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Abstract 
 
This paper presents the problems of effort estimation for 
software development projects. Most of the research has 
focused on the construction of formal software effort 
estimation models. All most all the models were typically 
based on the regression analysis or mathematically derived 
from theories from other domains. This paper focuses on 
Soft Computing Hybrid Systems in general and Fuzzy 
Back-propagation Network method in particular. Though 
Hybrid Systems have a tremendous potential to solve 
problems, an inappropriate use of the technology can 
backfire. Hybrid systems are those which employ 
integrated technologies to effectively solve the problem. 
Software development efforts estimation is the process of 
predicting the most realistic use of effort required to 
develop or maintain software product in an optimized way 
for the benefit of all the stakeholders. Effort estimates may 
be used as input to the plans, budgets, investment, pricing 
processes and bidding rounds. In this context we are 
suggesting the Fuzzy based Backpropagation Network to 
solve the problem and to produce the better results.  
 
Keywords: Artificial Neural Network, Backpropagation, 
Neuro-Fuzzy, Software Estimation, Fuzzy Logic, LOC, 
Sizing. 
 
1. Introduction 
 
Software Project planning encompasses five major 
activities – estimation, scheduling, risk analysis, quality 
management planning, and change management planning. 
Estimation includes your attempt to determine how much 
money, effort, resources, and time it will take to build a 
specific software-based product. Software project managers 
using information solicited from project stakeholders and 
software metrics data collected from past projects [1, 6]. 
Most of the software researchers and practitioners have 
been addressing the problems of effort estimation for 

software development projects since at least the 1960s; 
Published surveys on estimation practice suggest that 
expert estimation is the dominant strategy when estimating 
software development effort. Typically, effort estimates are 
over-optimistic and there is a strong over-confidence in 
their accuracy. The mean effort overrun seems to be about 
30% and not decreasing over time. Currently the term 
“effort estimate” is used to denote as different concepts as 
most likely use of effort (modal value), the effort that 
corresponds to a probability of 50% of not exceeding 
(median), the planned effort, the budgeted effort or the 
effort used to propose a bid or price to the client. This is 
believed to be unfortunate, because communication 
problems may occur and because the concepts serve 
different goals [2] [3]. 
 
Estimation begins with a description of the scope of the 
problem. The problem is then decomposed into a set of 
smaller problems, and each of these is estimated using 
historical data and experience as guides. Problem 
complexity and risk are considered before a final estimate 
is made. 
 
2. Challenges 
 
The advantage of buying software is automation, better 
analyzing of business, thus making life easier. Software 
Development is intangible, Customer can see the benefits 
of buying only when he uses the software for quiet a period 
of time and then says ' its worth of it'. We do not quote too 
less, programmers work for overnight that leads to lose the 
project or end doing social service, or loss. Do not quote 
too high that lose the project. So, be fair to ourselves and 
our customers. Hence, there is need to use of a repeatable, 
clearly defined and well understood software development 
process that has to be the most effective method. 
 It's easy to estimate what you know.  
 It's hard to estimate what you know you don't know. 
 It's very hard to estimate things that you don't know you 
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don't know. 
 
3. Estimation methods 
 
The uncertainty of an effort estimate can be described 
through a prediction interval (PI). An effort PI is based on a 
stated certainty level and contains a minimum and a 
maximum effort value.  
 
3.1 Selection of Estimation approach 
 
The use of artificial neural networks is a cross-disciplinary 
field that integrates neuroscience, information science and 
computer sciences. Among many neural network models, 
the back-propagation (BP) neural network displays a 
strong learning ability using nonlinear models with a high 
fault tolerance. The evidence on differences in estimation 
accuracy of different estimation approaches and models 
suggest that there is no “best approach”. There are many 
ways of categorizing estimation approaches, see for 
example [4][5]. The top level categories are the following: 
 
3.2 Expert estimation: The quantification step based on 
judgmental processes.  
 
3.3 Formal estimation model: The quantification step is 
based on mechanical processes.  Formal estimation models 
not tailored to a particular organization’s own context, may 
be very inaccurate. Use of own historical data is 
consequently crucial if one cannot be sure that the 
estimation model’s core relationships (e.g., formula 
parameters) are based on similar project contexts [6, 7]. 
 
3.4 Combination-based estimation: The quantification 
step is based on a judgmental or mechanical combination of 
estimates from different sources.  
 
4. Artificial Neural Network  
 
An artificial neural network is a system based on the 
operation of biological neural networks, in other words, is 
an emulation of biological neural system. Why would be 
necessary the implementation of artificial neural 
networks? Although computing these days is truly 
advanced, there are certain tasks that a program made for a 
common microprocessor is unable to perform; even so a 
software implementation of a neural network can be made 
with their advantages and disadvantages. 
 
 
 
Advantages:  

 A neural network can perform tasks that a linear 
program cannot.  

 When an element of the neural network fails, it 
can continue without any problem by their 
parallel nature.  

 A neural network learns and does not need to be 
reprogrammed.  

 It can be implemented in any application.  
 It can be implemented without any problem.  

 
Of course the neural network needs training to operate.  
 
In the world of engineering, neural networks have two 
main functions: Pattern classifiers and as non linear 
adaptive filters. As its biological predecessor, an artificial 
neural network is an adaptive system. By adaptive, it 
means that each parameter is changed during its operation 
and it is deployed for solving the problem in matter. This 
is called the training phase. An artificial neural network is 
developed with a systematic step-by-step procedure which 
optimizes a criterion commonly known as the learning 
rule. The input/output training data is fundamental for 
these networks as it conveys the information which is 
necessary to discover the optimal operating point.  

 
Basically, an artificial neural network is a system. A 
system is a structure that receives an input, process the 
data, and provides an output. Commonly, the input 
consists in a data array which can be anything such as data 
from an image file, a WAVE sound or any kind of data 
that can be represented in an array. Once an input is 
presented to the neural network, and a corresponding 
desired or target response is set at the output, an error is 
composed from the difference of the desired response and 
the real system output. The error information is fed back 
to the system which makes all adjustments to their 
parameters in a systematic fashion (commonly known as 
the learning rule). This process is repeated until the 
desired output is acceptable.  
 
4.1 The Mathematical Model 
 
Once modeling an artificial functional model from the 
biological neuron, we must take into account three basic 
components. First off, the synapses of the biological 
neuron are modeled as weights. Let’s remember that the 
synapse of the biological neuron is the one which 
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interconnects the neural network and gives the strength of 
the connection. For an artificial neuron, the weight is a 
number, and represents the synapse. A negative weight 
reflects an inhibitory connection, while positive values 
designate excitatory connections. The following 
components of the model represent the actual activity of 
the neuron cell. All inputs are summed altogether and 
modified by the weights. This activity is referred as a 
linear combination. Finally, an activation function controls 
the amplitude of the output. For example, an acceptable 
range of output is usually between 0 and 1, or it could be -
1 and 1. 
 
Mathematically, this process is described in the figure   

 
From this model the interval activity of the neuron can be 
shown to be:  

 
The output of the neuron, yk, would therefore be the 
outcome of some activation function on the value of vk. 
 
4.2 Activation functions 
 
As mentioned previously, the activation function acts as a 
squashing function, such that the output of a neuron in a 
neural network is between certain values (usually 0 and 1, 
or -1 and 1). In general, there are three types of activation 
functions, denoted by Φ(.) . First, there is the Threshold 
Function which takes on a value of 0 if the summed input 
is less than a certain threshold value (v), and the value 1 if 
the summed input is greater than or equal to the threshold 
value. 

 
Secondly, there is the Piecewise-Linear function. This 
function again can take on the values of 0 or 1, but can 
also take on values between that depending on the 
amplification factor in a certain region of linear operation. 

 
Thirdly, there is the sigmoid function. This function can 
range between 0 and 1, but it is also sometimes useful to 

use the -1 to 1 range. An example of the sigmoid function 
is the hyperbolic tangent function. 
 

 
 
4.3 A framework for distributed representation 
 
An artificial neural network consists of a pool of simple 
processing units which communicate by sending signals to 
each other over a large number of weighted connections. 
A set of major aspects of a parallel distributed model can 
be distinguished:  
 a set of processing units ('neurons,' 'cells');  
 a state of activation yk for every unit, which 

equivalent to the output of the unit;  
 connections between the units. Generally each 

connection is defined by a weight wjk which 
determines the effect which the signal of unit j has on 
unit k;  

 a propagation rule, which determines the effective 
input sk of a unit from its external inputs;  

 an activation function Fk, which determines the new 
level of activation based on the efective input sk(t) 
and the current activation yk(t) (i.e., the update);  

 an external input (aka bias, offset) øk for each unit;  
 a method for information gathering (the learning 

rule);  
 an environment within which the system must 

operate, providing input signals and if  necessary 
error signals.  

 
 
4.4 Neural Network topologies 
 
In the previous section we discussed the properties of the 
basic processing unit in an artificial neural network. This 
section focuses on the pattern of connections between the 
units and the propagation of data. As for this pattern of 
connections, the main distinction we can make is between: 

 Feed-forward neural networks  
 Recurrent neural networks  

Classical examples of feed-forward neural networks are 
the Perceptron and Adaline.  
 
4.5 Training of artificial neural networks 
 
A neural network has to be configured such that the 
application of a set of inputs produces (either 'direct' or via 
a relaxation process) the desired set of outputs. Various 
methods to set the strengths of the connections exist. One 
way is to set the weights explicitly, using a priori 
knowledge. Another way is to 'train' the neural network 
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by feeding it teaching patterns and letting it change its 
weights according to some learning rule. 
We can categorise the learning situations in two distinct 
sorts. These are: 
 
 Supervised learning or Associative learning in 
which the network is trained by providing it with input 
and matching output patterns. These input-output pairs can 
be provided by an external teacher, or by the system which 
contains the neural network (self-supervised). 

 

 
 Unsupervised learning or Self-organisation in 
which an (output) unit is trained to respond to clusters of 
pattern within the input. In this paradigm the system is 
supposed to discover statistically salient features of the 
input population. Unlike the supervised learning 
paradigm, there is no a priori set of categories into which 
the patterns are to be classified; rather the system must 
develop its own representation of the input stimuli.  
 
 Reinforcement Learning This type of learning 
may be considered as an intermediate form of the above 
two types of learning. Here the learning machine does 
some action on the environment and gets a feedback 
response from the environment. The learning system 
grades its action good (rewarding) or bad (punishable) 
based on the environmental response and accordingly 
adjusts its parameters. Generally, parameter adjustment is 
continued until an equilibrium state occurs, following 
which there will be no more changes in its parameters. 
The self organizing neural learning may be categorized 
under this type of learning.  
 
4.6. Multi-layer feed-forward networks  
 
A feed-forward network has a layered structure. Each 
layer consists of units which receive their input from units 
from a layer directly below and send their output to units 
in a layer directly above the unit. There are no connections 
within a layer. The Ni inputs are fed into the first layer of 
Nh;1 hidden units. The input units are merely 'fan-out' 
units; no processing takes place in these units. The 
activation of a hidden unit is a function Fi of the weighted 
inputs plus a bias, as given in in eq 

 
The output of the hidden units is distributed over the next 
layer of Nh;2 hidden units, until the last layer of hidden 

units, of which the outputs are fed into a layer of No 
output units . 

 
Although backpropagation can be applied to networks 
with any number of layers, just as for networks with 
binary units it has been shown (Hornik, Stinchcombe, & 
White, 1989; Funahashi, 1989; Cybenko, 1989; Hartman, 
Keeler, & Kowalski, 1990) that only one layer of hidden 
units success to approximate any function with finitely 
many discontinuities to arbitrary precision, provided the 
activation functions of the hidden units are non-linear (the 
universal approximation theorem). In most applications a 
feed-forward network with a single layer of hidden units is 
used with a sigmoid activation function for the units.  
 
5. Understanding Backpropagation 
 
The equations derived in the previous section may be 
mathematically correct, but what do they actually mean? Is 
there a way of understanding back-propagation other than 
reciting the necessary equations? The answer is, of course, 
yes. In fact, the whole back-propagation process is 
intuitively very clear. What happens in the above 
equations is the following. When a learning pattern is 
clamped, the activation values are propagated to the output 
units, and the actual network output is compared with the 
desired output values, we usually end up with an error in 
each of the output units. Let's call this error eo for a 
particular output unit o. We have to bring eo to zero The 
simplest method to do this is the greedy method: we strive 
to change the connections in the neural network in such a 
way that, next time around, the error eo will be zero for 
this particular pattern. We know from the delta rule that, in 
order to reduce an error, we have to adapt its incoming 
weights according to.  

 
That's step one. But it alone is not enough: when we only 
apply this rule, the weights from input to hidden units are 
never changed, and we do not have the full 
representational power of the feed-forward network as 
promised by the universal approximation theorem. In 
order to adapt the weights from input to hidden units, we 
again want to apply the delta rule. In this case, however, 
we do not have a value for δ for the hidden units. This is 
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solved by the chain rule which does the following: 
distribute the error of an output unit o to all the hidden 
units that is it connected to, weighted by this connection. 
Differently put, a hidden unit h receives a delta from each 
output unit o equal to the delta of that output unit weighted 
with (= multiplied by) the weight of the connection 
between those units. 
 
5.1 Working with back-propagation 
 
The application of the generalized delta rule thus involves 
two phases: During the first phase the input x is presented 
and propagated forward through the network to compute 
the output values yp o for each output unit. This output is 
compared with its desired value do, resulting in an error 
signal δp o for each output unit. The second phase 
involves a backward pass through the network during 
which the error signal is passed to each unit in the network 
and appropriate weight changes are calculated. 
 
5.2 Weight adjustments with sigmoid activation 
function. 
 
 The weight of a connection is adjusted by an 
amount proportional to the product of an error signal δ, on 
the unit k receiving the input and the output of the unit j 
sending this signal along the 

connection:   
 If the unit is an output unit, the error signal is 

given by Take as the activation 
function F the 'sigmoid' function as 

defined In this case the 
derivative is equal to  

 
such that the error signal for an output unit can be written 

as:  
 The error signal for a hidden unit is determined 
recursively in terms of error signals of the 
units to which it directly connects and the weights of those 
connections. For the sigmoid 
activation function:  

 
5.3 Learning rate and momentum 
 

The learning procedure requires that the change in weight 

is proportional to True gradient descent requires 
that in nitesimal steps are taken. The 
constant of proportionality is the learning rate . For 
practical purposes we choose a learning rate that is as 
large as possible without leading to oscillation. One way 
to avoid oscillation at large , is to make the change in 
weight dependent of the past weight change by adding a 
momentum term: 

where t indexes the 
presentation number and F is a constant which determines 
the effect of the previous weight change. 
 
6. Design of the Fuz zy Backpropagation 
Network 
 
This study aimed at building and evaluating an Artificial 
Intelligence System in general and neuro-fuzzy model in 
particular to estimate software size. Neural network 
techniques are based on the principle of learning from 
historical data, whereas fuzzy logic is a method used to 
make rational decisions in an environment of uncertainty 
and vagueness. However, fuzzy logic alone does not 
enable learning from the historical database of software 
projects. Once the concept of fuzzy logic is incorporated 
into neural network, the result is a neuro-fuzzy system that 
combines the advantages of both techniques. 
 

 
 
 
 
6.1 Neuro-Fuzzy ystem 
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The hybridization of neural networks and fuzzy logic is 
the basic idea behind the neuro-fuzzy system. Neuro-fuzzy 
hybridization is done in two ways: fuzzy neural networks - 
is a neural network equipped with the capability of 
handling fuzzy information and neuro-fuzzy systems - is a 
fuzzy system augmented by neural networks to enhance 
some characteristics like flexibility and adaptability. 
 
The fuzzy neural network was integrated with an artificial 
neural network in this study. Fuzzy logic can express the 
logical meanings commonly used by humans in a more 
natural and direct way. Logical decision-making was 
performed according to the language rules proposed by 
experts, which can solve nonlinear questions that cannot 
be addressed using rigorous modeling methods. The 
integration of fuzzy logic with a neural network can 
facilitate self-adaptation through a learning function and 
automatically acquire an algorithm for the information 
expressed as fuzzy or precise data. This method can 
overcome the difficulties in expressing time-varying 
knowledge and processes, a feature of fuzzy logic. The 
integration of these two components can compensate for 
the insufficiency of a neural network in fuzzy data 
processing and the deficiencies of pure fuzzy logic in 
learning functions. To construct a fuzzy neural network 
structure, this system adds a fuzzification layer before the 
input layer of the neural network and a defuzzification 
layer after the output layer, which results in the 
fuzzification of the input information and defuzzification 
of the output information, respectively. The premises and 
the confidence level of the conclusions in fuzzy logic, 
provided by experts in the field, were used as the inputs 
and expected outputs of the learning samples for the 
neural network. With the aid of the strong learning and 
associative memory capabilities of the artificial neural 
network, the neural network is trained for its learning 
function to automatically acquire fuzzy rules that are 
stored in the network in the forms of weights and 
thresholds. Thus, our fuzzy neural network obtains the 
capabilities of analyzing fuzzy questions and making 
diagnoses and achieves an effective combination of fuzzy 
logic with a neural network. 
 
Software estimation accuracy is among the greatest 
challenges for software developers. Software cost 
estimation is the process of predicting the effort required 
to develop a software system. Many estimation models 
have been proposed. This paper provides a general 
overview of software cost estimation methods. As a 
number of these models rely on a software size estimate as 
input, we first provide an overview of common size 
metrics then we are using Fuzzy Backpropagation 
Network for estimating the size. 
 

6.2 Software sizing 
 
The software size is the most important factor that affects 
the software cost. The lines of code and function point are 
the most popular software size metrics used in practice. 
 
Lines of Code (LOC): This is the number of lines of the 
delivered source code of the software, excluding 
comments and blank lines and is commonly known as 
LOC. Although LOC is programming language dependent, 
it is the most widely used software size metric. Most 
models relate this measurement to the software cost. 
However, exact LOC can only be obtained after the 
project has completed. Estimating the code size of a 
program before it is actually built is almost as hard as 
estimating the cost of the program. 
A typical method for estimating the code size is to use 
experts' judgment together with a technique called Project 
Evaluation and Review Technique (PERT).  
 
It involves experts' judgment of three possible code-sizes:  
l, the lowest possible size;  
h the highest possible size;  
and m, the most likely size.  
Estimation of the code size, S = (l+h+4m)/6. 
 
PERT can also be used for individual components to 
obtain an estimate of the software system by summing up 
the estimates of all the components. It is generally popular 
among the users. Here, we are suggesting the Fuzzy 
Backpropagation Network (instead of PERT) for 
producing better results. 

 
Figure: The structure of the series of fuzzy BP neural 

network consisting of five layers. 
 
The entire network is composed of two parts; fuzzy 
processing and a conventional BP network, with the 
network input the same as a conventional BP network 
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input. Fuzzy processing was performed on the network 
input through the membership function in the fuzzy 
processing part, and the processed data were submitted 
directly to the BP network for further processing. The 
output data were compared with the expected output and 
reversely adjusted based on the mean square error to 
specify the network connection weights. 
 
The structure of a series of fuzzy BP neural networks is 
shown below. 

 
 
 
This network consists of five layers. The processing 
procedure of each layer is as follows. 
 
(1) The first layer is the input layer. The nodes in this 
layer receive input from the outside and send it to the next 
layer. The connection weight constant between the first 
and second layer is 1. 
(2) The second layer is the fuzzification layer. It performs 
fuzzy processing on the input and calculates the 
membership function value for each input component. 
(3) The third layer is connected to the output of fuzzy 
processing through the weights. This layer is equivalent to 
the hidden layer of a three-layered BP network. 
(4) The fourth layer is the defuzzification layer. It 
performs defuzzification processing on the output of the 
BP network. 
(5) The fifth layer is the output layer. 
7. Optimization of the Netw ork Structure 
Using the Genetic Algorithm Approach 
 

Professor John Holland in 1975 proposed an attractive 
class of computational models, called Genetic Algorithms 
(GA), that mimic the biological evolution process for 
solving problems in a wide domain. A Genetic Algorithms 
operates through a simple cycle of stages:  
i) Creation of a “;population” of strings,  
ii) Evaluation of each string,  
iii) Selection of best strings and  
iv) Genetic manipulation to create new population of 
strings. 

The cycle of a Genetic Algorithms is presented below 

 
Each cycle in Genetic Algorithms produces a new 
generation of possible solutions for a given problem. In 
the first phase, an initial population, describing 
representatives of the potential solution, is created to 
initiate the search process. The elements of the population 
are encoded into bit-strings, called chromosomes. 
The crossover points of any two chromosomes are selected 
randomly. The second step in the genetic manipulation 
process is termed mutation, where the bits at one or more 
randomly selected positions of the chromosomes are 
altered. The mutation process helps to overcome trapping 
at local maxima. The offsprings produced by the genetic 
manipulation process are the next population to be 
evaluated. 

 
Fig.: Mutation of a chromosome at the 5th bit position. 

 
The Genetic Algorithms cycle is illustrated in this example 
for maximizing a function f(x) = x2 in the interval 0 = x = 
31. In this example the fitness function is f (x) itself. The 
larger is the functional value, the better is the fitness of the 
string. In this example, we start with 4 initial strings. The 
fitness value of the strings and the percentage fitness of 
the total are estimated in Table A. Since fitness of the 
second string is large, we select 2 copies of the second 
string and one each for the first and fourth string in the 
mating pool. The selection of the partners in the mating 
pool is also done randomly. Here in table B, we selected 
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partner of string 1 to be the 2-nd string and partner of 4-th 
string to be the 2nd string. The crossover points for the 
first-second and second-fourth strings have been selected 
after o-th and 2-nd bit positions respectively in table B. 
The second generation of the population without mutation 
in the first generation is presented in table C. 

 
Table A: 

 
Table B: 

 
Table C: 

 
A Schema (or schemata in plural form) / hyperplane or 
similarity template is a genetic pattern with fixed values of 
1 or 0 at some designated bit positions.  
 
7.1 . The Markov Model for Convergence Analysis 
 
For the sake of understanding, let us now consider the 
population size = 3 and the chromosomes are 2-bit 
patterns, as presumed earlier. The set S now takes the 
following form.  
S = {(00, 00, 00), (00, 00, 01), (00, 00, 10), (00, 00, 11), 
(00, 01, 00), (00, 01, 01), (00, 01, 10), (00, 01, 11), 
.... ... ..... ..... 
.... ... .... .... 
(11, 11, 00), (11, 11, 01), (11, 11, 10), (11, 11, 11) } 
It may be noted that the number of elements of the last set 
S is 64. In general, if the chromosomes have the word 
length of m bits and the number of chromosomes selected 
in each Genetic Algorithm cycle is n, then the cardinality 
of the set S is 2 ^ mn. The Markov transition probability 
matrix P for 2-bit strings of population size 2, thus, will 
have a dimension of (16 x 16), where the element pij of 

the matrix denotes the probability of transition from i-th to 
j-th state. A clear idea about the states and their transitions 
can be formed from fig. 

 
It needs mention that since from a given i-th state, there 
could be a transition to any 16 j-th states, therefore the 
row sum of P matrix must be 1. Formally, 

 
for a given i. 
Now, let us assume a row vector πt, whose k-th element 
denotes the probability of occurrence of the k-th state at a 
given genetic iteration (cycle) t; then πt + 1 can be 
evaluated by 

 
Thus starting with a given initial row vector π0 , one can 
evaluate the state probability vector after n-th iteration πn 
by 

 
The first part of the present study focused on improving 
the optimization of the momentum terms and structure of 
the BP network, to eliminate the disadvantages of BP 
network algorithms such as their liability to fall into a 
local minimum, difficulties in determining the number of 
hidden layer nodes, slow convergence rate in algorithm 
learning, poor generalization of the network, and 
excessive sensitivity to initial values. 
The optimization was focused on the number of hidden 
layers and the number of nodes in each layer of the 
network. 
(1) Number of hidden layers: an increase in the number of 
hidden layers can form more complex decision-making 
domains, which can enhance the ability of the network to 
solve nonlinear problems. An appropriate number of 
hidden layers can also minimize the system error of the 
network. Based on the results of a large number of 
experiments, a three-layered network structure can solve 
most complex problems. 
(2) Number of nodes in the hidden layers: the choice of 
neuron numbers in the hidden layers is a very complex 
issue, which is dependent on the experience of the 
designer and the results from multiple experiments. No 
optimal analytical expression exists. The number of 
hidden layer units is directly related to the requirements of 
the problem and the number of input/output units. If the 
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number is too small, the information obtained through the 
network will be insufficient to solve the problem. If the 
number is too large, it will lead to increased training time, 
longer learning time, a nonoptimal error rate, poor fault 
tolerance, failure to recognize samples that were not 
involved in the previous training set, and the possibility of 
the so-called “transitional agreement” issue. Therefore, the 
selection of an optimal number of hidden layer units is 
crucial.  
The optimal boundary numbers of the hidden layer units, 
min and max, were first determined through the 
incorporated use of formulas. The network training then 
started from the minimum unit number min, followed by a 
gradual increase in unit number until the maximum unit 
number max was validated. For each number of hidden 
layer units, the network convergence speeds were 
compared after network convergence was achieved using 
the same training samples. Finally, the optimal number of 
hidden layer units was determined based on the training 
and testing errors of the training results. This approach can 
effectively reduce the verification time and provide the 
fastest way to identify the optimal number of hidden layer 
units. 
 
Conclusion   
 
Today, almost no model can estimate the cost of software 
with a high degree of accuracy. For the time being we 
suggest this approach for better understanding. Software 
size estimation is the key of entire software program 
project, and the accurate estimation immediately affects the 
success of project. An improved function point analysis 
(FPA) method was proposed for analyzing the software 
size. The method combined the advantage of the fuzzy 
rules and back propagation (BP) network. Firstly, fuzzy 
inference system based on the complexity weight matrix of 
function component was established. Then the adjusted 
complexity weight was used for modifying the software 
function point. The adjusted data as samples were 
transferred to BP network. By the advantage of BP network 
function approaching, the relationship between software 
components and software size was established. Finally, BP 
network was used for estimating software size. The 
experiment results show that the method could eliminate 
discontinuity among the different complexity grades, and 
could make the best of history data, which enhances the 
accuracy of function point estimation. Further research 
work with sufficient amount of data should be conducted to 
increase the accuracy of this method. 
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