
Reuse of Use Cases Diagrams: An Approach based on Ontologies
and Semantic Web Technologies

Belén Bonilla-Morales1, Sérgio Crespo2 and Clifton Clunie3

 1 Universidad Tecnológica de Panamá
Panama City, Panama

2 Universidade do Vale do Rio Dos Sinos
Sao Leopoldo, Brasil

3 Universidad Tecnológica de Panamá
Panama City, Panama

Abstract
Software reuse is defined as the use of any artifact, or part
thereof, created before, on a new Project. This practice has
significant benefits in reducing costs and increasing quality and
productivity in software development. Numerous approaches
have been proposed aimed mostly at the source code reuse, but
this type of reuse has its limitations because development
platforms and technologies are constantly changing. Then, it is
necessary to apply reuse over software artifacts created at higher
levels of software life cycle such as requirements specification.
This paper presents a tool for the reuse of use case diagrams by
storing their information in OWL ontology and the use of
Semantic Web technologies.
Keywords: Software reuse, use cases diagram, ontology,
Semantic Web.

1. Introduction

Software reuse is defined as the process of creating
software systems from existing software; it is the use of
any device or part thereof, previously created in a new
project [1].

Reuse of software has been the subject of research for
many years in the software community because of the
great benefits it provides, mainly in terms of reducing
development time and cost, and increasing the quality of
software systems [2].

In most cases, software reuse is associated only with
source code reuse, but as indicated in its definition, we can
reuse any type of software artifact [3]. Furthermore,
source code reuse turns out to be problematic because the
development platforms and technologies are constantly
changing. Therefore, it is necessary and appropriate to
apply software reuse over artifacts created at higher levels

of software life cycle such as requirements specification
which includes use case diagrams.

Use cases diagrams are a type of UML diagram
whose purpose is to define graphically the functionality of
a system in terms of actors, use cases and relations [4].
They have great importance as a technique for extracting
and defining functional requirements from the user point
of view [5].

Reuse of use cases diagrams then gives the
opportunity to have formal definitions and validated
functional requirements of a software system created
earlier and thus be able to use them as often as necessary
in different software projects. In addition, reuse could be
applied on a higher level of abstraction, avoiding the
limitations in terms of changes in technologies
and platforms.

But it is not enough with the initiative and the
definition of the process if we do not have the necessary
tools to operationalize the idea of reuse of requirements
specifications. Consequently, we implemented a tool that
allows reuse of use case diagrams by storing, searching
and retrieving them using ontologies and Semantic Web
technologies. The application allows software engineers to
store the information of use case diagrams into OWL
ontology. Then, we can make semantic searches on the
repository where we store the RDF triples that define the
ontology. Thus, the software development teams can
create their ontological database of use cases diagrams and
to have an application that allows to search and retrieval
them, and finally reuse them in new projects. It promotes a
savings of time and effort during the stage of requirements
analysis and modeling of software.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 24

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2. State of Art

Reuse of software is generally defined as the process of
building or assembling software applications or software
systems from previously developed software [1] [2]. Its
application involves not only the source code, but also the
different artifacts that occur during the life cycle of
software like requirements, UML diagrams, tests, manuals,
experiences, etc. [3].
The benefits gained through the reuse of software artifacts
are many, but certainly the most important are:

 A reduction in development costs.
 An increase in product quality.
 An increase in productivity through improvement

of the times in which it is developed new
software projects.

Reuse of software has been a topic of popular debate and
research for nearly forty years in the software community.
Many approaches to software reuse have been proposed
during this time, mainly oriented to the development of
tools and methodologies.
Among the outstanding works we can mention the
proposed by Monegan [6] who developed a tool called
Object-oriented Reuse Tool (ORT) which supports the
reuse of object-oriented software by maintaining a library
of reusable classes and record information about reuse and
information associated with design and verification. For
his part, Gicca [7] developed a software tool in ADA
language called Reuse System to promote the reuse of
software components and requirements, high level design,
source code, etc. through a repository. Unlike the tool
proposed by Monegan, Gicca’s tool supports reuse of
software components in the different phases of software
life cycle, not just source code.
On the other hand, Henniger [8] developed the tool
CodeFinder which is composed of three main parts: the
tool (PEEL) which is responsible for populating the
repository with reusable components of functions and
routines obtained from source code in Emacs Lisp [9], a
search mechanism, and a fitting tool to refine the
repository when necessary. The tool uses two techniques:
an intelligent recovery method which finds information
related to the query, and a query building supported
through incremental refinement of queries. The system
provides a user interface that implements the search and
navigation mechanisms that allows the user to view and
navigate the hierarchy of the repository and build search
queries.
There has been more specific work focused on the reuse of
UML diagrams, such as Blok and Cybulski [10] who
proposed a method for reuse use cases specifications using
WordNet language to classify the lexical and semantic
flows events. The tool calculates the similarity of the use
cases according to information obtained in the flow of

events and uses an information retrieval technique.
Meanwhile, Robinson and Woo [11] proposed techniques
for reuse UML artifacts, specifically the sequence
diagrams. The main idea of the work is to find the model
that best fits the desired features or functionality through
REUSE tool, which uses Subdue algorithm [12] to find
links between different sequence diagrams using the
information stored in elements of stereotypes such as
names, classes, etc. These two works differ from ours in
aspects like UML software artifacts to reuse and the
methodology used.
Happel et al. [13] presented Kontor, an approach which
aims to store and query XML-based metadata, on different
software artifacts, including UML components, in a
central repository to encourage reuse. It has several
ontologies to describe knowledge about the artifacts and
technologies and / or programming languages, software
licenses, etc. The work also includes a number of
SPARQL queries that can be executed by the software
developer to recover pieces of software to fit a need to
develop specific application. In this work, like in ours,
ontologies are used to store and retrieve software artifacts,
but it is not geared to specific reuse of use cases diagrams.

3. Reuse of Use Cases Diagrams: An
Approach based on Ontologies and
Semantic Web Technologies

As part of our research on the topic of software reuse, we
developed a tool that allows reuse of use cases diagrams in
UML. The main idea of this paper is to manipulate and
store relevant information of use cases diagrams in an
OWL ontology. By having this ontological representation
of the use cases diagrams information within a repository,
the tool allows the user to make parameterized queries,
through a graphical interface, about the diagrams that he is
interested in getting, while it increasing the accuracy of
the results obtained by taxonomic characteristics, capacity
for inference and management concepts that have OWL
ontologies.
Below, it is presented the technologies used to develop the
tool. Then, we define the architecture of the tool and its
implementation details.

3.1 Technologies and Tools

In this section we briefly describe the technologies and
software tools used during the development of our tool:

a) UML and Use Cases Diagrams
UML is the most used and known language to model
application structure, behavior and architecture but also
business process and data structure. It is a graphical

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 25

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

language for visualizing, specifying, constructing, and
documenting a software system [14].
Use cases diagrams are a type of UML diagram. Use cases
diagrams are a technique to specify the behavior of a
system, capture its requirements and guide the
development process [15].
The most important concepts that define the use cases
diagrams are:
Actors: An actor is a representation of a person, system or
machine that interacts with the software system being
developed.
Use Case: A task that must be undertaken with the support
of the system being developed. A use case represents a
particular functionality of the system.
Relations: Represent dependency between use cases or
between actors and use cases, so that we can set the
behavior of the system by integrating each feature. Use
case diagrams in UML support partnership, inclusion,
extension and generalization relations.

b) XML Metadata Interchange – XMI

XMI is a standard of the Object Management Group
(OMG) for exchanging metadata level information via
XML. It is a specification for exchanging diagrams.
According to the active site OMG, XMI is defined as: "A
model driven XML integration framework for defining,
interchanging, manipulating and integrating XML data
and objects" [16].
XMI architecture allows simplifying the communication
between applications of different technologies saving
much time and works, also enhances the reuse of objects
and components.

c) Ontology Web Language – OWL
OWL is a markup language for publishing and sharing
data using ontologies, which are defined as explicit
specifications of conceptualizations, in order to enable the
behavior and reuse of knowledge [17] [18].
OWL is a Semantic Web technology, which is defined by
the W3C as an extended Web, endowed with greater
meaning in which any Internet user can find answers to his
questions more quickly and easily with better-defined
information. Thus, through the Semantic Web we can get
solutions to common problems in finding information
through the use of a common infrastructure, whereby it is
possible to share, to process and transfer information
easily [19].

d) Java and Netbeans IDE
Java is an object-oriented programming language
developed by Sun Microsystems, independent of the
platform on which we use the applications made with this
language. For its part, Netbeans is a development platform

that lets us work with Java and other programming
languages. It lets work with the Swing graphics library.

e) JDOM
JDOM is an open source library for handling XML data
optimized for Java. It allows create, read and manipulate
XML files easily in any Java application [20].

f) Jena Framework
Jena is a Java framework for building Semantic Web
applications. It provides a collection of tools and Java
libraries to help us to develop semantic web and linked-
data applications, tools and servers. It includes a
programming environment for RDF, RDFS and OWL, and
persistent memory storage, a SPARQL query engine and
an inference engine based on rules [21].

g) SPARQL Language
SPARQL is a query language and a protocol for accessing
RDF. Like SQL, it is necessary to distinguish between the
query language and the engine for storage and retrieval of
data; for this reason, there are multiple implementations of
SPARQL, usually associated with development
environments and platform technologies. For our specific
case, ARQ is used as a query engine that supports
SPARQL [22].

3.2 Tool Architecture

The steps required to implement reuse of use case
diagrams through our tool is defined as follows:
Creation of use case diagrams and exportation to XMI:
The use cases diagrams are modeled using a CASE tool
for UML like StarUML [22], Rational Rose [23],
ArgoUML [24], among others. Once they are created, we
export them via XMI export option offered by most of
these programs. The XMI files are stored in a specific
directory within the server.
Storage of information of use case diagrams into OWL
ontology: Our tool has an option that allows the user to
load XMI files derived from use cases diagrams in UML.
Also it has a GUI that allows entering information which
can enrich the knowledge we have of the diagrams.
Immediately after the XMI file is loaded into the system,
tool handles it internally to obtain information about actors
and use cases. Once this information and the information
entered through the GUI are obtained, it creates new
individuals which form part of the OWL ontology.
Persistent storage of OWL ontology in MySQL: Once
the new individuals are obtained, the ontology is stored in
a MySQL database. Thus, the ontology and its instances
will be available for later reference.
Search and retrieval use case diagrams in XMI format:
Through the tool, the user can search use case diagrams

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 26

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

that were stored previously. The user employs a number of
parameters to define his query, the tool interprets the user's
request as a query over OWL ontology that is stored in
MySQL, then it retrieves those individuals that match the
query and finally results are presented as XMI files
associated with these individuals or entities.
Figure 1 shows a component diagram that conceptualizes
the architecture of our tool, according to the phases we
have described here.

Fig. 1 Architecture of the tool

3.3. Implementation

Our tool is developed using Java programming language
and the Jena framework. It consists of two main GUIs
created using the Swing graphics library: one for the XMI
file upload and insert additional information for use cases
diagrams and another for searching and retrieving
information.
It was created an OWL ontology, using the Jena
framework, which has all the necessary classes and
properties to store information of diagrams. The ontology
provides a categorization by type of business and project.
Figure 2 shows the graphical interface through which the
user uploads an XMI file and enters additional and
relevant information associated with the use cases diagram.
The user searches and enters the XMI file and fills
additional information about the use case diagram. A class
named XMILoad handles the XMI file loading process
and obtains actors and use cases of the file with the help of
JDOM, and the class named AddIndividuals builds the
OWL structures necessary to add new individuals with
their properties in the base ontology.

Fig. 2 GUI for Use Cases Diagrams Registration

The base ontology is stored in a MySQL database. Jena
allows persistent storage of ontologies through its RDB
subsystem. A class named AddIndividuals makes a
connection to the base ontology stored in MySQL and
adds any new individuals.
As part of the additional information, it is allowed to enter
the category or type of business which is associated with
the use case diagram, besides the project to which it
belongs. This information is available because there is an
interface that allows adds new categories and another to
enter new projects. Then, these new categories and
projects are also stored in the ontology as individuals thus
allowing being loaded from the database to their use.
The search and retrieval of the use case diagrams in XMI
format is carried out through two classes, one for the
building of SPARQL queries and another for the retrieval
and presentation of information.
Figure 3 shows the graphical interface to search use case
diagrams in XMI format.

Fig. 3 GUI for Search Use Cases Diagrams

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 27

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Through a class named GetQuery it is constructed
SPARQL sentences from the information entered by the
user via the GUI.
A class, named IndividualsRecovery, brings back and
presents use case diagrams in XMI format which match
with user search’s parameters, including a brief
description of them. This is possible because individuals
in the ontology, that represent use case diagrams, have an
ID which identifies them with their respective XMI file.
The user will select the XMI file he wants and will
download it for reuse.
Each time an XMI file that defines a use case diagram is
downloaded for reuse, a weight will be added in the
ontology so that it serves as feedback to determine how
useful being the diagram and to give it priority in future
searches.
Figure 4 shows the graphical user interface that presents
the results obtained after executing the query according to
the parameters entered.

After the XMI file that defines the use case diagram
required is downloaded, it can be opened through any
UML modeling tool.
For example, Figure 5 shows how an XMI file that was
recovered by the tool can be imported and displayed in
Rational Rose, ArgoUML and StarUML.

4. Conclusions

In this paper we present an approach to reuse use case
diagrams by storing their information in OWL ontology
and the implementation of a tool in Java, using Semantic
Web technologies and tools like Jena framework and
SPARQL query language. This tool allows querying
individuals of the OWL ontology and retrieving associated
use case diagrams, in XMI format, according to the users’
input parameters through the GUI search.
The storage of the information of use cases diagrams in an
ontology allows adding semantic to their definition, which
benefits the process of searching and retrieving them, as
they leverage the capabilities of inference that have the
OWL ontologies, feature that allows to generate
knowledge from previous knowledge.
We believe that the main advantages obtained with the use
of this tool are: saving time and effort during the stage of
requirements analysis and modeling, and reliability in the
use case diagrams that have been recovered.
It is very important to remark that this work is limited to
the reuse of use case diagrams. Currently it does not work
for other UML diagrams.
As future work, we plan to carry out a series of case
studies that test the features and benefits of the tool. Then,
we will work on extending the tool to work with any UML
diagram, not only use case diagrams.

Acknowledgments

Work funded by the Secretaría Nacional de Ciencia,
Tecnología e Innovación (SENACYT) of Panamá through
the Proposal No. APY-GC10-024B.

References
[1] C.W. Krueger, “Software Reuse”. ACM Computing

Surveys, Vol. 24, No.2, 1992, pp.131-183.
[2] W.N. Robinson, and H.G. Woo, “Finding Reusable UML

Sequence Diagrams Automatically”, IEEE Software, Vol.21,
No.5, 2004, pp.60-67.

[3] Y. Kim, and E.A. Stohr, “Software Reuse: Survey and
Research Directions”. Journal of Management Information
Systems, Vol.14, No.4, 1998, pp. 113-147.

[4] H. Eichelberger, “Automatic layout of UML use case
diagrams”, SoftVis '08 Proceedings of the 4th ACM
symposium on Software visualization. Munich, Germany,
2008, pp.105-114.

[5] A. Cockburn, Writing Effective Use Cases. Addison-
Wesley Longman Publishing Co. Inc., Boston, MA. 2000.

[6] M.D. Monegan, An Object-Oriented Software Reuse Tool.
Technical Report, Massachusetts Institute of Technology
Cambridge, MA, USA, 1989.

[7] G. Gicca, “Reuse system software repository tool concepts”,
ACM SIGAda Ada Letters, Vol.11, No.1, 1991, pp. 70-89

[8] S. Henninger, “An Evolutionary Approach to Constructing
Effective Software Reuse Repositories”, ACM Transactions

Fig. 4 GUI for Results Presentation

Fig. 5 Visualization of an XMI File retrieved through the tool

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 28

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

on Software Engineering and Methodology (TOSEM),
Vol.6, No.2, 1997, pp.111-140

[9] R.J. Chassell, An Introduction to Programming in Emacs
Lisp. GNU Press - Free Software Foundation, Boston, MA,
2009

[10] M.C. Blok, and J.L. Cybulski, “Reusing UML
Specifications in a Constrained Application Domain”,
APSEC 98 Proceedings of the Fifth Asia Pacific Software
Engineering Conference. Washington, USA, 1998, pp. 196.

[11] W.N. Robinson, and H.G. Woo, “Finding Reusable UML
Sequence Diagrams Automatically”, IEEE Software, Vol.21,
No.5, 2004, pp.60-67.

[12] D.J. Cook, et al., “Subdue: compression-based frequent
pattern discovery in graph data”, Proceedings of the 1st
international workshop on open source data mining:
frequent pattern mining implementations (OSDM 05).
Chicago, USA, 2005, pp.71-76.

[13] H. Happel, et al., “KOntoR: An Ontology-enabled
Approach to Software Reuse”, Proceedings of the
Eighteenth International Conference on Software
Engineering Knowledge Engineering (SEKE'2006). San
Francisco, USA, 2006, pp. 349-354.

[14] OMG, 1997. UML Resource Page. [online] Disponible en:
http://www.uml.org/

[15] I. Jacobson, et al., Object-Oriented Software Engineering –
A Use Case Driven Approach, Addison – Wesley, 1992.

[16] OMG, 2005. Catalog of OMG Modeling And Metadata
Specifications. [online] Disponible en:
http://www.omg.org/cgi-bin/doc?formal/07-12-02

[17] Bechhofer, S. et al., 2004. OWL Web Ontology Language
Reference. [online] Disponible en: http://www.w3.org/TR/
owl-ref/

[18] G. Guizzardi, “The role of foundational ontologies for
conceptual modeling and domain ontology representation”,
7th International Baltic Conference on Databases and
Information Systems. Vilnius, Lithuania, 2006, pp.17-25.

[19] W3C, 2005. Guía Breve de Web Semántica. [online]
Disponible en: http://www.w3c.es/divulgacion/guiasbreves/
websemantica

[20] JDOM Project, 2000. JDOM. [online] Disponible en:
http://www.jdom.org/

[21] SourceForge, 2000. Jena - A Semantic Web Framework for
Java. [online] Disponible en: http://jena.sourceforge.net/

[22] G. Lausen, et al., “Foundations of SPARQL query
optimization”, Proceedings of the 13th International
Conference on Database Theory (ICDT '10). Lausanne,
Switzerland, 2010, pp. 4-33.

[23] StarUML. StarUML - The Open Source UML/MDA
Platform. [online] Disponible en:
http://staruml.sourceforge.net/en/

[24] IBM, Rational Rose Enterprise, [online] Disponible en:
http://www-
01.ibm.com/software/awdtools/developer/rose/enterprise/in
dex.html

[25] CollabNet, 2009, ArgoUML. [online] Disponible en:
http://argouml.tigris.org/

Belén Bonilla-Morales is a student of the Master of Science in
Information and Communication Technology at the Technological
University of Panama. She was awarded a Bachelor’s degree in
Engineering and Computer Science from the Technological

University of Panama in 2009. Her research interests include
Software Engineering, Semantic Web, Grid Computing and other
topics.

Sérgio Crespo is a professor at the Universidade do Vale do Rio
Dos Sinos - Brasil, PhD awarded by Pontifícia Universidade
Católica do Rio de Janeiro.

Clifton Clunie is a professor at the Technological University of
Panama, PhD awarded by the Universidade Federal do Rio de
Janeiro.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 29

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

