
Pattern Design for Software Testing Base
Finit Automato Machines

Seyyede Roya Alavi1

 1Department of Computer, Khoy Branch, Islamic Azad University,

 Khoy, Iran

Abstract

On method for effective testing is the identification of critical
rout in the program. Standardized test of software is somehow
impossible because the production and control of critical routs is
difficult for software with average size. For creating control in
the routs Finit Automate Machines (FAM) are used, in order to
design a series of grammer and then the language for each rout
by making use of FAM. Grammers create a chain sequences
which should be followed through the program. These produced
sequences decrease the complexity of identification of errors for
effective testing in the process of examination purposefully.
Keywords: Finit Automato Mach, Grammer, Path, Software
Testing.

1. Introduction

The process of testing any software system is an enormous
task which is time consuming and costly software testing
spends almost 50% of software system development
resources. Random test simply runs the inputs and then
clarifies the performed structures but it can't extract some
of the accessible information from black box. Dynamic
test white and black box methods are used in combination
to produce finite amount of test instances. Testing
involves three main steps: generation a set of test inputs,
execution thos inputs on the program under tests, and then
checking whether the test executions reveal faults.

Software testing is a time consuming and costing process.
For applying a standardized test all possible paths should
be studied. As the program follows running paths
according to different inputs, it is impossible to explore all
the errors of the program before its practicle use by the
software users. Dealing all run paths before program
delivery is very difficult or maybe impossible. So, many of
errors are concealed in the program and will be recovered
after using.An Automatic testing software can generally
decrease the cost of software development. Moreover, it
can causes quick running of the test and the reliability of
test result

decreases. Automatic testing is not a direct and confort a
progress process [1].

Error Location finding methods are generally
distinguished into two types: static and dynamic. Static
methods tries to identify the location of errors in the
program according to Program Dependent Graph [2,3,4].
On the other hand, dynamic methods try to approximate
location of the error by comparing successful and
unsuccessful runs of the program [5,6]. Gathering needed
data for modeling of run paths of program is an important
problem in error finding of the software. Storing all run
data, which is produced by the program is not possible in
the practice. But only a part of run data of program can be
stored.

Solving this problem a pattern of administration can be
offered. According to this pattern the behavior of the
program can be analyzed during different runs. Offering
the pattern for modeling of run paths of the program can
be done by grammers in FAM.

The rest of the paper is arranged as follow: In section 2,
the review of literature of software testing are discussed.
In section 3, suggested methods, by the use of Finit
Automate Machines are examined and in section 4,
conclusion is given.

2. Related Work

Static testing methods running the program on test by
input data testing and recovering its output [7]. The goal
of dynamic analyzing methods is comparing the behavior
of running program time in successful and unsuccessful
run, which detection the program errors [5]. Dynamic
methods applying with care of successful and unsuccessful
data and without any attention to the programs static
structure. Static method is distinguished into two type:
black box and white box. Black box testing is essential
only in examining the output in response to the input data.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 297

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

White box testing is made by the use of information about
how it works inside the unit [8,9,10]. In dynamic
techniques the data results of run program is stored and
after analyzing them chaos inside the program code is
explored and introduced to the user. Previous research for
finding the location of errors from timing behavior of
program administration such as program spectra used
memory graphs and history of examining determinants of
the program [11,12]. Among analyzing technique of
dynamic method, techniques based on examining of
determinant for finding locations of errors were more
successful [13,14]. In dependent graph program, data
dependence and controlling dependence of program are
shown [15]. In fact, the nodes of this graph are sentences
of the program and determinant statements. And their edge
shows data dependence and controlling dependence of the
program.

Similar to control and data flow coverage criteria, state
base testing relies on coverage criteria defined . These
include: all-transitions, all-transition-pairs, all predicates
and allsequences. Other coverage criteria like all-states
and all-ntransitions are very often used. However, all-
states (each state must reached at least once) is subsumed
by all-transitions criterion which is in turn subsumed by
all-n-transitions. While these criteria are typical for state-
based testing, in many research publications state
machines have been extended to deal with dataflow
coverage criteria [15]. In Fig.1, the code of one program
with related CFG (Control Flow Graph) is illustrated.

0. Function (int a, int b)
1. {
2. Int c;
3. If (b>a) {
4. c=a;
5. a=b;
6. b=c;
7. }
8. C=a/b;
9. While (c!=0)
10. {
11. a=b;
12. b=c;
13. c=a/b;
14. }
15. Return b;
16. }

 Fig.1 Code With CFG

3. Proposed Pattern

The path which the programs starts and ends, is the
program behavior. It is clear that a program can have
different behaviors. The more complexity of software the
more behavior domains of the program. The behavior of
the program can be sequence of its occurrences, such that,
the occurrence can be the calling function, running a line
of program, or the return value of function. The behavior
of program can be true or false. LTL (Linear Temporal
Logic) formulae can be converted mechanically into
testautomata and then used in a model checking procedure,
using the algorithm outlined [16]. The automaton will
accept all those, and only those, execution sequences that
correspond to a violation of the property [16]. The model
checker SPIN contains the conversion algorithm, and can
detect the violating sequences with a standard model
checking run [16].

Any violations that are detected can then be reported as
execution traces through the original implementation
source code of the application.

The test automata are often also simple enough that they
can be constructed by hand, and in some cases the hand-
tuned automata are smaller than the machine generated
ones,which translates to reduced run-time requirements for
the model checking process [16].

3.1 Finit Automato Machine

Machines are design according to a language, and an input
string enter finally gives an output which are YES or NO.
In this part, the program characteristics are enters instead
of language characteristics and the output is produced
based on the language of machine grammer. The figure of
a machine is illustrated in Fig. 2. The finite Automate
which display with M, is formed from five elements: M =
(Q, ∑, S, q0, F), in which Q is series of q0,q1,q2, …, qi , ∑
is series of input string scripts, S is the rules of transfer or
shifts, q0 is a member of Q and F is series of final
conditions.

 Fig.2 Automato

Yes/No Input string

Automato

Program Properties

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 298

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

There is used a graph for showing a finit automate
machine, Fig.3 display a simple graph of FAM. Such that
the communication between state is called edge and
illustrated S(qi , a) = qj.

Fig. 3 edge of Automato

The grammer is used for description the language of FAM.
The grammer is formed of four elements which expressing
with G: G = (V, T, S, P). In grammer G, V element
implies the de-terminal series and T implies the terminals,
S is the sign of start and P is sign for series of theorems.
For obtain the sequence of strings carring the left side of
string and right side of string are replaced in a term, which
said derivation.

Grammer:

S→ aSb

 S→ λ

For example, the sequence of ab, aabb is done by
following:

Derivation:
S→ aSb → ab
S→ aSb→ aaSbb → aabb

The path which is negotiate during running, is designed
with FAM. Using FAM cause designing a series of
grammer for each function inside the testing program. In
Fig. 4 a FMA gas designed for program in Fig. 1. For
drawing a graph of this FAM, follows that each line of
program numbered and each line is a state and edges of
graph for defining function take F and “RETURN”, data

defining, “{”, “}” lines take label and because of
conditions, like “IF”, are labeled I and because of
“WHILE”, are labeled W, because of “ELSE” labeled E,
because of correcting condition labeled C inside the while,
if, … and because of correct and wrong conditions it gives
t and F. because of every rule and terms which are running
in the program, the label S is given for edge of graph.

Fig. 4 Finit Automato Machine

qi qj

a

S

q 0

F

q 1

q 2

q 3

q 11

q 9

q 8 q 7

q 6

q 5

q 4

q 15

q 14
q 12

q 10

q 16

λ

λ

I

Ef

S
S

S

S

λ
W

t

S

S

λ
λ

λ

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 299

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In this case, the value of de-terminal V element and value
of terminal T element are given:

V = { F, E, I, W, C, S}
T={ S, λ, t, f}

Therefore, the grammer which applied for Fig. 4 4 is in the
followed. According to this grammer, language (like L)
developed for it.

Grammer Fig. 4:

F→ IF| EF| λ
I→ CS | λ
C→ t | Ef
S→ sS | s | λ
E→ SW| λ
W→ CW | S |λ

Language:

L={ (fs)n (tsss)m | n >= 0, m > 0}

Different strings are designed for grammers which
displays the sequence of followed paths, next these
sequences compared with that language. If the sequence of
produced string is differ from produced strings of the
languages, there is an error in the code. For example, if
there is a wrong in line 3 (b<a) string “tsss” for input (2,3)
produced from grammer and language. String “fsf”
produced from grammer and shows that inside of part “IF”,
because of wrong conditions, deviated from run path of
program.

Derivation(true by grammer and language):

 F→ IF → I → CS → tS → tsS → tssS → tsss

Derivatin (false by grammer):

F→ IF → I → CS → fES → fSWS → fsCWS →

fsfEWS → fsfWS → fsfS → fsf

4. Conclusion

In software testing, location finding or suspect cases for
errors in codes of program is the goal. FAM is used for
finding the errors location, so that one way for error
detection designed base on grammer and language is for
program. In this paper, using this pattern, all the paths
should followed are designed used of program language.
All these produced series should be the string series which
produced of program grammer. In this case, the left series

of strings are recording as paths which the errors occur in
them.

References

[1] Srivastava, P. and Kim, T., “Application of Genetic

Algorithm in Software Testing”, International Journal of
software engineering and its applications vol.3.no.4,2009,
pp. 87-95.

[2] W. R. Bush, J. D. Pincus and D. J. Sielaff, “A Static
Analyzer for Finding Dynamic Programming Errors”,
Software Practice and Experience, Vol. 30, No. 7, 2000,
pp. 775−802.

[3] D. L. Detlefs, R. M. Leino, G. Nelson, J. B. Saxe,
“Extended Static Checking”, SRC Research Reports
SRC−159, Compaq SRC, December 1998.

[4] W. E. Wong, S.S. Gokhale, and J.R. Horgan, “Measuring
distance between program features”, In International
Conference of Computer Sotware and Applications
(COMPSAC), 2002, pp. 307-312.

[5] T. Ball,“The Concept of Dynamic Analysis”, In
Proceedings of the 7th European Software Engineering
Conference and the7th ACM SIGSOFT Symposium on
Foundations of Software Engineering (ESEC/FSE’99),
September 1999, pp.216-234.

[6] M.D. Ernst, J. Cockrell, W.G. Griswold and D. Notkin,
“Dynamically Discovering Likely Program Invariants to
Support Program Evolution”, In IEEE Transactions on
Software Engineering,Vol. 27, No. 2, February 2001.

[7] Myers, G. J., The Art of Software Testing, Revised and
Updated by Tom Badgett and Todd M.Thomas with
Corey Sandler,John Wiley & Sons , Inc, Second Edition,
2004.

[8] BCS SIGIST, “Standard for Software Component
Testing”, British Computer society, SIGIST, 2001.

[9] Gardner, D., “Software Testing Guide”, Information
management systems& services, California institute of
technology, 2006.

[10] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I.
Jordan, “scalable statistical bug language Design and
Implemenation (PLDI)”, 2005.

[11] M. Renieris and S. Reiss, “Fault Localization with
NearestNeighbor Queries”, Proc. 18th IEEE Int’l Conf.
Automated Software Eng. (ASE ’03), 2003, pp. 30-39.

[12] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit,
“Statistical debugging using compound Boolean
predicates”, In proceeding of International Symposium on
Software Testing an Analysis, London, 2007.

[13] B. Liblit, A. Aiken, X. Zheng, and M.I. Jordan, “Bug
isolation via remote program sampling”, In Proceedings
of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, San
Diego, 2003, pp 141–154.

[14] S. J. Zeil,"Perturbation techniques for detecting domain
errors”, IEEE Transactions on Software Engineering, 15,
June 1989, pp. 737-764.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 300

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[15] Bouchachia, A., Mittermeir, R., Siclecky, P., Stafiej, S.
and Zieminski, M., “Nature-Inspired Techniques for
Conformance Testing of Object-Oriented Software”,
Applied Soft Computing. J, 2009, pp. 1-16.

[16] Holzmann, J. G. and Smith, H. M., “A Practical Method
for Verifying Event-Driven Software”, 1998.

Seyyede Roya Alavi received the M.Sc degree in Computer
Engineering in 2011 from Iran university of Islamic Azad
University, Zanjan, Iran. She has published several papers about
Software Testing. She is also lecturer at Azad University Khoy
branch.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 301

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

