
Improve Data Warehouse Performance by Preprocessing

and Avoidance of Complex Resource Intensive Calculations

Muhammad Saqib1, Muhammad Arshad2, Mumtaz Ali3, Nafees Ur Rehman4, Zahid Ullah5

 1,2 City University of Science & Information Technology,

Peshawar, KPK, Pakistan

3, 4, 5 Institute of Management Sciences,
Peshawar, KPK, Pakistan

Abstract

A Data Warehouse is a computer system designed for
archiving and analyzing an organization's historical data,
such as sales, customers, products, salaries, or other
information from day-to-day operations OLTP. Normally,
an organization summarizes and copies information from
its operational systems to the data warehouse on a regular
schedule, such as daily, weekly, monthly, quarterly or
annually; after that, management can perform complex
queries and analysis OLAP on the information without
slowing down the operational systems. Materialized views
can be one best option in this regard and can be used in a
number of ways. It can be used in distributed databases for
replication and can also be used for efficient provision of
data to a query through query re-writing. The process of
data provision to queries can further be expedited if
dependent child views are created on an already existing
materialized view. Furthermore, these child-views are
automatically created upon the creation of the base
materialized view with some restrictions. This results in
less-user dependent activity of creation of materialized
views based on some parameters. These parameters are the
number of child-materialized views and the type of the
data a view contain. In this paper, a balanced approach is
suggested to create sub-materialized views to answer user
queries without consulting the fact table or parent
materialized view that results in avoidance of resource
intensive calculations and joining of multiple tables.

Keywords: Materialized View, Aggregation Plan, OLTP,
OLAP.

1. Introduction

Most of the modern enterprises and organizations rely on
knowledge-based management systems. In such kind of
systems, knowledge is gained from data analysis.
Nowadays, knowledge-based management systems
include data warehouses as their core components. The
purpose of building a data warehouse is twofold. Firstly,
to integrate multiple heterogeneous, autonomous, and
distributed data sources within an enterprise. Secondly, to
provide a platform for advanced, complex, and efficient
data analysis. Data integrated in a data warehouse are
analyzed by the so-called On-Line Analytical Processing
(OLAP) applications designed among others for
discovering trends, patterns of behavior, and anomalies as
well as for finding dependencies between data. Massive
amounts of integrated data and the complexity of
integrated data that more and more often come from
WEB-based, XML-based, spatio-temporal, object, and
multimedia systems, make data integration and processing
challenging.[1]

Information and knowledge is one of the most valuable
assets of an organisation and when used properly can
assist in intelligent decision making that can significantly
improve the functioning of an organisation. Data
Warehousing is a recent technology that allows
information to be easily and efficiently accessed for
decision-making activities by collecting data from many
operational, legacy and possibly heterogeneous data

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 202

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

sources. On-Line Analytical Processing (OLAP) tools are
well-suited for complex data analysis, such as multi-
dimensional data analysis, and to assist in decision support
activities while data mining tools take the process one step
further and actively search the data for patterns and hidden
knowledge in the data held in the warehouse. In our
common practice, many organisations are building, and or
planning to develop, data warehouses for their operational
and decision support needs.[2]

Materialized views have been found to be very effective in
speeding up query, as well as update processing, and are
increasingly being supported by commercial database
systems. Materialized views are especially attractive in
data warehousing environments because of the query
intensive nature of data warehouses. [3] Typical Data
warehouse queries are complex and ad-hoc in nature and
normally these queries access huge volumes of warehouse
data and perform many joins and aggregations. Query
response time and throughput are therefore more
important than transaction throughput. The data
warehousing environment provides a computerised
interface that enables business decision-makers to
creatively approach, analyse and understand business
problems. The aim of the data warehouse system is to turn
data into strategic decision making information and to
bring solutions to users. This process is done by tuning the
data at many steps.[2]

Materialized view eliminates the overhead associated with
expensive joins and aggregations for a large or important
class of queries. Queries to large databases often involve
joins between tables, aggregations such as average, sum,
count or both aggregation & joins.

Materialized views can provide massive improvements in
query processing time, especially for aggregation queries
over large tables.[6] A materialized view takes a different
approach in which the query result is cached as a concrete
table that may be updated from the original base tables
from time to time. This enables much more efficient
access, at the cost of some data being potentially out-of-
date. It is most useful in data warehousing scenarios,
where frequent queries of the actual base tables can be
extremely expensive.

In addition, because the materialized view is manifested as
a real table, anything that can be done to a real table can
be done to it, most importantly building indexes on any
column, enabling drastic speedups in query time. In a
normal view, it's typically only possible to exploit indexes
on columns that come directly from (or have a mapping
to) indexed columns in the base tables; often this
functionality is not offered at all.

A multidimensional data warehouse (MDW) is a
repository in which data is organized along a set of
dimensions D = d1, d2…. dn. A possible way to design a
MDW is the star-schema in which, for each dimension,
there is a dimension table Di that has di as its primary key
and also uses a fact table. [3]
Materialized views were implemented first by
the Oracle database [9]. These storage structures
have attracted much attention since then. The life
cycle of MVs have three major stages:

View design: determining what views to materialize,
including how to store and index them.
View maintenance: efficiently updating materialized
views when base tables are updated.
View exploitation: making efficient use of materialized
views to speed up query processing. [8]

Creation and Maintenance
Data warehouses contain large amounts of information,
often collected from a variety of independent sources.
Decision support functions in a warehouse, such as on-line
analytical processing (OLAP), involve hundreds of
complex aggregate queries over large volumes of data. It
is not feasible to compute these queries by scanning the
data sets each time, Warehouse applications therefore
build a large number of summary tables, or materialized
aggregate views, to help them increase the system
performance. [5]

It is a matter of high concern to decide what data is to be
depicted in materialized views and in what numbers
materialized views should be created. This decision is
obviously influenced by the pattern users and applications
access the data. It may happen, if not properly given
attention, that a materialized view is created but the data
depicted in that materialized view is never or rarely
accessed. On the other hand, queries may not be redirected
to use materialized views, instead, base tables are accessed
in query responses.

The design, implementation and maintenance of
materialized views is not single time activity, this process
will be carried out through out the life of the data
warehouse and database systems. The DBA periodically
checks whether a materialized view is in use or not. If a
materialized view is not in use, it is dropped to achieve
space and time efficiency. New Materialized Views need
to be created incase if more data extraction queries are
accessing base tables. Various queries that require data
from one domain can easily be answered by creating a
relevant MV. There are various algorithms in this regards.
Like MiniCon Algorithm, it is a scalable algorithm for
answering queries using views. [7]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 203

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

(Figure1: Data Analysis Chart)

Types of Materialized Views:

The types of materialized views used are as follows:

a) Materialized views with aggregates:

Materialized views contain aggregates in data warehouses
for fast refresh to be possible. The valid aggregates
functions are Sum, Count, Average, Variance, Min, Max,
Standard Deviation etc

b) Materialize Views with Joins:

Some materialized views contain only joins and no
aggregates. The advantage of creating this type of view is
that expensive joins will be pre-calculated. A materialized
view containing only joins can be defined to be refreshed
On Commit or On Demand.

c) Nested Materialized Views:
A nested materialized view is that type of materialized
view whose definition is based on another materialized
view. A nested materialized view can reference other
relations in the database in addition to referencing
materialized views. [9]

2. Child-View Creation

Once a base-relation or a materialized view is created and
populated, then the process of creating child MVs is
started. In the first step the total number of columns is
determined. Afterwards, the data types of all columns are
determined. For this purpose data dictionary of the
database is retrieved.

Data types of the columns are also important in deciding
the kind of aggregation operation on the whole data set.
Types of values in a column are first scanned whether
these values can be used in aggregation or it can be made
part of a subset in the form a child materialized view. It is
a known fact that numeric data can easily be aggregated.

But there are certain values which can not be aggregated at
all, for example, columns containing IDs can not be used
in such context. We focus text databases in this work,
because objects of various kinds that can be referenced
from inside a database can not be aggregated. Images,
audio or video files which are referenced from inside the
database can not be aggregated or combined together as
we aggregate numeric data using AVG or SUM operation.
Character data again depends whether it can be used in
aggregation or not. Like if names are stored in a column,
so this column can not be summarized in any manner
considering the values it contain. Name column supports
no aggregation function excepts COUNT. But if we take
address, it can be taken for aggregation based on House,
Street, Sector, Town, City, Country and Region. address
supports partial aggregation as it can be used to aggregate
the data but standard functions of aggregation like SUM,
AVG can not be performed on it. And if we consider, that
means some string/character columns inherently have
hierarchies while others do not. In figure 2 we have shown
different data type’s columns, by the combination of these
we can create our child Materialized views.

(Figure 2: Aggregation Levels)

We need to look for columns where hierarchies can be
used as a tool to aggregate data. This can be done by
observing the dataset manually as the data dictionary can
not be used to have information regarding each column
about its aggregation. In a typical DBMS data dictionary,
no such information is found nor there do any space where
the schema designer can add this aggregation information.
Furthermore, in a dimensional context, the data warehouse
schema is variable which may lead to a bit of performance
overhead in maintaining such information. However, a
subschema specific to a base MV is created in this work to

Data Types

Integers Characters Date/Time
d

Others

ID Name Hire Date Pic

Desig.. DoB Thumb Sal

NIC Dept

DDaattaa

KKnnoowwlleeddggee

IInnffoorrmmaattiioonn

DDeecciissiioonn

DDiirreeccttiioonn

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 204

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

have information regarding each summarizable /
aggregable column. Then the kind of aggregation function
is decided for each column. If the column is numeric then
standard group function may be used for aggregation and
if it is a string (e.g. address) then contents of the value
may be used for aggregation and if it is a DATE/TIME
column then only compatible aggregation will be
performed. Then the level of aggregation is also decided
i.e. from the most granular to the most general level. This
information will be used in context with other partner
columns in a potential child MV. All such information
result in an AGGREGATION PLAN of the MV.

(Figure 3: MV Level of Abstraction)
Once an aggregation plan is finalized, then it can be
implemented. We have shown Level of aggregations in

figure 3. A table containing d columns can have 2d

various combinations of columns. In aggregation, the
number of combinations of columns may be double of this
because here content based aggregation is also performed.
This will result in too many child MVs which will be
surely unmanageable and unusable. For this either the
aggregation plan is again observed and those potentially
useful candidate MVs may be kept and rest of the MVs are

deleted. In order to answer a query, a data integration
system needs to translate a query formulated on the
mediated schema into one that refers directly to the
schemas in the data sources. [5]

The following chart shows a comparison of time vs
queries complexity of base relation to MV tree.

S# Complexity Base Table Base MV Time/m sec

1 0 0 0 0

2 10 7 5 3.78

3 10 14 10 5.87

4 20 21 15 7.65

5 20 28 20 9.39

6 30 35 25 11.36

7 30 42 30 14.38

8 40 49 35 18.36

9 40 56 40 19.32

10 40 63 45 22.39

11 50 70 50 28.39

(Chart 1:
Complex Queries Vs Time Series for Base Relation & MV Tree)

3. Future Work

 Full Report

Quarter

Annual

Monthly

Weekly

MMaatteerriiaalliizzeedd VViieewwss
LLeevveell ooff AAbbssttrraaccttiioonn

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 205

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The automatic creation of child materialized view is really
a complex task. There are a lot of things needed to be
considered. While working on this paper, we have found
out areas where we think improvements can be brought in.
The data dictionary of a database or data warehouse needs
modification to include meta data for deciding which
numeric and string attributes can be exploited for creating
new MVs. Attributes containing multimedia data are not
in the scope of this paper. However, our work can be
extended by including multimedia data operations as well
in MV child creation plan. The decision regarding the
number of child materialized view also difficult to answer,
so one can also find a balanced number of MVs with high
access frequency and remove the rest of the MVs

Conclusion
Materialized Views do contribute in answering queries
efficiently to improve the over all performance of Data
Warehouse. Efficient query answering can further be
speeded up by creating various child materialized views.
Data extraction queries select the best MV which can
fulfill its data requirements. For creating child MVs,
initially the data types of fields/columns of the base MV
are determined. All of the columns are grouped according
to the data types. Incase of numeric data types, those
columns are separated which can not be aggregated e.g,
ID, SSN, from numeric attributes where various
aggregation operations can be carried out. This whole
process is carried out for string attributes as well. This
whole process result into an aggregation plan, which later
on is translated into a script and is then executed. The
process of query answering is made efficient by having
more MVs having the potential data required to fulfill
maximum requirements of query.

References
[1] “New Trends in Data Warehousing and Data
Analysis”Series: Annals of Information Systems, Vol. 3
Kozielski, Stanislaw; Wrembel, Robert (Eds.) 1st Edition.
2nd Printing. 2009, XVIII, 364 p. 152 illus.

[2] “Advances and Research Directions in Data
Warehousing Technology”
Australasian Journal of Information Systems, Vol 7, No 1
(1999)
http://dl.acs.org.au/index.php/ajis/article/view/287

[3] “A Case for Dynamic View Management”
Yannis Kotidis AT&T Labs Research and Nick
Roussopoulos University of Maryland
ACM Transactions on Database Systems, Vol. 26, No. 4,
December 2001, Pages 388–423.

[4] “Answering queries using views: A survey”
A.Y. Halevy Department of Computer Science and
Engineering, University of Washington, Seattle,WA,
98195

[5] “Data Cubes and Summary Tables in a Warehouse”
Inderpal Singh Mumick, Dallan Quass, Barinderpal Singh
Mumick, “Maintenance of June 1997 ACM SIGMOID
RECORD.

[6] “Materialized View Selection and Maintenance Using
Multi Query Optimization”
Hoshi Mistry, Prason Roy, S.Sudershan, K.Ramamritham
ACM SIGMOD 2001 May 21-24, Santa Barbara,
California USA

[7] “MiniCon: A scalable algorithm for answering queries
using views” Rachel Pottinger, Alon Halevy University
ofWashington, Department of Computer Science and
Engineering, Box 352350 Seattle,WA 98195, USA

[8] “Optimizing Queries Using Materialized Views: A
Practical, Scalable Solution”
 Jonathan Goldstein and Per-Åke Larson
Microsoft Research, One Microsoft Way, Redmond, WA
98052

[9] “Oracle 9i” Data Warehousing Guide, Release 2 (9.2),
March 2002, A-96520-01

[10] “Oracle Database 11g for Data Warehousing and
Business Intelligence” Oracle Publishers.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 206

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

