
Improving Web Performance by a Differencing and Merging 
System 

Aleksandar Jevremovic1, Ranko Popovic1, Dejan Zivkovic1, Mladen Veinovic1 and Goran Shimic2

 
 1 Department of Informatics and Computing, Singidunum University, Belgrade, 11000, Serbia 

 
 

2 Military Academy, Belgrade, 11000, Serbia 
 

 
 

Abstract 
In this paper we consider the problem of improving Web 
performance and propose an efficient differencing and merging 
system (DMS) based on an HTTP protocol extension. To 
provide for faster information exchange over the Web, the 
system tries to transfer only computed differences between 
requested documents and previously retrieved documents from 
the same site. Analysis and experimental results prove the 
effectiveness of DMS, but also show bigger processor and 
memory load on servers and clients. DMS is compatible with 
most of the existing solutions for improving Web performance. 
Moreover, SSL security system may be used to provide Web 
privacy and authenticity. The DMS model is simple to use and 
can be relatively easily integrated in Web servers and browsers. 
Keywords: Web performance, HTTP protocol, HTML 
differencing. 

1. Introduction 

Web performance is the key ingredient to an 
effective use of the Internet. In case of static Web pages 
and information portals, better Web performance exerts 
positive influence on the user’s impression about the 
content. Also, dynamic Web pages and Web applications 
directly depend on Web performance, because speed of 
information exchange ultimately determines the kind of 
functionality that is implementable in a Web application. 
More generally, Web performance has a great impact on 
smooth migration from desktop-based to Web-based 
applications, as well as on success of the cloud-
computing model. 

Improving Web performance has been the goal of 
many different attempts. Popular approaches include 
both direct and indirect methods. The direct methods are 
based on contents cashing, contents compression, and 
AJAX calls, while the indirect methods are based on new 
network protocols such as SCTP, MUX/SMUX, and 
SPDY. The next section presents some advantages and 
drawbacks of these popular approaches to improve Web 
performance. 

Main contribution of this paper is a model for a 
novel approach regarding the Web performance 
improvement. The proposed model is based on a 
differencing and merging system, hence it is called 
DMS. In a nutshell, DMS makes use of structural 
similarities between HTML pages. Consequently, for a 
client to get a page from a server, it makes sense that the 
client requests the smallest differences between the 
desired page and previously retrieved pages from the 
same server. If the server’s difference computation 
procedure is not time intensive, the desired page in this 
way may be delivered . much faster to the client because 
the server transfers smaller amounts of data. The client 
on its part, however, needs to merge received differences 
to reproduce the correct version of the page. 

2. Related Work 

In the last few decades there has been a growing 
interest in improving Web performance. Many existing 
solutions to the problem basically try to reduce the 
amount of data transfered between servers and clients. 
Basic technique to reduce the network traffic is contents 
cashing, i.e., reuse of previously retrieved Web pages 
that are kept locally for a fixed time interval. The main 
drawback of contents cashing is possibility of using stale 
contents or retrieving unchanged pages. Among many 
attempts to improve efficiency of contents cashing [22], 
[18], [20], [21], [11], the most prominent approach is a 
farm of proxy servers that create a network of cached 
pages. This relieves the burden on central servers and 
speeds up contents distribution to clients. However, 
maintaining consistency of such a network requires 
specific architecture based on agents [11]. 

Another standard technique to reduce the network 
traffic is data compression. Support for data compression 
is built into the HTTP protocol from version 1.1 and it is 
supported by all modern Web browsers. Compression of 
textual Web contents may save up to 75% of the contents 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 349

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



size, while the overall savings figure for general contents 
amounts to about 37% [12]. Reducing the network trafic 
by means of data compression is compatible with the 
DMS model. 

A more complex method for improving Web 
performance is contents fragmentation and asynchronous 
transfer of fragments based on JavaScript calls (AJAX). 
Advantages of this method lie mainly in its compatibility 
with the service oriented architecture, while drawbacks 
include necessity to redesign existing applications. 

Two leading attempts to improve Web performance 
by protocol replacement are SMUX protocol [5] and 
HTTP over SCTP protocol [16]. SMUX is an attempt of 
the W3C consortium to design a lightweight application 
protocol and to make migration to future Web protocols 
simpler. However, SMUX protocol is still in an 
experimental phase. HTTP over SCTP protocol works by 
replacing traditional TCP transport protocol with more 
efficient SCTP protocol [4]. Using HTTP over SCTP is 
particularly relevant to the DMS model, since HTTP 
over SCTP gives good results in developing regions 
[15], i.e., regions with poor communication 
infrastructure. In such an environment DMS could be 
very useful and greatly speed up the information 
exchange. 

In an attempt to improve Web performance, Google 
is making an important step forward with its SPDY 
protocol [6]. Goal of this protocol is to enable multiple 
data streams within one HTTP connection. In addition, 
this protocol compresses data during data transfer and 
excludes the “host” field from the request header. 
Another interesting method for decreasing contents lag, 
which is used in Google’s Chrome browser, is so called 
DNS prefetching. This function actively performs 
domain name resolutions for the domain name references 
found in hyper links of each document. 

Opera’s attempt to improve Web performance is 
based on its technology called Opera Turbo [2]. This is a 
commercial technology that uses specialized 
intermediary servers and data compression to reduce the 
network traffic. 

The most common system for tracking and viewing 
changes on the Web is probably WebVigiL [9]. This 
system automates the change detection of HTML/XML 
documents and timely notifies users about changes based 
on user-specified changes of interest. In WebVigiL, two 
separate change detection algorithms are used to detect 
changes occurring to HTML and XML documents. 
The problem of comparing two HTML documents to 
find the differences between them can be simply solved 
by comparing textual content of the documents, e.g. 
using traditional UNIX diff algorithm. However, 
comparing HTML documents at the lexical level, as if 
they were ordinary text documents, is neither informative 

nor intuitive. VDiff algorithm [13] gives better accuracy 
by taking documents’ internal tree structure into account. 
Still better results can be obtained in case of well-
structured XML documents by using their tree 
representation and identifying common nodes and 
subtrees [7]. The hierarchical structure of XML 
documents has been exploited recently to detect their 
differences by using semantic analysis of such 
documents [8], [19], [14]. 

3. DMS Model 

This section describes the proposed system and its 
role in the client-server communication. The central idea 
around DMS is that transferring differences between 
documents instead of full documents would reduce the 
network traffic. Upon receiving request for a document 
from a client, a server computes the differences between 
the document it needs to send and documents that the 
client already retrieved from the server. The server then 
selects the smallest size difference and sends it to the 
client. The client finally merges received difference with 
the corresponding local document to reconstruct the 
correct version of the document. 

A DMS enabled server must keep track of served 
documents (and differences) and assign a unique ID to 
each document it serves. Similarly, a client must keep 
track of retrieved documents (and differences). Figure 1 
illustrates DMS role in the client-server networking 
model in the simplest case of static Web setting. 

 
Fig. 1. DMS model in the static Web setting 

Figure 1 depicts the state when clients A and B 
already requested some documents from the same server 
in the past and retrieved and stored them locally: client A 
retrieved document Y and client B retrieved document Z. 
Now both clients in Figure 1 make request for document 
X to the server. Along with the request for X, client A 
also sends to server the document ID of Y it has locally 
as a reference document for computing differences. 
Server as its response computes differences between the 
documents X and Y and sends them to client A. Client A 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 350

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



then merges received differences with its local copy of Y 
to reconstruct the document X. Similarly, to request the 
same document X, client B sends along the document ID 
of Z it has locally, and the server response are 
differences between the documents X and Z. 

More interesting environment for DMS is the 
dynamic Web setting and Web applications. In this case, 
URL address is not sufficient resource identifier, since 
various requests with the same URL address may 
produce different results. Moreover, Web applications 
often dynamically customize user interface as a function 
of the user account type and user activities. Thus, 
different users can get different results for the same 
request. 

This specific features of dynamically created pages 
and Web applications imply that a DMS enabled server 
should limit computation of differences between pages 
transferred only within user sessions. Such a server also 
needs to assign a special unique ID to each page 
obtained as a result of the dynamic document creation 
procedure. This means that a DMS enabled server should 
reserve separate space for each client to maintain already 
transfered pages per session. 

Figure 2 illustrates DMS role in the dynamic Web 
setting. For each client, a DMS enabled server keeps 
history of pages delivered within current session. A 
client in subsequent requests sends IDs of some of the 
pages as a reference for difference computation. In 
Figure 2, client A retrieved three pages P1, P2, and P3 
within current session, while client B retrieved two 
pages. Subsequently, client A requests fourth page P4 
and sends along IDs of P1, P2, and P3. The server then 
computes differences between P4 and each of P1, P2, 
and P3, and returns the smallest difference as its 
response. The pages Q1 and Q2 delivered to client B 
within current session are kept separately, and client B’s 
request for page Q3 is serviced with the smallest 
difference between Q3 and Q1. 

 
Fig. 2. DMS model in the dynamic 

Web setting Note that DMS functionality is not 
limited to HTML pages. DMS may be also used with 
other textual resources (CSS, JavaScript...), as well as 
with binary resources (pictures, sounds...) using 
appropriate difference computation algorithms. 

2.1 DMS Implementation 

To implement DMS, it is necessary to modify the 
HTTP protocol itself [3] and both sides of the client-
server networking model. Changes to the HTTP protocol 
include support for the document IDs inside HTTP 
messages. A new field “Accept-Diff”, for example, may 
be added to the header of a HTTP message. This field in 
a HTTP request informs server that client supports DMS 
and contains values of document IDs as parameters for 
computing differences. This field in a HTTP response 
contains ID of the document that server has used to 
compute (the smallest) returned differences. 

In case that server does not contain any of the 
documents specified in an HTTP request, it sends the 
requested document in its fullness. This also applies if 
server does not support DMS at all. 

The server side implementation of DMS may take 
two basic forms: direct integration in the server software, 
or indirect support through a special service. The first 
approach is compatible with data compression and SSL 
security, but requires redesign of the Web server 
software. On the other hand, an independent service 
(which listens to a port, forwards received requests to the 
Web server, and sends computed differences to a client) 
does not necessitate changes to the original software, but 
it is not compatible with data compression and SSL 
security. 

Web browser on the client side must support 
sending HTTP requests with the “Accept-Diff” field 
whose values are documents IDs that the client has 
stored locally. Thus, the client needs to select one or 
many (perhaps all) of the local documents and include 
their IDs in a HTTP request. Also, the client from a 
HTTP response needs to extract received differences and 
merge them with the document whose ID is specified in 
the “Accept-Diff” field. 

A server or a client may choose to store full pages 
or only page differences for later use. The choice is 
independent and depends on the particular server and 
client processing power, storage capacity, and other 
factors that determine response time and storage 
requirements. For example, storing only page differences 
favors storage to response time, because it might be 
necessary to apply the merging procedure repeatedly to 
get the correct page. 

4. DMS on the Web 

This section investigates two applications of DMS 
on the Web, besides the direct client-server 
communication. First, if the client-server communication 
goes indirectly through a proxy server, then the proxy 
server must support both the client and server side of 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 351

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



DMS functionality. Figure 3 shows the general 
information flow between a client and a server in the 
presence of one or more proxy servers. 

 
Fig. 3. DMS in the proxy server setting 

Using a DMS enabled proxy server may prove 
especially efficient when retrieving documents from a 
Web server on behalf of clients. A proxy server in this 
case can use many already retrieved documents to 
request the smallest difference from the server. 
Moreover, to fulfill a request for one client, the proxy 
server may use retrieved documents received for other 
clients. 

Second important application where DMS may find 
its use is the distributed contents delivery to users in 
geographical proximity through close distribution 
servers. Figure 4 illustrates DMS usage in the distributed 
contents delivery setting. 

 
Fig. 4. DMS in the distributed contents delivery setting 

Aim of using DMS in the distributed contents 
delivery setting is not taking the load off of the central 
content server, since distribution servers still forward 
client requests to the central server. Instead, DMS usage 
can result in lower datatraffic volume because of the 
transfer of smaller document differences from the central 
server to distribution servers. Similarly to a proxy server, 
a distribution server may request differences based on 
already received documents from all sessions. 

Main benefit of this solution is central processing of 
HTTP requests with efficient distributed contents 
delivery. Moreover, this efficiency is achieved simply 

without complex schemes involving load balancing 
among distribution servers and their contents 
synchronization. 

5. DMS Performance 

This section analyzes DMS efficiency by evaluating 
its impact on the data-traffic volume. This is done by 
means of two experiments—one for a Web site and the 
other for a Web application. 

It is clear that DMS usage is justified if the total 
time for computing, transferring, and merging document 
differences is less than the time for transferring a full 
document. DMS efficiency thus depends mostly on the 
similarity of requested and local documents, as well as 
on the efficiency of an algorithm for computing and 
merging differences. However, an algorithm for merging 
differences is determined by the corresponding algorithm 
for computing differences, so we only consider the latter 
algorithm efficiency. 

If an HTTP request contains only single local 
document ID, then DMS efficiency on the server side is 
dominated by the efficiency of an algorithm for 
computing differences. In general, this algorithm 
efficiency can be measured using two opposing criteria: 
the time for computing differences and the size of 
computed differences. However, an algorithm for 
computing differences may choose a trade-off between 
the two criteria, since larger difference computation time 
can be made up for smaller transfer time, and vise versa. 
Moreover, an adaptive algorithm may be further tuned 
up to base its optimal decision on the processor load and 
the communication bandwidth. 

On the other hand, if an HTTP request contains 
many local document IDs, then DMS performance is a 
function of the total time needed for computing 
differences with respect to all given local documents. In 
this case, better performance is still possible using an 
advanced method to select the best document that gives 
the smallest difference. 

5.1 Experimental Results 

Since the primary goal of this paper is to show 
soundness of the DMS concept, we have conducted two 
basic experiments to confirm DMS effectiveness. To get 
a first glimpse at the DMS performance, in the 
experiments we have not tested any of the real DMS 
functionality needed in a client and a server. Instead, we 
have restricted ourselves to analyze only the DMS 
impact on the amount of transfered network data. 

To this end, we have used two of the most common 
contents publishing models on the Web—a Web site and 
a Web application. For the Web site example we have 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 352

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



chosen the Times Online site www.timesonline.co.uk. 
Since we could not use DMS with commercial servers 
and clients, testing is performed by first retrieving some 
pages using ordinary browser, and then computing the 
page differences using the GNU diff implementation of 
the basic difference computation algorithm [1]. On the 
other hand, for the Web application example we have 
developed custom chat application in PHP language. 

5.2 The Web Site Example 

To estimate DMS impact on the speed of data 
transfer from a Web site, we have taken ten randomly 
selected documents from the science section of the 
Times Online site at the address 
http://www.timesonline.co.uk/ tol/news/science/: 

1. physics/article7121202.ece 
2. physics/article7131244.ece 
3. medicine/article7121219.ece 
4. medicine/article7125803.ece 
5. eureka/article7110849.ece 
6. genetics/article7120516.ece 
7. biology_evolution/article7132299.ece 
8. biology_evolution/article7127753.ece 
9. genetics/article7128357.ece 
10. eureka/article7115855.ece 
These documents were taken from the site in this 

order on May 23, 2010 in time frame of two minutes. As 
each document’s HTML page was stored in a local file, 
differences between the page and all previous pages 
were computed. Table I summarizes the page sizes and 
computed differences in bytes, where the smallest 
difference is highlighted in bold. 

Table 1: Sizes of ten pages and mutual differences 
- Size 1 2 3 4 5 6 7 8 9 10 

1 180238 - - - - - - - - - - 

2 179681 83186 - - - - - - - - - 

3 156594 83140 84726 - - - - - - - - 

4 162835 82595 83613 68327 - - - - - - - 

5 148804 91125 91527 67453 74039 - - - - - - 

6 187365 92658 96554 89766 94969 97095 - - - - - 

7 185722 89562 91740 92577 90015 96531 99034 - - - - 

8 179537 86922 87551 88563 86143 89534 96001 86520 - - - 

9 150343 87284 87229 61810 70055 56766 88474 92523 85916 - - 

10 146289 83352 88486 63694 72074 54365 94110 90900 87517 56801 - 

Figure 5 gives the smallest difference obtained for 
each page in terms of the percentage of the original size. 

 
Fig. 5. The smallest differences with respect to the page sizes 

The test results show that using DMS even for 
relatively unrelated documents would reduce the 
network data traffic more than 50% in most cases 
(except the first). Thus, taking into account that 

 the Times Online site has over three million 
visitors each day (source: www.statbrain.com) 

 the visitors of this site open 2.5 pages on 
average per visit (source: www.alexa.com) 

and extrapolating the results obtained in the testing 
scenario that 

 the average page size is about 160 KB 
 the expected savings in the data transfer is 

about 50% 
we may conclude that DMS would overall save 

about 360 GB in the data-traffic volume each day in case 
when the first page is fully transfered, or 600 GB in case 
when pages from previous visits are used as references 
to difference computations. 

5.3 The Web Application Example 

To estimate DMS efficiency in the context of a Web 
application, we have chosen an application for short 
message exchange between users. Motivated by the Lift 
Web framework [17], this minimalistic chat application 
has been easily developed in PHP. 

The main window of the chat application contains at 
most 10 messages. When a server adds a new message to 
the full window, it removes the oldest message from the 
window. A client sends messages using an HTML form, 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 353

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



and the server embeds them into a page using PHP. For 
the sake of simplicity, a client retrieves a complete page 
each time it checks whether a new message appeared in 
the meantime. 

Testing scenario for the application has been 
devised to comprise three steps—in each step a new 
message is added to the application and then the relevant 
HTML pages are compared. Initially, there have been 
nine messages exchanged as shown in Figure 6, and size 
of the the corresponding HTML page that contains the 
nine messages is 1063 bytes. 

 
Fig. 6. Initial nine messages in the chat application 

In the second step, a new message is added to the 
application for the total of ten messages (Figure 7). The 
size of the corresponding HTML page has increased to 
1148 bytes. However, by using DMS only differences 
between the first and the second page would be 
transferred. The size of the differences in the diff format 
is mere 93 bytes. 

 
Fig. 7. The chat application after the second step 

In the third step, once a new message is added, the 
oldest message is removed (Figure 8). The size of the 
corresponding HTML page has been decreased to 1136 
bytes. The sizes of the differences between the third and 
the second page and the third and the first page are 161 
bytes and 251 bytes, respectively. 

 
Fig. 8. The chat application after the third step 

The test results show that using DMS in the chat 
application would reduce the network traffic to almost 
90%. Thus, it is fair to expect that DMS can be 
successfuly applied in other Web applications that do not 
use service calls and do not get page changes as service 
messages (SOAP, JSON, . . . ). 

6. Web Security and Privacy 

The DMS model is compatible with standard 
systems that provide HTTP security and privacy. For 
example, the SSL security system can be used with DMS 
without modifications, because SSL is part of the 
message transport layer, while DMS acts on the 
application level above HTTP. 

There is one situation, however, where basic DMS 
can be abused by a malicious user to get hold of a private 
document. Consider the scenario when client requests a 
private document protected by the SSL system and 
assume that server sends full version of the document as 
response. Client then leaves protected communication 
and makes a new non-SSL request for some other public 
document. Assume further that, for some reason, client 
in the request specifies ID of the protected document 
received during secure communication. As a response 
then client receives clear differences between the private 
document and the pubic document. 

An eavesdropper can thus learn two items: URL 
address of the public document and clear differences 
between the private document and the public document. 
In this case, an attacker can independently request full 
version of the public document and use the differences in 
a reverse-merging procedure to obtain the protected 
document. 

This scenario reveals a potential problem of DMS 
abuse that should be kept in mind when implementing 
DMS for a secure environment. More specifically, a 
DMS enabled client implementation should 

1. distinguish IDs of unsecured and secured 
documents, i.e., those received using HTTP and 
HTTPS protocols, and should not mix them; 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 354

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



and 
2. limit document IDs in a HTTPS request to those 

received only in the current session. 

7. Conclusion and Future Work 

This paper proposes DMS as a solution for an 
effective use of the Web. Since Web pages are well-
structured and contain many common HTML language 
constructs, an intuition is that differences between Web 
pages are small despite their content. Thus, to reduce the 
network traffic, it pays off to transfer differences 
between pages instead of full pages. This is the main 
idea behind DMS whose soundness is justified by 
experimental results. 

DMS is compatible with most of the existing 
solutions for improving Web performance. For example, 
clients may use ordinary document caching methods 
before turning to DMS, or servers may compress 
differences before sending them. Moreover, SSL security 
system may be used to provide Web privacy and 
authenticity. 

The DMS model is simple to use and can be 
relatively easily integrated in Web servers and browsers. 
It is also general in the sense that its main idea with 
small modifications can be used in other problem 
domains such as routing, load balancing, and computer 
forensics [10]. 

Obvious subject of future work is a software 
implementation of DMS and evaluation of its efficiency 
in production environments. The software design will 
certainly include heuristics and algorithms for selection 
of documents being compared and for computation of 
document differences. An efficiency analysis of different 
design decisions that are made in this regard is also 
necessary for broad DMS adoption on the Web. 

Acknowledgments 

This work has been supported by the Serbian Ministry of 
Education and Science (projects III44006 and TR32054) 
 
References 
[1] GNU Diffutils. Available from: 

http://www.gnu.org/software/diffutils 
[2] Opera Turbo. Available from: 

http://www.opera.com/business/solutions/ turbo 
[3] RFC2616: Hypertext transfer protocol – HTTP/1.1. 

Available from: 
http://www.w3.org/Protocols/rfc2616/rfc2616.html 

[4] RFC4960: Stream control transmission protocol. Available 
from: http: //tools.ietf.org/html/rfc4960 

[5] SMUX protocol specification. Available from: 
http://www.w3.org/TR/ WD-mux 

[6] SPDY protocol. Available from: 
http://www.chromium.org/spdy/ spdy-protocol 

[7] Al-Ekram, R., Adma, A., Baysal, O.: diffx: An algorithm to 
detect changes in multi-version XML documents. In: 
Conference of the Centre for Advanced Studies on 
Collaborative Research (2005) 

[8] Al-Namiy, A.Q., Majeedl, F.S.: Towards automatic 
extracted semantic annotation (ESA) for Web documents. 
In: APCIP 2009, vol. 2 (2009) 

[9] Chakravarthy, S., Hara, S.: Automating change detection 
and notification of Web pages. In: 17th International 
Workshop on Database and Expert Systems Applications 
(DEXA 2006) (2006) 

[10] Chen, L., Wang, G.: An efficient piecewise hashing 
method for computer forensics. In: Proceedings of the First 
International Workshop on Knowledge Discovery and Data 
Mining (2008) 

[11] Kannammal, A., Padmanabhan, R., Iyengar, N.: Web 
cache consistency maintenance through agents. In: 
Proceedings of the Second International Conference on 
Communication Software and Networks, pp. 329–333 
(2010) 

[12] King, A.B.: Speed Up Your Site: Web Site Optimization. 
New Riders (2003). Available from: 
http://www.websiteoptimization.com/speed/18/ 18-2t.html 

[13] Mikhaiel, R., Stroulia, E.: Accurate and efficient HTML 
differencing. In: 13th IEEE International Workshop on 
Software Technology and Engineering Practice (2005) 

[14] Moon, H.J., Yoo, J.W.: Free-traversing syntactic and 
semantic comparison on semi-structured languages. In: 
Convergence and Hybrid Information Technology (ICHIT 
2008) (2008) 

[15] Natarajan, P., Amer, P.D., Stewart, R.: Multistreamed 
Web transport for developing regions. In: The second ACM 
SIGCOMM workshop on Networked systems for 
developing regions (2008) 

[16] Natarajan, P., Iyengar, J.R., Amer, P.D., Stewart, R.: 
SCTP: An innovative transport layer protocol for the Web. 
In: Proceedings of the International World Wide Web 
Conference (2006) 

[17] Pollak, D., Vinoski, S.: A chat application in Lift. IEEE 
Internet Computing 14(3), 88–91 (2010) 

[18] Ramaswamy, L., Liu, L., Iyengar, A.: Cache clouds: 
Cooperative caching of dynamic documents in edge 
networks. In: Proceedings of the 25th IEEE International 
Conference on Distributed Computing Systems (ICDCS 
2005) (2005) 

[19] Santos, R.C., Hara, C.S.: A semantical change detection 
algorithm for XML. In: SEKE 2007 (2007) 

[20] Sharman, R., Ramanna, S.S., Ramesh, R., Gopal, R.: 
Cache architecture for on-demand streaming on the Web. 
ACM Transactions on the Web (TWEB) 1 (2007) 

[21] Sheu, T.L., Yang, C.H.: A novel hierarchical cache 
architecture for WWW servers. In: Proceedings of the 15th 
International Conference on Information Networking 
(ICOIN 2001), p. 863 (2001) 

[22] Yin, J., Alvisi, L., Dahlin, M., Iyengar, A.: Engineering 
Web cache consistency. ACM Transactions on Internet 
Technology 2(3) (2002)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 355

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




