real-time database systems 
[15,16,17], one of those models [ORDER] is found in [18] 
where full replication is used in medium-scale or large-
scale distributed real-time database systems. It presents the 
ORDER algorithm that is designed to work in an 
environment where all data types and relations in the 
system are known a priori. In term of scalability, the 
algorithm has been enhanced to a replication algorithm 
called On-demand Real-time Decentralized Replication 
with Replica Sharing (ORDER-RS). In [19], Peddi et al. 
present a replication algorithm called Just-In-Time Real-
Time Replication (JITRTR), which creates replication 
transactions based on client’s data requirements in a 
distributed real-time object-oriented database. In [20] a 
replication protocol named PRiDe designed for optimistic 
replication with forward conflict resolution in distributed 
real-time databases was described. The model defines four 
phases for the replication protocol: the local update phase, 
the propagation phase, the integration phase, and the 
stabilization and compensation phase. In that model, the 
transactions are executed locally and the replicated items 
are updated as if they are alone in the system, after 
completing the transaction, the model check s for conflict 
in the other nodes and a conflict resolution policy is used 
to resolve it. 

3. The Proposed Model for Replication in 
Distributed Real-Time Database 

Here, a replica control algorithm used by the dynamic 
allocation module for replication in distributed real-time 
database (DoMORE) is described. DoMORE is a 
replication model based on increasing the probability of 
providing the updated data for the real-time transactions to 
meet their timing constrains by increasing their chance to 
have these data locally without the need to get it remotely 
from other sites. This goal can be achieved by dynamically 
allocating data to distributed nodes according to their 
access pattern. The model also allows different degree of 
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consistency for each data object which is dynamically 
calculated according to different factors (entire workload 
and system requirements). DoMORE model allows most 
of the transactions to execute and commit locally as if the 
transaction is executed in a local, centralized database.  It 
uses a strict-2PL commit protocol for distributed 
transaction, upholding the ACID properties [21], and 
transaction processing is guaranteed to be serializable with 
respect to other local transactions. As it was mentioned, 
the objective of the replication model is to give the clients 
the illusion of service that is provided by one server and 
the clients have no knowledge about the data existence 
behind. Of course, maintaining redundant data adds 
overhead to the system, and this can be reduced by 
exploring week consistency semantics of applications. 
This tradeoff between consistency and system cost is the 
main problem of all the replication models.  
 
Generally, consistency is a term for discussing the 
correctness of data in a database, the database is said to be 
consistence if all consistency predicates are hold. For real-
time database, consistency predicates can refer to the 
relationships between database objects and external 
environment that are modeled by the database from time 
point of view. In a replicated system we can define three 
different types of predicates for consistency[22]; external 
temporal consistency which deals with the relationship 
between an object of the external world and its image on 
the database, inter-object temporal consistency which is 
the relationship between different objects or events (within 
a single node), and it also includes the relationship 
between temporal data item and non-temporal data item 
that depend on that item, and mutual consistency, which 
reflects the relationship between the object and its copy 
(replica) in different remote sites. 
 
DoMORE employs both eager and lazy replication 
according to the types of database items, and it guarantees 
that all the transactions will read an updated valid data 
items and maintain both Temporal Consistency and 
Mutual Global Consistency [23, 24, 25]. In DoMORE, 
global consistency is achieved through continuously 
propagation and integration of updates (typically, 
transaction updates are propagated and integrated as soon 
as possible, but propagation or integration may be deferred 
under certain circumstances, such as if there is a transient 
overload). 
 
DoMORE is also based on the concept of Virtual Full 
Replication (ViFuR) [26] that has been introduced in 
DeeDS [27, 28]. It creates a perception of full replication 
by ensuring that all used data objects are available at the 
local node so that user can interact with the database as if 
it is full replicated and all data are available locally. Thus 
this approach can take the advantages of full replication 

such as, reducing the resource usage compared to full 
replication, and transaction timeliness, simplified 
addressing of communication between nodes, as well as 
support for fault tolerance. Accordingly, the database user 
cannot distinguish a virtually fully replicated database 
from a fully replicated one. 

3.1 System Model 

The system model consists of a group of distributed main 
memory real-time databases connected by high-speed 
networks. It was assumed that a reliable real-time 
communication is maintained, i.e., any messages sent over 
the network is eventually delivered and have predictable 
transmission time [25]. The whole database is segmented 
on different nodes, we can define segment as a group of 
data objects that share properties, capturing some aspects 
of the application semantics, and is allocated to a specified 
subset of the nodes (possibly temporarily inconsistent with 
each other). Each segment is considered as a partition of 
the database and as units of allocation of replicas, which 
can be individually replicated based on specified 
replication requirements from all the clients at a certain 
database node. If the specification indicates that a data 
object will never be used by any clients on a node, it does 
not need to be replicated to that node, and also a certain 
database object may not be available at a node, but the 
clients at the node do not need to be aware of that, because 
they will never access it. This is called call virtual full 
replication where the client assumption of full replication 
of the database is still valid.  
 
Traditional RDBMs are based on the assumption that data 
resides primarily on disk and in a dynamic runtime 
environment data might be on disk or cached in main-
memory at any given moment. Because disk input/output 
(I/O) is far more expensive than memory access, main 
memory databases have been used because of the high 
performance of memory accesses and the decreasing cost 
of main memory [29,30]. Because access to main memory 
is so much faster than disk access, we can expect 
transactions to complete more quickly in a main memory 
system. So, in the distributed transactions that use lock-
based commit protocol locks will not be held as long, thus, 
lock contention may not be as important as it is when the 
data is disk resident. 
 
In the system, a firm real-time database model is used; 
tardy transactions (transactions that have missed their 
deadlines) are aborted. Fig. 1 illustrates the main 
components of the model; the monitor is periodically 
collects the workload data of the entire system and sends 
them to the admission controller. It also, checks the system 
performance periodically and records the statistics data 
about the transactions' miss ratio. The admission controller 
is responsible for accepting or rejecting the remote 
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requests from the other nodes. Transaction manager is 
responsible for generating local update transactions and 
replication transactions for their nodes. We assumed here 
that transactions are executed sequentially and there is no 
concurrent transactions, however, if concurrent transaction 
execution is required, the algorithm can be extended to 
allow concurrent transaction execution, e.g., through a 
locking scheme. In the next work we will consider 
concurrent execution of transactions and use one of the 
concurrency control protocol suitable for real-time 
systems. In the priority assignment and scheduler 
component, it is known that scheduling is necessary to 
choose an action to execute when several guards are 
enabled. So, it is necessary that each transaction is 
assigned a priority (such as prioritizing local operation), 
local read and update actions should have precedence over 
propagation and replication actions. For simplicity, in this 
paper, Earliest Deadline First (EDF) policy is used and 
transactions are processed accordingly. 
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As mentioned above, the model implements both eager 
and lazy replication, for eager replication where a 
synchronies replication is performed, all the sites 
participated in a transaction’s execution are engaged in an 
atomic commit protocol (ACP). The model use a strict 
2PL committing protocol to ensure consistent termination 
of distributed transactions despite site and communication 
failures. The two-phase commit (2PC) protocol [31] is the 
simplest and most used ACP. The primary goal of a two-
phase commit protocol is to ensure that all participants 
agree on whether a transaction commits or aborts. Since 
2PC consumes a substantial amount of a transaction’s 
execution time due to the cost of its coordination messages 
and forced log writes to stable storage required for 
recovery, a number of 2PC variants appear in the 
literature, most notably, presumed abort (PrA) and 

presumed commit (PrC) [32]. As opposed to PrA, PrC has 
been designed to reduce the cost associated with 
committing transactions rather than aborting ones. 

3.2 Data Model 

The data model used in this paper categorizes the data 
used into two main categories; Sensor Data objects, as the 
real-time systems interacts with the environment through 
various sensors, e.g. temperature and pressure sensors and 
it is important to maintain consistency between the states 
of the environment as perceived by the sensor and with the 
actual state of the environment. The sensed data is 
processed further to derive new data called Derived Data 
that depends on past sensor data, for example the 
temperature and pressure information pertaining to a 
reaction may be used to derive the rate at which the 
reaction appears to be progressed which is in turn could be 
used to derive a new data. So we can define two different 
types of data items; Temporal data items that changes with 
time and have a validity interval and Non-temporal data 
items which is not change with time and thus they don't 
have a validity interval. If we define each site or node as a 
segment for a set of data items, it is called a primary site 
for them (Psite). For a specific data item, the copy of data 
item at the primary site is called primary copy and the 
copies that are replicated are called replicated copies or 
replicas. As illustrated in a previous work [33], the 
proposed database framework will be used, whereas there 
are two types of data located at each node; local or shared 
data. Local data object can only be updated by its primary 
site, and the shard data items can be updated by any site in 
the network in cooperation with its primary site. It was 
assumed that for each site, a backup site is predefined to 
be used as a backup site in case of site failure and to 
guarantee the minimum degree of replication.  
 
Each replica has associated a version number (VN) which 
reflects the last update number for this data object. When 
an update is received, the receiving node (primary) 
increases the updating node’s Version Number of local 
replica of the updated object. Any object has the following 
specifications shown in Fig.2, each 

),,,,,,,,,( FRVNBUFVITSValuePsiteIdNameTypeIdoOo =∃∈  

 
Id  / type / name/  PsiteId  / VI / BUF/ FR 

Value 
Current Value 

TS 
(Time Stamp 

VI 
Validity Interval 

 
 
Id: is a unique identifier for the object on his primary site. 
Type: whether it is local or shard data object. 
PsiteId: the object's primary site id where the object was 
originates, this attribute gives an indication of whether the 
object is a primary data object or it is a replica e.g., if 
PsiteId = local site, this object is a primary object 

Network 

 
Fig. 1: The main components of the model.  

Fig. 2: The structure of real-time attribute.  
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originated at this site, otherwise it is a replica for a remote 
data object.  
Value: is used to store the final attribute value captured by 
the related last update method.  
TS: is used to store the last time at which the attribute's 
value was updated. 
VI: denotes object's absolute validity interval i.e., the 
length of the time interval following timestamp during 
which the object is considered to have absolute validity. 
BUF: is the Basic Update Frequency, for each temporal 
data object it is updated periodically at a given update 
frequency received from its primary. 
FR: A predefined freshness requirement to maintain the 
consistency level between different replicas scattered over 
all sites for the same data object. 
VN: is the version number that reflects the last update 
number of that object.  
 

3.3 Transaction Model 

For the local type data objects, the Read Phase is 
performed locally at each site for only the active replicas 
located in this site. The Propagation phase of the 
replication process for any transaction updates of a local 
data item to remote nodes is delayed until after the 
transaction commits. The propagation messages for remote 
transactions that have been received at a node are 
integrated locally according to a local scheduling policy.  
 
For the shared data item the commitment of the transaction 
that update it is conditional by at least the agreement of its 
primary site to which it is belongs using the (2PC) 
protocol. In that case, the integration task maintains local 
conflict detection data structures and is responsible for 
making updates by remote transactions visible to local 
transactions. The integration task is serialized with respect 
to local transactions. A transaction T and all of its updates 
are said to be integrated on node N if T has been 
committed locally  and propagated to N from the other 
node and has been processed by the local integration task 
on N. The transactions are divided into read (query) 
transaction in which all its operations are read the data 
objects, while the update transaction can contain at least 
one write operation. Transaction can be also classified into 
remote or local transaction; the transaction is considered 
local if all its operations are performed in the local site, 
and it is remote if at least one remote operation. Note that 
only transactions of one operation are considered here. 
 

3.4 Formal Definition  

Before we describe the algorithm, we need to define some 
terms formally used to describe the algorithm. When a 
temporal data item (whether it is local or shared data item) 
is updated in a specific node, the Replication Degree (R D ) 

defines the number of nodes to which it must be replicated 
and the number of propagation messages that must be 
created by the Replication Manager.  Replica Allocation 
Set (R AS) defines a set of sites or nodes to which the 
replica updates or the propagation messages must be sent.   
 
Definition 1: Replication Degree R D  is the number of 
sites/nodes to which the propagation messages will be sent 
for a particular update. It is calculated by a Replica Degree 
Function R D F which takes specific parameters (Node 
Workload, Object Freshness requirements (O F R ), User 
Defined Level. Note that the upper bound for R D  is the 
total number of nodes in the distributed system.        
 
Definition 2:  The R ep lica A llocation Set (R AS) of a 
propagation transaction T  propagation = (Tid , L site Id , R site id , 

W S,  G U F , D L , e)  is the set of remote nodes hosting 
replicas of objects in the write set of T . That is:  

ϕ≠∈∃∈= ),(({)( noRnToNnTRAS  

To determine the R AS, the model maintains for each data 
object -at its primary site- a new data structure called a 
needlist, which is an array that contains a list of sites ID  
requesting that data item, and is   arranged by the highest 
frequency rated site for demanding that object. 
 
Definition 3: Let D  = (O ,R ,N ) be a distributed replicated 
database, and let  Rr ∈ be the replica of object Oo∈  on 
node Nn ∈ . The NeedList N L  (o) for o is a vector of | N  | 
elements containing the latest N  site use this object. This 
vector is of the form < N  1id , N 2id , ..., N (N −1 )id  > , where each 
element  n, 0  ≤ n  < |N |  represents an identifier for a unique 
node or site use this data object recently. 
 
 
 
 
 
 
 
 
 
Needlist (N L) implements the methods in Fig. 3, the first 
method for adding a new site id in the need list for the 
intended object, this method is implemented when the 
object is accessed or updated by that node. When adding a 
new site, it is added in the head of the array. The order of 
the elements located in the array indicates the priorities for 
selecting that site to be added in the R AS. 
   
Definition 4:  For a propagation transaction T  propagation 
executing in site Nn ∈  the R eplica A llocation F unction R A F: 

R AS (T ) is the function that maps a node N located in 

void append(S
i
 (id)) // Append ith Site  to the end of 

the needlist. 
int HighestPriority () // Returns the SiteId located at 
the head of the array.  
void RAF (S

i
 (id)) // Append ith Site  to the RAS 

void RemoveSite(S
i
 (id))  // Remove the ith Site  from 

the needlist after performing the RAF function on it. 
// HighestPriority () and RemoveSite () both return -1 
if the queue is empty. 

 

Fig. 3: The methods performed in the need list.   
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the head of the needlist to R eplica  A llocation Set of that 
transaction.  
 
As illustrated earlier, each node N hosts a set of temporal 
data objects as a primary site, and also maintains a set of 
replicas of temporal data objects hosted by other nodes.  
All replicas of a particular data item are updated using the 
fresh value from their primary copy. When a replica 
existed in a remote site, and periodically receives an 
update from its primary site within its validity interval V I 
it is called an Active Replica, otherwise, it is called an 
Inactive Replica. An active replica will become inactive if 
it is not updated within its validity interval. 
 
Definition 5: For a set of replicas R  of logical objects in a 
set O , replica Rr ∈  of a logical object Oo∈ (where o is a 
sensor data object) on a particular node is called Active 
Replica R  (o ,N ), if : 

).())(( oVIoTSeCurrentTim ≥−     

Active Replicas for the derived data objects are determined 
according to their relative consistency, for example if we 
considered two objects O 1 and O 2 which have two 
timestamps TS 1 and TS 2 respectively, O 1 and O 2 satisfied the 
relative consistency called Relative Valid Interval R V I   if: 

 RVITSTS ≤− 21
 

Definition 6: For two replicas r1, r2 where Rri ∈  of 
logical objects O 1, O 2 in a set O, (where o is a derived data 
object) on a particular node is called Active Replica 
R(O i,N) if:  RVITSTS ≤− 21

. 

 

3.5 The Replica Control Algorithm 

The goal of the proposed Replica Control Algorithm is to 
gain efficiency over Virtual Full Replication (ViFuR) 
strategy by dynamically changing the replication degree 
(R D ) and replica allocation set (R AS). The main question of 
any replication model is how to determine an appropriate 
replication level and placement for an object? In some 
replication schemas the replication level for an object is 
predefined (e.g., 5 copies) leaving the run-time system to 
determine the placement of the five replicas in the network 
[34], while in others, it also specifies the locations of the 
replicas. These interfaces require the system designers to 
make a mapping from the desired characteristics of the 
(replicated) object, such as fixed level of availability, to a 
replication level and placement that will achieve those 
characteristics. 
 
For using in this algorithm, a new replication schema is 
defined in which neither the replication degree nor the 
allocation sites is defined. Rather, for each object the 
replication degree and the allocation table is dynamically 
changing according to data access and system 
requirements at each site, e.g. if we have N nodes each has 

a set of data items (segment) that it considered as a 
primary site for them, the Replication Manager (RM) is 
responsible for dynamically calculating the replication 
degree R D  that must be propagated to the other remote 
sites at each object update. R D  =N-1 in case of full 
replication and R D  ≠ 0 for fault tolerance purposes. R D  is 
calculated by a separate module in the replication manager 
according to specific factors affecting this value (here, we 
consider only two factors; System workload and a 
predefined freshness requirement for each data object).  
 
Using Work Load (L) as a factor, the R D L is calculated as 
follows: 
If we have N sites to propagate a new replica, and we have 
100 percentage to represent the entire workload for each 
node, we can divide that workload into n ranges, the 
difference between any two consecutive ranges is x, where 
x = 100/n. 
 

  (1)
  

For example; if there are 5 sites in the network, and 
according to the entire workload, the range is calculated as 
follows:  x = 100/5 where x=20% of workload. And when 
the entire workload is between 40% and 60%, then using 
(1) R D L= 3. 
 
Because different factors can affect R D  differently, the 
following weighted average equation can be used to 
calculate the value of R D  to be used by the algorithm.  
 

(2) 
 
Where m  is the number of factors and w  is the weight for 
each factor and (w 1+w 2… ..+w m ) =1 . The freshness 
requirement (F R ) for each object is taken as another factor 
affecting the Replication Degree (The F R  is given for each 
object), accordingly, the R D  can be calculated as: 
 

         (3) 
       
The model divides the replication process into 4 phases, 
(Read Phase, Update Phase, Propagation Phase, and 
Cooperation and Integration Phase). As it was illustrated 
previously that data objects are classified to either local or 
shared data object. For the local data items, the primary 
site is responsible for both updating and propagating 
phases, while for shard data items, any site can update it, 
and only the primary site is taking the responsibility of the 
propagating phase.  
 

Updating a replica is another decision made by the model; 
the primary site begins pushing replicas to the other sites 
when the primary site receives a new value for a specific 
data item from the external environment (sensor data). The 
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algorithm calculates R D  as illustrated in the last section 
and determines the R AS by mapping the objects in the 
needlist to R AS using R AF  function. When the primary site 
pushes an update for a specific site and that data item is 
used by a local transaction, after committing the 
transaction, the site sends a need request (need req.) to the 
primary site which in turn add it to its need list. Note that, 
if the selected site use that data item one more time, it will 
not sends a need request unless the primary sends a new 
replica.  
 

Algorithm 1 shows the pseudocode for the proposed 
replica control algorithm when a specific node receives a 
read transaction. Algorithm 2 illustrates the steps when an 
update transaction is received at node N. When a read 
transaction is received at node N,  the algorithm checks for 
an existence of active replica(s) by checking the validity 
interval of the required object(s), if it exists, it will be used 
by the transaction, otherwise a requested transaction is 
created and sends to the primary site containing that 
object(s). Note we assume that only one site can be 
requested by the transaction.  
 

If an updated transaction is received, a check for that if the 
requested object(s) is a primary object (Local, Shared) is 
maintained, as it was previously illustrated that the 
primary site is responsible for updating its local data 
objects. If the requested object(s) is a shared data object, a 
validity check is done, and the cooperation phase is done 
between this site and the object primary site. When the 
primary site receives the update request, it first checks the 
conflict existence using (V N ) of the object. And it then 
starts the propagation phase to other sites using the R D  and 
R AS values generated by the Replication Manager. 
Transaction Manager must differentiate between the 
update transactions and the propagation transactions to 
avoid a cycle of endless propagation process, simply, a 
transaction type could be used. 

4. Performance Evaluation of the Proposed 
Algorithm 

A full simulation environment have been developed to test 
the proposed allocation algorithm, we have chosen system 
parameter values that are typical of today’s technology 
capabilities, e.g., network delays. The settings for the 
system parameters are given in table1, while the settings 
for user transaction are given in Table 2. A user 
transaction consists of operations on temporal data objects 
including both sensor and derived data objects. 
 
The transactions arrival rate follows Poisson arrival 
pattern, the arrival rate ג varied from (10- 80) transactions 
per second, accordingly, the workload applied is 

approximately varied from (50%-100%) when the arrival 
rate varied from (10-80) respectively. The execution time 
for one operation is between 100 microseconds to 1000 
microseconds, and the transaction execution time is 
exponentially distributed with mean (3). The sensor 
execution time is uniformly distributed between (0.1 – 1) 
second, and the slack factor of transactions is set to 5. The 
Remote Data Ratio is the ratio of the number of remote 
data operations (operations that access data hosted by 
other sites) to that of all data operations. The remote data 
ratio is set to 20%, which means 20 percent of transaction 
operations are remote data operations. At each node, the 
entire workload varied from 20-100%. 
 
All simulation results rely on at least ten runs, to evaluate 
our algorithm we use no replication and full replication as 
two baseline protocols. These two algorithms are the 
simplest, but widely used replication control strategies. 
The transaction miss ratios and number of messages 
(reflects the network overhead) of the three algorithms are 
shown in Fig. 4. It is clear that, among the three 
algorithms, the proposed algorithm gives the best 
transaction miss ratios under different transaction 
workloads. 

 
Table 1: System Parameter Settings 

 
 
 
 
 
 
 
 
 
 

 
 

Table 2: Transaction Parameter Settings 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Parameter Value 

Node # 10 – 50 

Network Delay 1 – 3  ms 

Temporal Derived  Data # 200/Node 

Temporal Sensor Data # 100/Node 

Base Update Frequency Uniform(0.1 - 1) sec 

System Load 20-100% 

Parameter Value 

Sensor Transaction # 300 

User transaction # 700  

Write Operation Time 5 ms 

Read Operation Time 3 ms 

Slack Factor 5 

Remote Transaction ratio 20% 

Read/Write operation Prob. (0.4 – 0.6 ) Respectively  

Execution Time Of Sensor Tran. Uniform (0.1 – 1) s 

Execution Time Of user Tran. Exp (3) 

Execution Time Of Propagation 
Tran. 

Exp (3) 

Transaction Arrival Rate 
 

(10 – 80) Trans/s 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 78

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 
5. Conclusion and Future Work 

A new dynamic replica control algorithm has been 
designed for medium and large scale distributed real-time 
database systems. Such algorithm has been designed to 
receive both periodic and aperiodic transactions while the 
system has no prior knowledge of its data requirements. 
The replicas of the data items are being dynamically 
allocated to the distributed nodes according to their access 
pattern. In addition, the proposed model allows a degree of 
consistency for each data object which is dynamically 
calculated according to different factors. A detailed 
simulation has shown that the presented algorithm can 
greatly improves the system performance compared to the 
system without replication or system with full replication 
strategy. It is desirable to enhance and extend the 
presented algorithm to deal with transactions of many 
operations instead of one operation, and deal with other 
parameters that affect the performance issues for 
distributed real-time database, such as using one of the 
concurrency control protocol to enable concurrent 
execution of transactions.  
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Algorithm 2: Replica control algorithm on receiving an update transaction 
 

Fig. 4: Transaction miss ratio. 
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