
Mercator as a web crawler

Priyanka-Saxena1
 1 Department of Computer Science Engineering, Shobhit University,

Meerut, Uttar Pradesh-250001, India

Abstract

The Mercator describes, as a scalable, extensible web crawler
written entirely in Java. In term of Scalable, web crawlers must be
scalable and it is important component of many web services, but
their design is not well-documented in the literature. In this paper,
we enumerate the major components of any scalable web crawler,
comment on alternatives and tradeoffs in their design, and de-
scribe the particular components used in Mercator. We also de-
scribe Mercator’s support for extensibility and customizability.
Finally, we comment on Mercator’s performance, which we have
found to be more efficient and comparable to that of other craw-
lers.

Keywords: Introduction, Related Work, Architecture, Compo-
nents, Extensibility, Conclusion.

1. Introduction

Designing a scalable web crawler comparable to general
crawler used by the major search engines is a complex en-
deavor. Due to the competitive nature of the search engine
business, there are few papers in the literature form for de-
scribing the challenges and tradeoffs of inherent web craw-
ler design. This paper describes, Mercator as a scalable,
extensible web crawler written entirely in Java for filling
the gap between the challenges comparable to that of other
crawlers.

 By scalable is define as, Mercator is designed to scale up
to the entire web, and used for fetching millions (tens of) of
web documents. We achieve scalability by implementing
our data structures with bounded amount of memory and
regardless for the size of the crawl. Vast majority of our
data structures are stored on disk, and small parts of them
are stored in memory for efficiency.

By extensible is define as, Mercator is designed in a mod-
ular way, with the expectation that new functionality will
be added by third parties. In practice, it has been used to
collect a variety of statistics about the web, and to perform
a series of random walks of the web.

The initial motivations is to collect statistics about the web
such as the size and the evolution of the URL space, the
distribution of web servers over top-level domains, the life-

time and change rate of documents, and so on. However, it
is hard to know a exact priority for which statistics are in-
teresting, and the topics of interest may change overtime.
Mercator makes it easy to collect new statistics—to confi-
gure for different crawling tasks—by allowing users to
provide their own modules for processing downloaded
documents.

The remainder of the paper is structured as follows. The
next section surveys related work. Section 3 describes the
main components of a scalable web crawler, the alterna-
tives and tradeoffs in their design, and the particular choic-
es we made in Mercator. Section 4 describes Mercator’s
support for extensibility.

2. Related work

Web crawlers— are almost as old as the web itself. Several
papers about web crawling were
presented at the first two World Wide Web conferences.
However, time to time, the web was considered challenges
like two to three orders of magnitude smaller. Today, those
systems did not address the scaling problems inherent in a
web crawler. Obviously, all of the popular search engines
use crawlers that must scale up to substantial portions of
the web such as two notable exceptions: the Google crawler
and the Internet Archive crawler.

The Google search engine is a distributed system that uses
multiple machines for crawling. The crawler consists of
five functional components running in different processes.

 A URL server process reads URLs out of a file
and forwards them to multiple crawler processes.

 Each crawler process runs on a different machine,
is single-threaded, and uses asynchronous I/O to
fetch data from up to 300 web servers in parallel.

 The crawlers transmit downloaded pages to a sin-
gle StoreServer process, which compresses the
pages and stores them to disk.

 The pages are then read back from disk by an in-
dexer process, which extracts links from HTML
pages and saves them to a different disk file.

 A URL resolver process reads the link file, derela-
tivizes the URLs contained therein, and saves the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 389

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

absolute URLs to the disk file that is read by the
URL server.

The Internet Archive also uses multiple machines to crawl
the web and each crawler process is assigned up to 64 sites
to crawl, but no site is assigned to more than one crawler.
Each single-threaded crawler process reads a list of seed
URLs for its assigned sites from disk into per-site queues,
and then uses asynchronous I/O to fetch pages from these
queues in parallel. Once a page is downloaded, the crawler
extracts the links contained in it. If a link refers to the site
of the page it was contained in, it is added to the appropri-
ate site queue; otherwise it is logged to disk. Periodically, a
batch process merges these logged “cross-site” URLs into
the site-specific seed sets, filtering out duplicates in the
process.

In the area of extensible web crawlers, SPHINX system
provides some of the same customizability features as Mer-
cator. It provides a mechanism for limiting which pages are
crawled, and it allows customized document processing
code to be written. However, SPHINX is targeted towards
site-specific crawling, and therefore is not designed to be
scalable.

3. Architecture of a scalable web crawler

The basic algorithm executed by any web crawler takes a
list of seed URLs as a input and repeatedly execute the fol-
lowing steps. Remove a URL from the URL list; and de-
termine the IP address of its Host Name, download the cor-
responding document, and extract any links contained in
document. For each of the extracted links, ensure that it is
an absolute URL, and add URL to the list of URLs to
download, provided it has not been encountered before.

This basic algorithm requires a number of functional com-
ponents:
_ a component (called the URL frontier) for storing the list
of URLs to download;
_ a component for resolving host names into IP addresses;
_ a component for downloading documents using the
HTTP protocol;

Fig. 1. Mercator’s Main components

4. Mercator’s components

Mercator’s main components are described in figure 1. The
Web Crawling is performed by multiple worker threads and
each worker repeatedly performs the steps needed to down-
load and process a document. In the above figure 1, Merca-
tor’s components working shown in the form of steps are as
follows:-

(1) The first step is to remove an absolute URL from
the shared URL frontier for downloading.

An absolute URL begins with a scheme (e.g., “http”),
which identifies the network protocol that are implemented
by protocol modules. The protocol modules is to be used in
a crawl are specified in a user-supplied configuration file
which is dynamically laded at the start of the crawl, and
there is a separate instance of each protocol module per
thread, which allows each thread to access local data with-
out any synchronization.

(2) The second step is based on the URL’s scheme, the
worker selects the appropriate protocol module for
downloading the document and the protocol mod-
ule’s fetch method, which downloads the document
from the Internet.

(3) The third step is that the downloaded document
from the internet after fetching by protocol module
is write into a per-thread RewindInputStream (RIS)
. A RIS is an I/O abstraction that is initialized from
an arbitrary input stream, and that subsequently al-

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 390

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

lows that stream’s contents to be re-read multiple
times.(ADVANTAGE OF MERCATOR)

(4) \After successful completion of step third then the
forth step is the worker thread invokes the content-
seen test to determine whether this document (asso-
ciated with a different URL) has been seen before 4
. If document is not processed any further, and the
worker thread removes the next URL from the fron-
tier.

Every downloaded document has an associated MIME type
and a Mercator configuration file also associates MIME
types with one or more processing modules is an abstrac-
tion for processing downloaded documents, for instance
extracting links from HTML pages, counting the tags found
in HTML pages, or collecting statistics about GIF images.
Like protocol modules, there is a separate instance of each
processing module per thread.

(5) Based on the downloaded document’s MIME type,
the fifth step of the worker invokes the process me-
thod of each processing module associated with
that MIME type.

Note:-The Link Extractor and Tag Counter processing
modules in Figure 1 are used for text/html documents, and
the GIF Stats module is used for image/gif documents.

(6) The process method of the processing module ex-
tracts all links from an HTML page and each link is
converted into an absolute URL, and the sixth step
is tested against a user-supplied URL filter to de-
termine if it should be downloaded.(ADVANTAGE
OF MERCATOR)

(7) If the URL passes from the URL filter, the seventh
step is the worker performs the URL-seen test 7 ,
which checks if the URL has been seen before.

(8) if it is in the URL frontier or has already been
downloaded. If the URL is new, it is added to the
frontier.

4.1 The url frontier

The URL frontier is the data structure that contains all the
URLs that remain to be downloaded. Most crawlers work
by performing a breath-first traversal of the web, starting
from the pages in the seed set and this type of traversals are
easily implemented by using a FIFO queue.
In a standard FIFO queue, elements are dequeued in the
order they were enqueued. In the context of web crawling
matters are complicated by the multiple HTTP requests
pending to the same server. If multiple requests are in pa-
rallel, the queue’s remove operation should not simply re-
turn the head of the queue, but rather than the URL close to
the head whose host has no outstanding request.
To implement this politeness constraint, the default version
of Mercator’s URL frontier is implemented by a collection
of distinct FIFO sub queues. First, there is one FIFO sub

queue per worker thread. Second, when a new URL is add-
ed, the FIFO sub queue in which it is placed is determined
by the URL’s canonical host name. This design prevents
Mercator from overloading a web server, also handle a bot-
tleneck of the crawl.(ADVANTAGE OF MERCATOR).

Fig. 2. Data Structure of URL Frontier

4.2 The http protocol module

The purpose of a protocol module is to fetch the document
corresponding to a given URL using the appropriate net-
work protocol which is supported by Mercator include
HTTP, FTP, and Gopher.
The Mercator implement the Robots Exclusion Protocol,
which allows web masters to declare the wed crawler to
fetch a special document containing these declarations from
a web site before downloading any real content from it. To
avoid downloading the Robot Exclusion File(Robot.txt) file
on every request, Mercator’s HTTP protocol module main-
tains a fixed-sized cache mapping host names to their ro-
bots exclusion rules and due to this by default, the cache is
limited to 218 entries, and uses an LRU replacement strate-
gy.
Mercator uses its own “lean and mean” HTTP protocol
module; its requests time out after 1 minute, and it has mi-
nimal synchronization and allocation overhead.

Fig. 3. The HTTP Protocol Module

4.3 Rewind input stream

Mercator’s design allows the same document to be
processed by multiple processing modules. To avoid read-
ing a document over the network multiple times, Mercator
cache the document locally using an abstraction called a
RewindInputStream (RIS).
A RIS is an input stream with an open method that reads
and caches the entire contents of a supplied input stream

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 391

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

(such as the input stream associated with a socket). A RIS
caches small documents (64 KB or less) entirely in memo-
ry, while larger documents are temporarily written to a
backing file(limit 1 MB). RIS also provides a method for
rewinding its position to the beginning of the stream, and
various lexing methods that make it easy to build MIME-
type-specific parsers.

Fig. 4. The Rewind Input Stream

Fig. 5. The Rewind Process

4.4 Content seen test

In web, many documents are available under multiple times
with different URLs. There are also many cases in which
documents are mirrored on multiple servers show in Fig. 6.

These effects will cause any web crawler to download the
same document contents multiple times. To prevent
processing a document more than once, a web crawler may
wish to perform a content-seen test to decide if the docu-
ment has already been processed. Mercator using a content-
seen test makes it possible to suppress link extraction from
mirrored pages, which also offers the side benefit of allow-
ing us to keep statistics about the fraction of downloaded
documents that are duplicates of pages that have already
been downloaded.
To save space and time, Mercator uses data structure called
the document fingerprint set that stores a 64-bit checksum
of the contents of each downloaded document and also
compute the checksum using fingerprinting algorithm. Fin-
gerprints offer provably strong probabilistic guarantees that
two different strings will not have the same fingerprint.

Mercator maintains two independent sets of fingerprints: a
small hash table kept in memory, and a large sorted list
kept in a single disk file. Fig. 7. Content-Seen Test

The content-seen test first checks if the fingerprint is con-
tained in the in-memory table. If not, it has to check if the
fingerprint resides in the disk file. To avoid multiple disk
seeks and reads per disk search.
Mercator performs an interpolated binary search of an in-
memory index of the disk file to identify the disk block on
which the fingerprint would reside if it were present. It then
searches the appropriate disk block, again using interpo-
lated binary search. Fig. 8. Steps of Content-Seen Test

4.5 The url filtering

The URL filtering mechanism provides a customizable way
to control the set of URLs that are downloaded.
The URL filter class has a single crawl method that takes a
URL and returns a boolean value indicating whether or not
to crawl that URL. Mercator includes a collection of differ-
ent URL filter subclasses that provide facilities for restrict-
ing URLs by domain, prefix, or protocol type, and for
computing the conjunction, disjunction, or negation of oth-
er filters. Fig. 9. The URL Filter with example

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 392

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.6 Domain name service

Before using a web server, a web crawler must use the Do-
main Name Service (DNS) to map the web server’s host
name into an IP address. DNS name resolution is a well-
documented to avoid bottleneck of most web crawlers.

Mercator tried to alleviate the DNS bottleneck by caching
DNS results, but that was only partially effective and also
used its own multi-threaded DNS Resolver can resolve host
names much more rapidly than either the Java or Unix re-
solvers. This meant that only one DNS request on an un
cached name could be outstanding at once. The cache miss
rate is high enough that this limitation causes a bottleneck.
Fig. 10. Domain Name Resolution

Perform DNS looking accounted for 87% of each thread
elapsed time and reduce that elapsed time to 25%

4.7 The url seen test

Any web crawler will encounter multiple links to the same
document. To avoid downloading and processing a docu-
ment multiple times, a URL-seen test must be performed on
each extracted link before adding it to the URL frontier to
perform the URL-seen test. All of the URLs seen by Mer-
cator in canonical form in a large table called the URL set.
To save space, Mercator does not store the textual represen-
tation of each URL in the URL set, but rather a fixed sized
checksum. To reduce the number of operations on the back-
ing disk file, Mercator therefore keep an in memory cache
of popular URLs.

Unlike the fingerprints, the stream of URLs has a non-
trivial amount of locality (URL locality). So, each URL set
membership test induces one-sixth as many kernel calls as
a membership test on the document fingerprint set. Host
name locality arises because many links found in web pag-
es are to different documents on the same server. To pre-
serve the locality, we compute the checksum of a URL by
merging two independent fingerprints:

1. The fingerprint of the URL’s host name
2. The fingerprint of the complete URL

These two fingerprints are merged so that the high-order
bits of the checksum derive from the host name fingerprint.
As a result, checksums for URLs with the same host com-
ponent are numerically close together. So, the host name
locality in the stream of URLs translates into access locali-
ty on the URL set’s backing disk file, thereby allowing the
kernel’s file system buffers to service read requests from
memory more often. On extended crawls, this technique
results in a significant reduction in disk load, and hence, in
a significant performance improvement. Figure 11.Using an
in-memory cache of 2^18 entries and the LRU-like clock
replacement policy and Fig. 11. URL SEEN TEST

4.8 Synchronous and asynchronous i/o

Both Google and Internet Archive crawlers use single-
threaded crawling processes and asynchronous I/O to per-
form multiple download in parallel and they are designed
from the ground up to scale to multiple machines. Whereas,
Mercator uses a multi-threaded process in which each
thread performs synchronous I/O (It leads to a much simp-
ler program structure is the main advantage of Mercator)
and it would not be too difficult to adapt Mercator to run on
multiple machines. One strength of the Google and the In-
ternet Archive crawlers is that they are designed from the
ground up to scale to multiple machines. Fig.12. Synchron-
ous vs. asynchronous I/O

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 393

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4.9 Checkpointing

To complete a crawl of the entire web, Mercator writes
regular snapshots of its state to disk. An interrupted or ab-
orted crawl can easily be restarted from the latest check-
point. Mercator’s core classes and all user-supplied mod-
ules are required to implement the check pointing interface.
User-supplied protocol or processing modules are also re-
quired to implement the check pointing interface.
Checkpoints are coordinated using a global readers-writer
lock. Each worker thread acquires a read
share of the lock while processing a downloaded document.
Once a day, Mercator’s main thread acquires the write lock,
so it is guaranteed to be running in isolation and also it ac-
quired the lock, the main thread arranges for the checkpoint
methods to be called on Mercator’s core.

5. Extensibility

Mercator is an extensible crawler it means two things.
1. First, Mercator can be extended with new functio-

nality.
2. Second, Mercator can easily be reconfigured to

use different versions of most of its major compo-
nents.

Different versions of the URL frontier, document finger-
print set, URL filter, and URL set may be all are dynami-
cally “plugged into” the crawler means multiple versions of
each of these components, which we employ for different
crawling tasks.
Making an extensible system, Mercator requires three in-
gredients:
1. The interface to each of the system’s components

must be well-specified is defined by an abstract class.
2. A mechanism must exist for specifying how the craw-

ler is to be configured from its various components by
supplying a configuration file which specifies which
additional protocol and processing modules should be
used, as well as the concrete implementation to use for
each of the crawler’s “pluggable” components.

3. Sufficient infrastructure must exist to make it easy
to write new components such as rich set of utility li-
braries with a set of existing pluggable components.

To demonstrate Mercator’s extensibility, here we describe
some of the extensions.

5.1 Protocol and processing module

By default, Mercator will crawl the web by fetching docu-
ments using the HTTP protocol, extracting links from doc-
uments of type text/html. To fetch documents using addi-
tional protocols or to process the documents once they are
fetched, new protocol and processing modules must be
supplied.

The abstract Protocol class includes two methods.
1. The fetch method downloads the document cor-

responding to a given URL, and
2. the new URL method parses a given string, return-

ing a structured URL object.
The abstract Analyzer class is the superclass for all
processing modules and defines a single process method
which is responsible for reading the document and
processing it appropriately. Analyzers often keep private
state or write data to the disk.
Other processing modules simply write the contents of each
downloaded document to disk. As another experiment,
WebLinter processing module that runs the weblint pro-
gram on each downloaded HTML page to
check it for errors, logging all discovered errors to a file.

5.2 Alternative url frontier and implementation

We described one implementation of the URL frontier data
structure and that implementation on a crawl of our corpo-
rate intranet, with the drawback is that multiple hosts might
be assigned to the same worker thread, while other threads
were left idle. This situation is occur on an intranet because
intranets typically contain a substantially smaller number
of hosts than the internet at large.
To restore the parallelism, an alternative URL frontier
component that dynamically assigns hosts to worker
threads and that at most one worker thread will download
documents from any given web server at once. It also max-
imizes the number of busy worker threads within the limits
and all worker threads will be busy so long as the number
of different hosts in the frontier is at least the number of
worker threads.

5.3 Configuring mercator as random walker

Mercator used to perform random walks of the web in order
to gather a sample of web to measure the quality of search
engines. A random walk starts at a random page taken from
a set of seeds. The next page to fetch is selected by choos-
ing a random link from the current page. The process con-
tinues until it arrives at a page with no links, at which time
the walk is restarted from a new random seed page. The
seed set is dynamically extended by the newly discovered
pages, and cycles are broken by performing random res-
tarts.
Performing a random walk of the web is quite different
from an ordinary crawl for two reasons. First, a page may
be revisited multiple times during the course of a random
walk. Second, only one link is followed each time a page is
visited.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 394

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

6. Conclusions

Scalable web crawlers are an important component of many
web services, but they have not been very well documented
in the literature. Building a scalable crawler is a non-trivial
endeavor because the data manipulated by the crawler is
too big to fit entirely in memory, so there are performance
issues relating to how to balance the use of disk and memo-
ry. This paper has enumerated the main components re-
quired in any scalable crawler, and it has discussed design
alternatives for those components.
The paper described Mercator; an extensible, scalable
crawler is design with the features a crawler core for han-
dling the main crawling tasks, and extensibility through
protocol and processing modules. Users may supply new
modules for performing customized crawling tasks. We
have used Mercator for a variety of purposes, including
performing random walks on the web crawling our corpo-
rate intranet, and collecting statistics about the web at large.
Mercator’s scalability design has worked well. It is easy to
configure the crawler for varying memory footprints. The
ability to configure Mercator for a wide variety of hardware
platforms makes it possible to select the most cost-effective
platform for any given crawling task.
Mercator’s extensibility features have also been successful
and able to adapt Mercator to a variety of crawling tasks.
Mercator is scheduled to be included in the next version of
the AltaVista Search Intranet product is mostly to corporate
clients who use it to crawl and index their intranets.

7. References

 [1] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual Web search engine. In Proceed-
ings of the Seventh International World Wide Web Confe-
rence, April 1998

 [2] Google! Search Engine.
http://google.stanford.edu/.

[3] Monika Henzinger, Allan Heydon, Michael Mitzen-
macher, and Marc A. Najork. Measuring Index
Quality using Random Walks on the Web. In Proceedings
of the Eighth International World Wide
Web Conference, May 1999.

 [4] The Internet Archive.
http://www.archive.org/,

[5] Z. Smith. The Truth About the Web: Crawling towards
Eternity. Web Techniques Magazine, 2(5),
May 1997.
[6] The Web Robots Pages.
http://info.webcrawler.com/mak/projects/
robots/robots.html.

[7] The Robots Exclusion Protocol.
http://info.webcrawler.com/mak/projects/
robots/exclusion.html,

 [8] M. O. Rabin. Fingerprinting by Random Polynomials.
Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[9] Oliver A. McBryan. GENVL and WWWW: Tools for
Taming the Web. In Proceedings of the First
International World Wide Web Conference, pages 79–90,
1994.

 [10] Robert C. Miller and Krishna Bharat. SPHINX: A
framework for creating personal, site-specific
Web crawlers. In Proceedings of the Seventh International
World Wide Web Conference, April 1998.

First Author- I am Priyanka Saxena, presuing M.Tech in Computer
Science Engineering from Shobhit University, Meerut Uttar Pra-
desh, INDIA and got 8 cgpa in every semester. My Thesis is left,
which is hopefully completed up to August 2012. I have completed
my B.Tech in Computer Science from Uttar Pradesh Technical
University in 2009 with 72%. I have one year gap between my stu-
dies in which I was complete my Hardware Support Training form
HP Delhi with 84% and A+ grade. It is my first paper on Web Craw-
ler and I will find the details of IJCSI through Internet. I am heartily
thank full to IJCSI for giving me this big opportunity to show my
skills and knowledge which definitely generate positive energy for
my next paper.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 395

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

