
Ontology Based Feature Driven Development Life Cycle

Farheen Siddiqui1, M. Afshar Alam1

 1 Department of Computer Science, Hamdard University, New Delhi -110025 India

Abstract

The upcoming technology support for semantic web
promises fresh directions for Software Engineering
community. Also semantic web has its roots in knowledge
engineering that provoke software engineers to look for
application of ontology applications throughout the
Software Engineering lifecycle. The internal components
of a semantic web are “light weight”, and may be of less
quality standards than the externally visible modules. In
fact the internal components are generated from external
(ontological) component. That’s the reason agile
development approaches such as feature driven
development are suitable for application’s internal
component development. As yet there is no particular
procedure that describes the role of ontology in FDD
processes. Therefore we propose an ontology based
feature driven development for semantic web application
that can be used form application model development to
feature design and implementation. Features are precisely
defined in the OWL-based domain model. Transition from
OWL based domain model to feature list is directly
defined in transformation rules. On the other hand the
ontology based overall model can be easily validated
through automated tools. Advantages of ontology-based
feature Driven development are also discussed.
Keywords: Semantic Web , Feature Driven Development ,Agile
Development.

1. Introduction

The Software Engineering and Knowledge Engineering
groups work on overlapping domain. Software
Engineering people pay more attention to software
modeling and Knowledge Engineering community has
come up with variety of modeling approaches in order to
realize the vision of the semantic web [1].Semantic web
has made this overlap even more wide but still there is less
forums for discussing synergies is (e.g. SWESE1, SEKE2
and W3C3) .The methods on integrating Software and
Knowledge Engineering approaches focus on approaches
of meta-modeling, but are abstract for software engineers
in terms of there application in software process. Current
approaches of modeling only partially solve the problem

related to component reuse, composition, validation,
information and application integration, software testing
and quality. Such basic needs are generating new
approaches towards every single aspect in software
engineering.
Domain analysis is an essential activity for successful
reuse across applications in the same domain. Domain
model is essential for domain and application-specific
development. And therefore should meet some
requirements. First, it should provide guidance for the
design of architecture and components. Second, the model
should provide means to get validated against system
constraints. Third, it should be customizable for specific
application. In “semantic web” era, developer would
discover shareable domain models and knowledge bases
from a variety of interrelated repositories and then connect
them together with application specific components. Thus
all applications that share overlapping domain models
would then have a certain degree of interoperability built
in. These sharable domain models are referred as domain
ontology and provide many benefits such as model reuse,
flexibility, consistency checking and reasoning. Also new
technologies and tools have been developed for ontology
representation, machine-processing, and ontology sharing.
This makes their adoption in real-world applications much
easier. While ontologies are about to enter mainstream
Software Engineering practices, their applications in
software engineering are manifold. Despite of using a well
defined domain model it is not uncommon for software
projects to exceed budget, blow schedule, and deliver
something less than desired .The main reason behind this
is the scenario of ever changing user requirement and lack
of communication between customer and developer team.
Therefore a process for delivering frequent, tangible,
working results is most desired. Agile development
approaches focus on these issues and feature driven
development is among one of the approaches towards it.
The remainder of this paper is organized as follows.
Section 2 presents the ontology based feature driven
development and the stages involved in it. Section 3
introduces the ontology-based “overall model”, Section 4
elaborates the process of feature list development and
planning and section 5 discuss about component

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 207

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

development. Finally, we draw our conclusions with
discussion of ontology-based feature modeling and future
work in section 6.

2. Feature Driven Development

Feature Driven Development is a model-driven short-
iteration process. It begins with establishing an “overall
model” shape. Then it continues with a series of two week
“design by feature, build by feature” iterations. The
features are small “useful in the eyes of the client” results.
Iteration like “build the admission subsystem” would take
too long to complete. Iteration like “build the data access
layer” is not exactly client-valued. In contrast, a small
feature like “assign unique enrollment number” is both
short and client-valued. FDD is based on its first process
of developing overall model. This process is so critical
that it is referred as process 1 in FDD life cycle. Therefore
a strictly defined modeling basis for “overall model” is
essential, which should provide a mechanism to connect
model elements in various development phases. Ontology
related theory is a suitable way to achieve our goals.
Ontology is a conceptualization of a domain or subject
area typically captured in an abstract model of how people
think about things in the domain [2]. Rubén [2] considers
domain models as narrow or specialized ontology, and the
main difference is that domain models define abstract
concepts in an informal way and have no axioms. Because
of the facilities for the generalization and specialization of
concepts and the unambiguous terminology it provides [3],
ontology has been widely used in domain knowledge
representation and requirement modeling, reuse and
consistency checking. For example, Sugumaran etc. [4]
proposed a semantic-based approach to component
retrieval, in which ontology and domain models are
adopted for capturing application domain specific
knowledge to express more pertinent queries for
component retrieval. Girardi etc. [3] proposed GRAMO,
an ontology based technique for the specification of
domain and user models in Multi-Agent domain
engineering.
The purpose of this paper is to reduce the gap between
knowledge engineering and software engineering by using
ontology in every step of a FDD process.This paper
proposes an ontology-based feature driven development
methodology, in which OWL ontology is considered as an
overall model and is used at every step of FDD. In this
way, we can provide better support for domain modeling,
and succeeding domain design and implementation. First,
ontology-based feature model can be formally represented
easily and validation of the model can be realized through
ontology reasoning. Second, the ontology-based
unambiguous terminology provide precise and detailed
semantic knowledge for the domain, so the ontology based

feature model can also be adopted as the domain business
model and contain enough information for component
description and architecture design.

3. Ontology Based Feature Driven
Development

In this section, we will present method of using ontologies
in the context of FDD. The presentation will be in the
order of FDD life cycle as described in fig 1. In each step
we will discuss how ontology can be used and what
benefits we can achieve by its usage.
Traditionally FDD life cycle is based on following five
processes.:
Process #1: Develop an overall model (using initial
requirements/ features, snap together with components,
focusing on shape).
Process #2: Build a detailed, prioritized features list.
Process #3: Plan by feature.
Process #4: Design by feature (using components,
focusing on sequences).
Process #5: Build by feature.
For ontology based feature driven development we have
merged these into three stages as depicted in Fig 1. At
each stage ontology is used as the basic building block.
Software modeling languages and methodologies can
benefit from the integration with ontology languages such
as RDF and OWL in various ways, e.g. by reducing
language ambiguity, enabling validation and automated
consistency checking Ontology languages provide better
support for logical inference, integration and
interoperability than MOF-based languages. UML-based
tools can be extended more easily to support the creation
of domain vocabularies and ontologies. Since ontologies
promote the notion of identity, Ontology Definition
Metamodel and related approaches simplify the sharing
and mediation of domain models. Since a domain model is
initially unknown and changes over time, a single
abstraction and separation of concerns is considered
feasible if not necessary Therefore a single representation
of the domain model should be shared by all participants
throughout the lifecycle to increase quality and reduce
costs. The mapping of a domain model to code should
therefore be automatized to enable the dynamic use by
other components and applications. Fig 1 depicts the three
dimensional view of FDD life cycle that uses semantic
web technologies at each stage of development. FDD
begins with application model development. We use OWL
and SWRL to define the entities, classes, hierarchies and
domain rules in form of problem ontology. At second
process the feature list is generated from the problem
ontology and planning is done with SQWRL[15].At final
process of component building each feature generated

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 208

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

from problem ontology is designed and implemented using
APIs like jena.In the following

Fig. 1 FDD Life Cycle Model.

4. Develop an Overall Model

Developing the initial model shape needs involvement of
both domain and development members. Domain member
starts with presenting an abstract view and scope of the
system within application context. The domain and
development members develop a rough model that can be
followed at the initial stage. Later on the domain and
development member stepwise explores each detail aspect
of the system and merge the understanding in the initial
model alongside adjusting model shape. The development
of overall model starts when the client is ready to proceed
with the building of a system but he might not express the
requirement in any concrete format. Hence at first this
phase deals with gathering the desired system functionality
from the customers. Since the involved software engineers
are often no domain experts, they must learn about the
problem domain from the customers. A different
understanding of the concepts involved may lead to an
ambiguous, incomplete specification and major rework
after system implementation. Therefore it is important to
assure that all participants in the phase have a shared
understanding of the problem domain. Moreover, change
of requirements needs to be considered because of
changing customer’s objectives.
 An ontology can be used for both, to describe
requirements specification documents [5, 6] and formally
represent requirements knowledge [7,8]. Ontologies can

cover semi-formal and structured as well as formal
representation [7]. Further, the “domain model” represents
the understanding of the domain under consideration, i.e.
in the form of concepts, their relations and business rules.
It is formalized using a conceptual modeling language
such as the UML. Moreover, the problem domain can be
described using an ontology language, with varying
degrees formalization and expressiveness. In contrast to
traditional knowledge-based approaches, e.g. formal
specification languages, ontologies seem to be well suited
for an evolutionary approach to the specification of
requirements and domain knowledge [7] that is needed to
achieve agility in development cycle. Moreover,
ontologies can be used to support requirements
management and traceability [6]. Automated validation
and consistency checking are considered as a potential
benefit compared to semi-formal or informal approaches
providing no logical formalism or model theory. Finally,
formal specification may be a prerequisite to realize
model-driven approaches in the design and
implementation phase. At the end of the process 1, an
overall ontology based model is developed and based on
that an informal feature list is noted down. In this paper to
support the life cycle, we have taken an example of
University system. Following the above procedure the
developer and domain expert build Education ontology in
Protégé .Fig 2 shows graphical representation of
Education ontology developed in Protégé.

Fig. 1 Education Ontology in Protégé.

Ontologies are purely conceptual models that capture
domain concepts and neglects domain-restricted rules. If
the requirements model violate these rules or contradict
the usual business behavior, they become unreasonable.
We have used SWRL to model the integrity rules and
derivation rules which restrict the business behavior. The

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 209

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

requirements model represented by domain ontology can
be checked for consistency using HermiT reasoners and
rules can be checked with Jess rule Engine.Thus model
development process is both guided by domain ontology
and restricted by domain rules. Therefore, the model
would comply with both business needs and domain
knowledge. A rule contains one or more antecedent and
one consequent, the description is as follows:

<owlr : rule rdf : ID =″rule ID″>
<owlr : annotation >ruleName</ owlr :
annotation >
<owlr :body>antecedent</ owlr :body>
<owlr :head>consequent</ owlr :head>
</ owlr : rule>
Consider the rule that a person having a salary associated
is an employee. This rule can be ststed in SWRL as:

Person(?p) ^ salary(?p, ?s) ->
Employee(?p)
and encoded in ontology as
DLSafeRule>
<Body>
<ClassAtom>
<Class IRI="#Person"/>
<Variable IRI="urn:swrl#p"/>
</ClassAtom>
<DataPropertyAtom>
<DataProperty IRI="#salary"/>
<Variable IRI="urn:swrl#p"/>
<Variable IRI="urn:swrl#s"/>
</DataPropertyAtom>
</Body>
<Head>
<ClassAtom>
<Class IRI="#Employee"/>
<Variable IRI="urn:swrl#p"/>
</ClassAtom>
</Head>
 </DLSafeRule>

6. Feature Generation and Planning

While building the feature list, the main task is to identify
the features, groups them hierarchically, prioritizes them,
and weights them. In subsequent iterations of this process,
smaller teams tackle specialized feature areas. We propose
to establish one to one correspondence between the
ontology and the feature list development. We can use the
ontology develop at previous step to generate features
supported by it and can also group features into feature
set.

 5.1 Feature List Generation

The process starts with the informal features list from
FDD Process 1. It then:
_ transforms object property in the ontology into features
of their domain,
_ transforms classes in the ontology into feature sets
We can use the formats:
_ For features: <action> the <object property-range>
<by|for|of|to> a(n) <Class-name>
_ For feature sets: <Class-name> module including all
subclass of <Class-name>
_ For major feature sets: <ontology-name> management
For example in Education Ontology classes can be Student
, Department ,StudyProgram, Courses, Session
,Attendance ,Instructor etc.Also a object property
hasStudyProg has domain of Department and range of
StudyProg. Therefore a feature: department offers study
program can be considered as a feature in form
Offering of StudyProgram by Department, which is a
triple of form:
<action> <object property range> by|for|of|to <object
property domain>
This can be inferred from ontology as hasStduyProg is a
object property of Department and this feature belongs to
department module of education management. To exit this
process, the features-list team must deliver a detailed
features list, grouped into major feature sets and feature
sets.

5.2 Feature Planning

At planning stage the project manager, the development
manager, and the chief programmers establish milestones
The planning team determines the development sequence
and sets initial completion dates for each feature set and
major feature sets for “design by feature, build by feature”
iterations. Using the development sequence and the feature
weights as a guide, the planning team assigns classes to
class owners. Using the development sequence and the
feature weights as a guide, the planning team assigns chief
programmers as owners of feature sets (classes in
ontology). Every class in ontology can be associated with
a property of “hasowner”.A feature indicates the class(es)
involved and a query can be framed in SQWRL to fetch
the class owner of corresponding classes in ontology. For
example to find out owner of a particular class Instructor
for feature “assign Course to Instructor” the following
query can be used:
Course(?c) ^ Instructor(?I) ^ hasCourse(?I, ?c) ^
hasOwner(I,P)-> sqwrl:select(?I, ?P)

To exit this process, the planning team must produce a
development plan, subject to review and approval by the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 210

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

development manager and the chief architect. The plan
consist of an overall completion date, for each major
feature set, and feature: its owner and its completion date ,
for each class, its owner.

4. Component Development

This stage consists of iterations feature design, feature
implementation.

5.2 Feature Design

A chief programmer takes the next feature, identifies the
classes likely to be involved, and contacts the
corresponding class owners. This feature team works out a
detailed sequence diagram. Chief programmer identifies
the classes likely to be involved in the design of this
feature and identifies the developers needed to form the
feature team. He contacts those class owners, initiating the
design of this feature.While developing the design the
team also can look for components that already exist when
implementing functionality, since reuse can avoid rework,
save money and improve the overall system quality.
Usually, this search for reusable components takes place
after the analysis phase, when the functional requirements
are settled [9]. Ontologies can help here to describe the
functionality of components using a knowledge
representation formalism that allows more convenient and
powerful querying [10]. One approach implementing this
is the KOntoR system that allows storing semantic
descriptions of components in a knowledge base and
running semantic queries on it. Compared to traditional
approaches, ontologies provide two advantages in this
scenario. First, they help to join information that normally
resides isolated in several separate component
descriptions. Second, it provides background knowledge
that allows non-experts to query from their point of view .

5.2 Feature Implementation

Each class owner builds his object property for the feature.
He extends his class-based test cases and performs class-
level (unit) testing. Once the code is successfully
implemented and inspected, the class owner checks in his
class(es) to the configuration management system. When
all classes for this feature are checked in, the chief
programmer promotes the code to the build process.
At the end of this phase, the feature team must delivers
implemented and inspected classes and properties with
unit testing. The mapping of a domain model to code
should be automated to enable the dynamic use by other
components and applications. The programmatic access of
ontologies and manipulation of knowledge bases using
ontology APIs requires special knowledge by the

developers. Therefore an intuitive approach for object-
oriented developers is desirable [cf. 23]. This can be
achieved by ontology tools that generate an API from the
ontology, e.g. by mapping concepts of the ontology to
classes in an object oriented language. The generated
domain object model can then be used managing models,
inferencing, and querying. Tools supporting those features
are already available today, e.g. [12] and [13].The domain
model encoded in OWL can be used at implementation
time with OWL API.
Semantic Web applications usually need to make some
ontological commitments, i.e., they need to have hard-
coded knowledge about a certain domain ontology. In the
example above, the application has hard-coded behavior
that depends on the education.owl ontology, which
contains classes like Instructor and Course. The
application can exploit reasoning engines like Racer or
rule engines like SWRL to expose "intelligent" behavior.
All of this is controlled by some logic (in this example it is
Java code), which also interacts with the end user by
means of interface technologies like JSPs, Swing
applications, or Web Services. Protege-OWL API features
can be used for developing stand-alone applications. Such
applications can load ontologies from the Semantic Web,
perform queries on them, add or edit resources from the
ontology, classify instances and classes, and write out
resulting ontologies to a file. From an object-oriented
perspective, Owl API can generate code for class such as:
public interface Person {
 String getFirstName();

 void setFirstName(String value);
 ...

}
so that we can use code like this:
public interface Person extends
OWLIndividual {

 String getFirstName();
 void setFirstName(String value);
 ...
}

and then provide a default implementation like
the following scheme:
public class DefaultPerson extends
DefaultOWLIndividual implements Person
{

 public DefaultPerson(KnowledgeBase
kb, FrameID id) {
 super(kb, id);
 }

 public String getFirstName() {

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 211

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 RDFProperty property =
getOWLModel().getRDFProperty("firstName
");
 return (String)
getPropertyValue(property);
 }

 public void setFirstName(String
value) {
 RDFProperty property =
getOWLModel().getRDFProperty("firstName
");
 setPropertyValue(property,
value);
 }

 ...
}

7. Conclusions

 A strictly-defined formal basis is essential for applicable
domain modeling. In this paper, ontology is used as the
foundation of the FDD life cycle. Ontology has been
widely adopted in domain knowledge modeling and has
corresponding modeling language, such as
OWL.Furthermore, rule-based reasoning can be performed
on the ontology model for model validating. Establishing a
mapping between domain model and the architecture is the
objective of domain engineering [14]. However, there is a
large gap between the domain model representation and
actual implementation. We can reduce the gap by
establishing a smooth transition from elements in the
domain model (i.e. features) to elements in the architecture
model (i.e. components). In our approach, domain
ontology (i.e. the ontology-based overall model) is also
representation basis for component semantics. Our future
work will be based on the complete implementation of an
education system through feature driven development
using education ontology. Also in future we will develop
an ontology based architecture and design pattern for
semantic web application.
References
1. Berners-Lee, T., Hendler J. and Lassila, O.: The
Semantic Web. Scientific American 284(5) (2001)
2. Rubén Prieto-Díaz. A faceted approach to building
ontologies. Proceedings of IEEE International Conference
on Information Reuse and Integration (IRI 2003). 2003:
458~465.
3.Rosario Girardi, Carla Gomes de Faria. An ontology-
based technique for the specification of domain and user
models in multi-agent domain. CLEI electronic journal,
Vol.7(1), 2004.

4. Vijayan Sugumaran, Veda C. Storey. A semantic-based
approach to component retrieval. ACM SIGMIS Database,
Vol.34:pages 8-24, 2003.
5. Mayank, V., Kositsyna, N., Austin, M.: Requirements
Engineering and the Semantic Web, Part II.
Representation, Management, and Validation of
Requirements and System-Level Architectures. Technical
Report. TR 2004-14, University of Maryland (2004)
6. Decker, B., Rech, J., Ras, E., Klein, B., Hoecht, C.:
Selforganized Reuse of Software
Engineering Knowledge supported by Semantic Wikis. In:
Proc. of Workshop on Semantic Web Enabled Software
Engineering (SWESE). November (2005)
7 Lin, J., Fox, M. S.; Bilgic, T.: A Requirement Ontology
for Engineering Design. Enterprise Integration
Laboratory,, University of Toronto, Manuscript,
September (1996)
8. Wouters, B., Deridder, D., Van Paesschen, E.: The Use
of Ontologies as a Backbone for Use Case Management.
In: "European Conference on Object-Oriented
Programming (ECOOP 2000), Workshop : Objects and
Classifications, a natural convergence" (2000)
9. Cheesman, J. and Daniels, J.: UML Components: A
Simple Process for Specifying Component- Based
Software. Addison-Wesley, 2000.
13. Mili, A., Milli, R.., Mittermeir, R.T.: A Survey of
Software Reuse Libraries. In: Annals of Software
Engineering, vol. 5, (1998) 349-414
10. Happel, H.-J., Korthaus, A., Seedorf, S., Tomczyk, P.:
KOntoR: An Ontology-enabled Approach to Software
Reuse. In: Proc. of the 18th Int. Conf. on Software
Engineering and Knowledge Engineering (SEKE), San
Francisco, July (2006)
11. Knublauch, K.: Ramblings on Agile Methodologies
and Ontology-Driven Software
Development. In: Proc. of the Workshop SWESE, ISWC,
Galway, Ireland (2005)
12. Knublauch, H., Oberle, D., Tetlow, P., Wallace, E.: A
Semantic Web Primer for Object-Oriented Software
Developers. W3C Working Group Note,
http://www.w3.org/TR/sw-oosdprimer/, 9 March (2006)
13. Völkel, M.: RDFReactor - From Ontologies to
Programatic Data Access. In: Proc. of the Jena User
Conference 2006. HP Bristol, May (2006)
14 Kyo C Kang , Sajoong Kim , Jaejoon Lee , et al.
FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures.
Annals of Software Engineering,
1998,5 :143～168.
15. O'Connor, M.J. and Das, A. "SQWRL: a Query
Language for OWL" OWL: Experiences and Directions
(OWLED 2009), Fifth International Workshop, Chantilly,
VA, 2009.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 212

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

