
A Comparative Study on Performance Benefits of Multi-core
CPUs using OpenMP

Vijayalakshmi Saravanan1, Mohan Radhakrishnan 2, A.S.Basavesh 2, and D.P. Kothari3

 Ryerson University, Canada1, HCL Canada, Canada2, NITK, India2 , VITS, Nagpur3

Abstract
Achieving scalable parallelism from general programs was not
successful to this point. To extract parallelism from programs
has become the key focus of interest on multi-core CPUs. There
are many techniques and programming models such as MPI,
CUDA and OpenMP adopted in order to exploit more
performance. But there is an urge to find the best parallel
programming techniques for the benefit of performance. This
article shows how the performance potential benefits the parallel
programming model over sequential programming model. To
support our claim, we are likely to analyze the performance in
terms of execution time on both sequential and parallel
implementations of naive matrix multiplication vs. Strassen’s
matrix multiplication algorithm using OpenMP. Our analysis
results show that optimizing the code using OpenMP increases
the performance than sequential implementation and
outperforming well with parallel algorithms.
 Keywords: Multi-core, Performance Analysis, OpenMP,
Strassen’s Algorithm, Parallelism.

1. Introduction

In the recent years, the computer architects no longer
rely on increasing single-core processor clock speed or
micro architectural improvements to enhance processor
performance and found it difficult in exploiting more
instruction level parallelism from a single program.
Thread-level parallelism could be a well-known strategy
to improve processor performance. So, this results in
multithreaded processors. Unfortunately, most
applications are not multithreaded. Thus, adding cores
results in little performance improvement. Researchers
have proposed many programming languages to exploit
parallelism [1] [5] [6]. These languages allowing high-
level parallelism makes parallel programming easier than
earlier methods.

Matrix multiplication is an important core computation

in many areas of scientific computing. Normally for small
multiplication we lean towards to use naive matrix

multiplication algorithm which has rich data parallelism.
To obtain more performance through that algorithm we
parallelized them using OpenMP.

As matrix size grows the naive matrix multiplication

becomes inefficient in terms of performance. For large
matrices, we used Strassen’s algorithm for matrix
multiplication (recursive, divide and conquer approach),
to enhance the performance of this algorithm on multi
core architecture which has functional parallelism in its
algorithm, we used OpenMP to parallelize. The results of
using OpenMP in each algorithm were encouraging.

The rest of the paper as follows Section 2 describes about
overview of OpenMP. Section 3. Brief about related
work. Section 4 describes the algorithm and
implementation methodology. Section 5 explains the
tabulation of how OpenMP helps to improve performance
of multi-core processors using Strassen’s vs. naive
algorithm. Section 6 discusses Result analysis and
Discussions. Section 7 finally provides the conclusion
and future work.

Hardware and Software Used:

Table 1: System specifications

Processor Intel Core i3 Dual-core

CPU 2.13GHz

RAM 4GB

Operating
System

 Windows 7/ Ubuntu 9.04 or later

Soft wares Visual Studio 2005, GCC compiler
(Linux)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 272

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2. Overview of an OpenMP

The OpenMP (open multiprocessing) is an application in-
terface platform for shared memory and it consists of set
of compiler directives, library routines and environment
variables that directs run time behavior. Multiprocessor
programming in C or C++ on such architecture includes
UNIX and windows operating systems [9]. Due to the
boom in hardware speeds and the drop in hardware costs,
several developers have let code optimization slip to the
back of their minds. As a result, the previously developed
techniques from years ago have not been updated to
account for modern compiler optimization techniques or
hardware features. Synthesizing a large volume of data
from opposing viewpoints led to the development of a
general outline to follow when optimizing code.
 Many programmers will choose a language they are
familiar with, even though if it’s not the most effective
language for the research work. Speed, flexibility, and
ease of coding are a few of the major factors in deciding
which language to use. The compiler will perform several
optimizations faster than human programmer does.
Optimization like moving constant expressions outside of
loops, storing variables in registers, moving functions
inline, and unrolling loops should be performed by the
compiler in most cases. Parallelization of sequential
programs, parallelizing compiler depend upon subscript
analysis to detect data dependencies between pairs of
array references inside the loop nests.
 To understand the concept of OpenMP, there’s a
necessary to understand the concept of parallel
programming. Parallel processing is done by more than
one processor in parallel computing systems. Earlier
multiprocessing systems always came in its own
processor packaging, however recently introduced multi-
core processor can contain multiple processor or cores on
a single chip. In this work we achieved thread level
parallelism using OpenMP and it reduces the
communication cost. OpenMP is an API which acts as
parallel programming model on multi-core architecture.

3. Related work

Prior work has studied the implementations of Strassen’s
matrix multiplication algorithms in many programming
languages such as C, C++ and Java [4]. But there is a
need to understand the parallel programming and its
implementation methodologies on multi processors
system in order to improve the performance. OpenMP is

the well-known parallel programming techniques for
multiprocessing environment [2]. There are varied
hardware and software techniques adopted for
performance enhancements.

 One of the traditional methods to achieve more
performance is to increase the clock frequency. There are
different kinds of heterogeneous pipeline models have
been discussed by many researchers. Latch based
pipelines are most commonly used pipelines in
asynchronous circuit pipeline models [10]. Fine grained
and coarse grained pipeline structure which focuses on
cell gate implementation were introduced and improved
by many computer architecture researchers [7] [3].

 Recently, SR (Self Resetting) latches were proposed by
[8] which resolve the power consumption problem and
reduces the data path power consumption. Kunkel and
Smith studied the performance improvement using gate
level logic circuits. As there’s tremendous improvement
in silicon technology the problems of clocking, range of
transistors on chip, and will increase the complexity on
chip. Therefore there’s an urge to find the software or
hardware algorithm to solve this issue.

4. Algorithm and Implementation
Methodology

(A) Sequential naive algorithm

We used both sequential and parallel versions of naive
and Strassen’s algorithm to analyze the performance
shown in Figure.6. The pseudo code for the naive
algorithm of matrix multiplication of matrix a (n*n) and
matrix b (n*n) to give a matrix c (n*n) is shown in
Figure.1 [14].

(B) Parallel naive algorithm using OpenMP

The pseudo code for the naive algorithm of matrix
multiplication of matrix a (n*n) and matrix b (n*n) to
give a matrix c (n*n) is shown in Figure.2 [14].
It can be viewed as divide and conquer method algorithm,
suppose we wish to compute the product of

C = A * B ------ (1)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 273

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

SQUARE-MATRIX-MULTIPLY (A, B, C)
N = A.rows

For I = 1 to N
For j = 1 to N

Cij = 0
For k = 1 to N

Cij = Cij + Aik * Bkj

Return C
Fig. 1: Pseudo code for sequential naive algorithm

SQUARE-MATRIX-MULTIPLY (A, B, C)

#pragma omp parallel for default (none) shared (A, B, C,
N) private (I, j)

N = A.rows

For I = 1 to N

For j = 1 to N

Cij = 0

For k = 1 to N

Cij = Cij + Aik * Bkj

Return C

Fig. 2: Pseudo code for parallel naive algorithm

In Equation [1], where each of A, B and C are n*n
matrices. Assuming that n is an exact power of two, we
tend to divide each of A, B and C into four n/2*n/2
matrices, which can be written as shown in Figure.3.

Fig. 3: Strassen’s serial algorithm

4.1 Strassen’s Serial Algorithm

As we can see from the above, the serial algorithm has
recursion in the algorithm. We can hardly see the data
parallelism except in adding and subtracting sub matrices.
If the matrix size is greater than the threshold value
multiply them recursively, if not use the traditional matrix

multiplication algorithm.
Construct C using the intermediate matrices. But, if we
look more as shown in Figure.4 and we get to understand
that P1….P7 goes on recursively and independently thus
we get functional parallelism.

4.2 Strassen’s Parallel Algorithm

Initially, we implemented our program through task pool
model to compute P1; P2...P7 and an independent
multiplication task can be executed in parallel with N
jobs at a time. For example, when 49 jobs are running

with N cores machine (where N= 2
N
) there is a chance to

execute 48, and would run simultaneously with 1 job
would be left later execution. Thus, it leads to more
processor utilization. So as to avoid this issue, it’s better
to split the last task further as shown in Figure 7.
In OpenMP the sections construct is the easiest way to
get the different threads to carry out different kinds of
work. Since, it permits us to specify many different code
regions and each of which will be executed by one of the
threads in OpenMP with Strassen’s matrix multiplication
are shown in Figures 4 and 5 [12] [13].

Fig.4 STRASSEN’S MATRIX MULTIPLICATION

 A11 A12

A =

 A21 A21

 B11 B12

B =

 B21 B21

 C11 C12

C =

 C21 C21

 A11 A12 B11 B12

C = *

 A21 A22 B21 B22

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 274

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

C11 = A11*B11 + A12*B21

C12 = A11*B12 + A12*B22

C21 = A21*B11 + A22*B21

C22 = A21*B12 + A22*B22

Fig.5 Strassen’s Parallel Algorithm

Evaluate the intermediate matrices:

P1 = (A11 + A22) (B11 + B22)

P2 = (A21 + A22) B11

P3 = A11 (B12 – B22)

P4 = A22 (B21 – B11)

P5 = (A11 + A12) B22

P6 = (A21 – A11) (B11 + B12)

P7 = (A12 – A22) (B21 + B22)

Construct C using the intermediate matrices:

C11 = P1 + P4 – P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 – P2 + P3 + P6

5. Tables for Performance Analysis of Strassen’s vs.
Naïve Algorithm

Table 2.Tabulation of performance analysis on Strassen’s
vs. Naïve algorithm

In our work, we have tested the sequential version and paral-
lel version (using OpenMP) for both naive and Strassen’s
algorithm for matrix multiplication. The execution time was
taken using OpenMP run time library function
omp_get_wtime () which gives time in seconds with double
precision. Using OpenMP the parallelism can be achieved
through the evaluations of intermediate matrices P1, P2 ... P7
which are independent as shown in Figure.5 and hence, it
will be computed in parallel through Strassen’s parallel
matrix multiplication. Comparing the serial and parallel
version of naive algorithm we got significant results from
matrix sizes of more than 100*100 due to time consumed in
thread synchronizing for smaller matrices. For Strassen’s
algorithm initially the performance was quite disappointing
for smaller matrices and as the matrix sizes became larger
than 500*500 the performance improved compared to naive
multiplication and also the parallel version of Strassen’s
algorithm and the execution time is shown in Table 2 (Time
in sec). The results graphs are depicted in Fig.8 and Fig.9.

Fig. 6: Schematic flow diagram

Matrix
Size (n)

Naive
Serial

Naive
Parallel

Strassen’
s Serial

Strassen’s
Parallel

500 1.23 0.88 2.4 2.2
1000 13.2 8.11 6.2 5.4
1500 59.35 31.92 12.6 7.8
2000 99.62 79 22.3 10.81
2500 279.23 178.5 40.23 19.46
3000 394.5 316.62 62.35 28.86

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 275

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7: Flow diagram of Strassen’s algorithm

Results Graphs

Fig.8 Naive vs. Strassen's Serial Algorithm

Fig.9 Naïve vs. Strassen’s Parallel Algorithm

6. Result analysis and Conclusion

Based on our study, we have presented the execution time
of both serial and parallel execution of naive and
Strassen’s algorithm for matrix multiplication. We arrive
at the following conclusions:
(a) we see that parallelizing the serial algorithm
using OpenMP has increased the performance a lot (b)
For CPU cores OpenMP provides a lot of performance
increase and parallelization can be done with minimal
changes and, (c) we tend to observe that though
Strassen’s algorithm (both parallel and serial) definitely
consumes a lot more memory than serial algorithm, but
the performance is much better than the traditional matrix
multiplication algorithm due to its reduced operations (d)
overall we conclude that for large matrices we can apply
Strassen’s algorithm and for smaller matrices we must
apply naive algorithm. And using OpenMP for both
algorithms we achieved much better performance than
serial implementation.

7. Future Enhancements

Due to time constraints, this work has been carried out on
dual-core machine with matrix multiplication alone, but it
can be extended by using a variety of matrix types -
dense, sparse, large data, complex numbers, etc. to
characterize our comparison to understand the better
performance benefits of the OpenMP techniques. Besides
there’s a scope to look at the energy consumption of
assorted algorithms and its impact on performance
enhancement.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 276

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Acknowledgments

The authors would like to convey immense thankfulness
to IASc (Indian Academy of Sciences, Bangalore) and all
the anonymous reviewers for their valuable comments.

References
[1] Brian D et al. Carlstrom.”The Atomos Transactional
Programming Language”. In
ACMSIGPLAN2006 Conference on Programming Language
Design and Implementation. June 2006.
[2] Barbara Chapman. ”Managing Multi-core with OpenMP
(Extended Abstract)”. In Proceedings of the 15th European
PVM/MPI Users’ Group Meeting on “Recent Advances in
Parallel Virtual Machine and Message Passing Interface”, pages
3–4, Berlin, Heidelberg, 2008. Springer Verlag.
[3] Zenil Chavez. ”Applied Parallel Computing”. IEEE
Distributed Systems Online, 5, 2004.
[4] Thomas H.et al. Cormen. ”Introduction to Algorithms”.
McGraw-Hill Higher Education, 2nd edition, 2001.
[5] Matteo et al. Frigo. ”The implementation of the Cilk 5
multithreaded language”. In Proceedings of the
ACMSIGPLAN1998 conference on Programming language
design and implementation, PLDI ’98, pages 212–223, New
York, NY, USA, 1998. ACM.
[6] Michael I. et al. Gordon. ”A stream compiler for
communication exposed architectures”. SIGARCH
Comput.Archit. News, 30:291–303, October 2002.
[7] Shi Jung Kao. ”Managing C++ OpenMP code and its
exception handling”. In Proceedings of the OpenMP
applications and tools 2003 international conference on
OpenMP shared memory parallel programming, WOMPAT’03,
pages 227–243, Berlin, Heidelberg, 2003. Springer-Verlag.
[8] Quin Michael J.”Parallel programming in C with MPI and
OpenMP”. McGraw Hill Inc., 2004.
[9] Venkatesan Packirisamy, Harish Barathvajasankar, S
Sarholz in Proceedings of the 3rd international workshop on
OpenMP "A Practical Programming Model for the Multi-core
Era" (2008).
[10] Alex Vrenios. ”A Tutorial on Parallel Systems
Development”. IEEE Distributed Systems Online, 5, 2004.
[11] www.OpenMP.org.
[12]http://ace.cs.ohiou.edu/~razvan/courses/cs404/lecture12.pdf.
[13] Steven Huss-lederman, Elaine M. Jacobson, J. R. Johnson,
Anna Tsao, Thomas Turnbull “Strassen’s Algorithm for Matrix
Multiplication: Modeling, Analysis, and Implementation” In
Proceedings of Supercomputing '96.
[14] John Burckardt, Paul Puglielli Pittsburgh Supercomputing
Center, “MATMUL: An Interactive Matrix Multiplication
Benchmark “.

Vijayalakshmi Saravanan is an
Assistant Professor (Sr); VIT University, India .She is a recipient
of Erasmus Mundus (EURECA) Programme as an Exchange
student from India at Malardalen University, Sweden. She holds a
Bachelor of Engineering Degree in Electrical and Electronics
Engineering and Master of Science Degree in Information
Technology from Bharathiar University & Manonmaniam
Sundaranar University (Now Anna University), India. Currently,
she holds a position as visiting researcher at Ryerson University,
Canada. Her research interests include Multi-core Low Power
Design Exploration, Power-Aware Processor Design, and
Computer Architecture. She has taken part of her research
studies one course work at University of Rochester, USA. She is
serving as a Technical Evangelist for Asia Open Source Software
Community, CICC, and Japan and all over Asian Countries. She
is a Member of IEEE, ACM, CSI and a Board member of
N2WOMEN (Networking Networking Women) IEEE/ACM Women
in Engineer and she is a Chair for IEEE-WIE VIT affinity group,
India. She can be reached at viji@ieee.org.

Mohan Radhakrishnan is currently
working as a Sr.Technical Architect in HCL Canada. He has more
than ten years of technical experience in designing,
administrating and supporting Microsoft enterprise and VMware
environments. He is currently working on R&D level projects in
data center server and network implementation, support and
administration, thorough grasp of development principles and
best practices. He is also a Member of IEEE and VMware.

Dr. D.P. KOTHARI is a Senior
Professor and Advisor to the Chancellor, VIT University, Vellore
and named IEEE fellow in 2011. Earlier, he was Head, Centre for
Energy Studies, IIT Delhi (1995-97), and Principal, Visvesvaraya
Regional Engineering College, Nagpur (1997-98). He has been
Director i/c, IIT Delhi (2005) and Deputy Director (Administration)
(2003-06). Earlier, (1982-83 and 1989), he was a visiting fellow at
RMIT, Melbourne, Australia. He obtained BE, ME and PhD

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 277

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

degrees from BITS, Pilani. He is a Fellow of the Institution of
Engineers (India), Fellow of National Academy of Engineering
(FNAE), Fellow of National Academy of Sciences (FNASc), Life
Member ISTE (LMISTE). Professor Kothari has
published/presented 640 papers in national and international
journals/conferences. He has authored/co-authored 22 books
including Power System Optimization, Modern Power System
Analysis, Electric Machines, Power System Transients, Theory
and Problems of Electric Machines, Renewable Energy Sources
and Emerging Technologies, and Power System Engineering. His
research interests include Optimal Hydro-thermal Scheduling,
Unit Commitment, Maintenance Scheduling, Energy Conservation
(loss minimization and voltage control), and Power Quality and
Energy Systems Planning and Modeling. He has received the
National Khosla award for Lifetime Achievements in Engineering
for 2005 from IIT Roorkee. The University Grants Commission
(UGC) has bestowed UGC National Swami Pranavananda
Saraswati award for 2005 on Education for outstanding scholarly
contribution. The World management congress, New Delhi
conferred Life time achievement award for "Educational Planning
and Administration” on 30th December 2009.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 278

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

