
Software Size Estimation Using Fuzzy Backpropagation
Network Method

B V A N S S PRABHAKAR RAO1 & P SEETHA RAMAIAH2

1 Research Scholar, Department of Computer Science and Engineering, JNTU Kakinada,
 Kakinada, Andhra Pradesh 533 003, India

2 Professor, Dept. of CS & SE, College of Engineering (A), Andhra University
Visakhapatnam, Andhra Pradesh 530 003, India

Abstract

This paper presents the problems of effort estimation for
software development projects. Most of the research has
focused on the construction of formal software effort
estimation models. All most all the models were typically
based on the regression analysis or mathematically derived
from theories from other domains. This paper focuses on
Soft Computing Hybrid Systems in general and Fuzzy
Back-propagation Network method in particular. Though
Hybrid Systems have a tremendous potential to solve
problems, an inappropriate use of the technology can
backfire. Hybrid systems are those which employ
integrated technologies to effectively solve the problem.
Software development efforts estimation is the process of
predicting the most realistic use of effort required to
develop or maintain software product in an optimized way
for the benefit of all the stakeholders. Effort estimates may
be used as input to the plans, budgets, investment, pricing
processes and bidding rounds. In this context we are
suggesting the Fuzzy based Backpropagation Network to
solve the problem and to produce the better results.

Keywords: Artificial Neural Network, Backpropagation,
Neuro-Fuzzy, Software Estimation, Fuzzy Logic, LOC,
Sizing.

1. Introduction

Software Project planning encompasses five major
activities – estimation, scheduling, risk analysis, quality
management planning, and change management planning.
Estimation includes your attempt to determine how much
money, effort, resources, and time it will take to build a
specific software-based product. Software project managers
using information solicited from project stakeholders and
software metrics data collected from past projects [1, 6].
Most of the software researchers and practitioners have
been addressing the problems of effort estimation for

software development projects since at least the 1960s;
Published surveys on estimation practice suggest that
expert estimation is the dominant strategy when estimating
software development effort. Typically, effort estimates are
over-optimistic and there is a strong over-confidence in
their accuracy. The mean effort overrun seems to be about
30% and not decreasing over time. Currently the term
“effort estimate” is used to denote as different concepts as
most likely use of effort (modal value), the effort that
corresponds to a probability of 50% of not exceeding
(median), the planned effort, the budgeted effort or the
effort used to propose a bid or price to the client. This is
believed to be unfortunate, because communication
problems may occur and because the concepts serve
different goals [2] [3].

Estimation begins with a description of the scope of the
problem. The problem is then decomposed into a set of
smaller problems, and each of these is estimated using
historical data and experience as guides. Problem
complexity and risk are considered before a final estimate
is made.

2. Challenges

The advantage of buying software is automation, better
analyzing of business, thus making life easier. Software
Development is intangible, Customer can see the benefits
of buying only when he uses the software for quiet a period
of time and then says ' its worth of it'. We do not quote too
less, programmers work for overnight that leads to lose the
project or end doing social service, or loss. Do not quote
too high that lose the project. So, be fair to ourselves and
our customers. Hence, there is need to use of a repeatable,
clearly defined and well understood software development
process that has to be the most effective method.
 It's easy to estimate what you know.
 It's hard to estimate what you know you don't know.
 It's very hard to estimate things that you don't know you

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 339

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

don't know.

3. Estimation methods

The uncertainty of an effort estimate can be described
through a prediction interval (PI). An effort PI is based on a
stated certainty level and contains a minimum and a
maximum effort value.

3.1 Selection of Estimation approach

The use of artificial neural networks is a cross-disciplinary
field that integrates neuroscience, information science and
computer sciences. Among many neural network models,
the back-propagation (BP) neural network displays a
strong learning ability using nonlinear models with a high
fault tolerance. The evidence on differences in estimation
accuracy of different estimation approaches and models
suggest that there is no “best approach”. There are many
ways of categorizing estimation approaches, see for
example [4][5]. The top level categories are the following:

3.2 Expert estimation: The quantification step based on
judgmental processes.

3.3 Formal estimation model: The quantification step is
based on mechanical processes. Formal estimation models
not tailored to a particular organization’s own context, may
be very inaccurate. Use of own historical data is
consequently crucial if one cannot be sure that the
estimation model’s core relationships (e.g., formula
parameters) are based on similar project contexts [6, 7].

3.4 Combination-based estimation: The quantification
step is based on a judgmental or mechanical combination of
estimates from different sources.

4. Artificial Neural Network

An artificial neural network is a system based on the
operation of biological neural networks, in other words, is
an emulation of biological neural system. Why would be
necessary the implementation of artificial neural
networks? Although computing these days is truly
advanced, there are certain tasks that a program made for a
common microprocessor is unable to perform; even so a
software implementation of a neural network can be made
with their advantages and disadvantages.

Advantages:

 A neural network can perform tasks that a linear
program cannot.

 When an element of the neural network fails, it
can continue without any problem by their
parallel nature.

 A neural network learns and does not need to be
reprogrammed.

 It can be implemented in any application.
 It can be implemented without any problem.

Of course the neural network needs training to operate.

In the world of engineering, neural networks have two
main functions: Pattern classifiers and as non linear
adaptive filters. As its biological predecessor, an artificial
neural network is an adaptive system. By adaptive, it
means that each parameter is changed during its operation
and it is deployed for solving the problem in matter. This
is called the training phase. An artificial neural network is
developed with a systematic step-by-step procedure which
optimizes a criterion commonly known as the learning
rule. The input/output training data is fundamental for
these networks as it conveys the information which is
necessary to discover the optimal operating point.

Basically, an artificial neural network is a system. A
system is a structure that receives an input, process the
data, and provides an output. Commonly, the input
consists in a data array which can be anything such as data
from an image file, a WAVE sound or any kind of data
that can be represented in an array. Once an input is
presented to the neural network, and a corresponding
desired or target response is set at the output, an error is
composed from the difference of the desired response and
the real system output. The error information is fed back
to the system which makes all adjustments to their
parameters in a systematic fashion (commonly known as
the learning rule). This process is repeated until the
desired output is acceptable.

4.1 The Mathematical Model

Once modeling an artificial functional model from the
biological neuron, we must take into account three basic
components. First off, the synapses of the biological
neuron are modeled as weights. Let’s remember that the
synapse of the biological neuron is the one which

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 340

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

interconnects the neural network and gives the strength of
the connection. For an artificial neuron, the weight is a
number, and represents the synapse. A negative weight
reflects an inhibitory connection, while positive values
designate excitatory connections. The following
components of the model represent the actual activity of
the neuron cell. All inputs are summed altogether and
modified by the weights. This activity is referred as a
linear combination. Finally, an activation function controls
the amplitude of the output. For example, an acceptable
range of output is usually between 0 and 1, or it could be -
1 and 1.

Mathematically, this process is described in the figure

From this model the interval activity of the neuron can be
shown to be:

The output of the neuron, yk, would therefore be the
outcome of some activation function on the value of vk.

4.2 Activation functions

As mentioned previously, the activation function acts as a
squashing function, such that the output of a neuron in a
neural network is between certain values (usually 0 and 1,
or -1 and 1). In general, there are three types of activation
functions, denoted by Φ(.) . First, there is the Threshold
Function which takes on a value of 0 if the summed input
is less than a certain threshold value (v), and the value 1 if
the summed input is greater than or equal to the threshold
value.

Secondly, there is the Piecewise-Linear function. This
function again can take on the values of 0 or 1, but can
also take on values between that depending on the
amplification factor in a certain region of linear operation.

Thirdly, there is the sigmoid function. This function can
range between 0 and 1, but it is also sometimes useful to

use the -1 to 1 range. An example of the sigmoid function
is the hyperbolic tangent function.

4.3 A framework for distributed representation

An artificial neural network consists of a pool of simple
processing units which communicate by sending signals to
each other over a large number of weighted connections.
A set of major aspects of a parallel distributed model can
be distinguished:
 a set of processing units ('neurons,' 'cells');
 a state of activation yk for every unit, which

equivalent to the output of the unit;
 connections between the units. Generally each

connection is defined by a weight wjk which
determines the effect which the signal of unit j has on
unit k;

 a propagation rule, which determines the effective
input sk of a unit from its external inputs;

 an activation function Fk, which determines the new
level of activation based on the efective input sk(t)
and the current activation yk(t) (i.e., the update);

 an external input (aka bias, offset) øk for each unit;
 a method for information gathering (the learning

rule);
 an environment within which the system must

operate, providing input signals and if necessary
error signals.

4.4 Neural Network topologies

In the previous section we discussed the properties of the
basic processing unit in an artificial neural network. This
section focuses on the pattern of connections between the
units and the propagation of data. As for this pattern of
connections, the main distinction we can make is between:

 Feed-forward neural networks
 Recurrent neural networks

Classical examples of feed-forward neural networks are
the Perceptron and Adaline.

4.5 Training of artificial neural networks

A neural network has to be configured such that the
application of a set of inputs produces (either 'direct' or via
a relaxation process) the desired set of outputs. Various
methods to set the strengths of the connections exist. One
way is to set the weights explicitly, using a priori
knowledge. Another way is to 'train' the neural network

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 341

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

by feeding it teaching patterns and letting it change its
weights according to some learning rule.
We can categorise the learning situations in two distinct
sorts. These are:

 Supervised learning or Associative learning in
which the network is trained by providing it with input
and matching output patterns. These input-output pairs can
be provided by an external teacher, or by the system which
contains the neural network (self-supervised).

 Unsupervised learning or Self-organisation in
which an (output) unit is trained to respond to clusters of
pattern within the input. In this paradigm the system is
supposed to discover statistically salient features of the
input population. Unlike the supervised learning
paradigm, there is no a priori set of categories into which
the patterns are to be classified; rather the system must
develop its own representation of the input stimuli.

 Reinforcement Learning This type of learning
may be considered as an intermediate form of the above
two types of learning. Here the learning machine does
some action on the environment and gets a feedback
response from the environment. The learning system
grades its action good (rewarding) or bad (punishable)
based on the environmental response and accordingly
adjusts its parameters. Generally, parameter adjustment is
continued until an equilibrium state occurs, following
which there will be no more changes in its parameters.
The self organizing neural learning may be categorized
under this type of learning.

4.6. Multi-layer feed-forward networks

A feed-forward network has a layered structure. Each
layer consists of units which receive their input from units
from a layer directly below and send their output to units
in a layer directly above the unit. There are no connections
within a layer. The Ni inputs are fed into the first layer of
Nh;1 hidden units. The input units are merely 'fan-out'
units; no processing takes place in these units. The
activation of a hidden unit is a function Fi of the weighted
inputs plus a bias, as given in in eq

The output of the hidden units is distributed over the next
layer of Nh;2 hidden units, until the last layer of hidden

units, of which the outputs are fed into a layer of No
output units .

Although backpropagation can be applied to networks
with any number of layers, just as for networks with
binary units it has been shown (Hornik, Stinchcombe, &
White, 1989; Funahashi, 1989; Cybenko, 1989; Hartman,
Keeler, & Kowalski, 1990) that only one layer of hidden
units success to approximate any function with finitely
many discontinuities to arbitrary precision, provided the
activation functions of the hidden units are non-linear (the
universal approximation theorem). In most applications a
feed-forward network with a single layer of hidden units is
used with a sigmoid activation function for the units.

5. Understanding Backpropagation

The equations derived in the previous section may be
mathematically correct, but what do they actually mean? Is
there a way of understanding back-propagation other than
reciting the necessary equations? The answer is, of course,
yes. In fact, the whole back-propagation process is
intuitively very clear. What happens in the above
equations is the following. When a learning pattern is
clamped, the activation values are propagated to the output
units, and the actual network output is compared with the
desired output values, we usually end up with an error in
each of the output units. Let's call this error eo for a
particular output unit o. We have to bring eo to zero The
simplest method to do this is the greedy method: we strive
to change the connections in the neural network in such a
way that, next time around, the error eo will be zero for
this particular pattern. We know from the delta rule that, in
order to reduce an error, we have to adapt its incoming
weights according to.

That's step one. But it alone is not enough: when we only
apply this rule, the weights from input to hidden units are
never changed, and we do not have the full
representational power of the feed-forward network as
promised by the universal approximation theorem. In
order to adapt the weights from input to hidden units, we
again want to apply the delta rule. In this case, however,
we do not have a value for δ for the hidden units. This is

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 342

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

solved by the chain rule which does the following:
distribute the error of an output unit o to all the hidden
units that is it connected to, weighted by this connection.
Differently put, a hidden unit h receives a delta from each
output unit o equal to the delta of that output unit weighted
with (= multiplied by) the weight of the connection
between those units.

5.1 Working with back-propagation

The application of the generalized delta rule thus involves
two phases: During the first phase the input x is presented
and propagated forward through the network to compute
the output values yp o for each output unit. This output is
compared with its desired value do, resulting in an error
signal δp o for each output unit. The second phase
involves a backward pass through the network during
which the error signal is passed to each unit in the network
and appropriate weight changes are calculated.

5.2 Weight adjustments with sigmoid activation
function.

 The weight of a connection is adjusted by an
amount proportional to the product of an error signal δ, on
the unit k receiving the input and the output of the unit j
sending this signal along the

connection:
 If the unit is an output unit, the error signal is

given by Take as the activation
function F the 'sigmoid' function as

defined In this case the
derivative is equal to

such that the error signal for an output unit can be written

as:
 The error signal for a hidden unit is determined
recursively in terms of error signals of the
units to which it directly connects and the weights of those
connections. For the sigmoid
activation function:

5.3 Learning rate and momentum

The learning procedure requires that the change in weight

is proportional to True gradient descent requires
that in nitesimal steps are taken. The
constant of proportionality is the learning rate . For
practical purposes we choose a learning rate that is as
large as possible without leading to oscillation. One way
to avoid oscillation at large , is to make the change in
weight dependent of the past weight change by adding a
momentum term:

where t indexes the
presentation number and F is a constant which determines
the effect of the previous weight change.

6. Design of the Fuz zy Backpropagation
Network

This study aimed at building and evaluating an Artificial
Intelligence System in general and neuro-fuzzy model in
particular to estimate software size. Neural network
techniques are based on the principle of learning from
historical data, whereas fuzzy logic is a method used to
make rational decisions in an environment of uncertainty
and vagueness. However, fuzzy logic alone does not
enable learning from the historical database of software
projects. Once the concept of fuzzy logic is incorporated
into neural network, the result is a neuro-fuzzy system that
combines the advantages of both techniques.

6.1 Neuro-Fuzzy ystem

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 343

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The hybridization of neural networks and fuzzy logic is
the basic idea behind the neuro-fuzzy system. Neuro-fuzzy
hybridization is done in two ways: fuzzy neural networks -
is a neural network equipped with the capability of
handling fuzzy information and neuro-fuzzy systems - is a
fuzzy system augmented by neural networks to enhance
some characteristics like flexibility and adaptability.

The fuzzy neural network was integrated with an artificial
neural network in this study. Fuzzy logic can express the
logical meanings commonly used by humans in a more
natural and direct way. Logical decision-making was
performed according to the language rules proposed by
experts, which can solve nonlinear questions that cannot
be addressed using rigorous modeling methods. The
integration of fuzzy logic with a neural network can
facilitate self-adaptation through a learning function and
automatically acquire an algorithm for the information
expressed as fuzzy or precise data. This method can
overcome the difficulties in expressing time-varying
knowledge and processes, a feature of fuzzy logic. The
integration of these two components can compensate for
the insufficiency of a neural network in fuzzy data
processing and the deficiencies of pure fuzzy logic in
learning functions. To construct a fuzzy neural network
structure, this system adds a fuzzification layer before the
input layer of the neural network and a defuzzification
layer after the output layer, which results in the
fuzzification of the input information and defuzzification
of the output information, respectively. The premises and
the confidence level of the conclusions in fuzzy logic,
provided by experts in the field, were used as the inputs
and expected outputs of the learning samples for the
neural network. With the aid of the strong learning and
associative memory capabilities of the artificial neural
network, the neural network is trained for its learning
function to automatically acquire fuzzy rules that are
stored in the network in the forms of weights and
thresholds. Thus, our fuzzy neural network obtains the
capabilities of analyzing fuzzy questions and making
diagnoses and achieves an effective combination of fuzzy
logic with a neural network.

Software estimation accuracy is among the greatest
challenges for software developers. Software cost
estimation is the process of predicting the effort required
to develop a software system. Many estimation models
have been proposed. This paper provides a general
overview of software cost estimation methods. As a
number of these models rely on a software size estimate as
input, we first provide an overview of common size
metrics then we are using Fuzzy Backpropagation
Network for estimating the size.

6.2 Software sizing

The software size is the most important factor that affects
the software cost. The lines of code and function point are
the most popular software size metrics used in practice.

Lines of Code (LOC): This is the number of lines of the
delivered source code of the software, excluding
comments and blank lines and is commonly known as
LOC. Although LOC is programming language dependent,
it is the most widely used software size metric. Most
models relate this measurement to the software cost.
However, exact LOC can only be obtained after the
project has completed. Estimating the code size of a
program before it is actually built is almost as hard as
estimating the cost of the program.
A typical method for estimating the code size is to use
experts' judgment together with a technique called Project
Evaluation and Review Technique (PERT).

It involves experts' judgment of three possible code-sizes:
l, the lowest possible size;
h the highest possible size;
and m, the most likely size.
Estimation of the code size, S = (l+h+4m)/6.

PERT can also be used for individual components to
obtain an estimate of the software system by summing up
the estimates of all the components. It is generally popular
among the users. Here, we are suggesting the Fuzzy
Backpropagation Network (instead of PERT) for
producing better results.

Figure: The structure of the series of fuzzy BP neural

network consisting of five layers.

The entire network is composed of two parts; fuzzy
processing and a conventional BP network, with the
network input the same as a conventional BP network

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 344

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

input. Fuzzy processing was performed on the network
input through the membership function in the fuzzy
processing part, and the processed data were submitted
directly to the BP network for further processing. The
output data were compared with the expected output and
reversely adjusted based on the mean square error to
specify the network connection weights.

The structure of a series of fuzzy BP neural networks is
shown below.

This network consists of five layers. The processing
procedure of each layer is as follows.

(1) The first layer is the input layer. The nodes in this
layer receive input from the outside and send it to the next
layer. The connection weight constant between the first
and second layer is 1.
(2) The second layer is the fuzzification layer. It performs
fuzzy processing on the input and calculates the
membership function value for each input component.
(3) The third layer is connected to the output of fuzzy
processing through the weights. This layer is equivalent to
the hidden layer of a three-layered BP network.
(4) The fourth layer is the defuzzification layer. It
performs defuzzification processing on the output of the
BP network.
(5) The fifth layer is the output layer.
7. Optimization of the Netw ork Structure
Using the Genetic Algorithm Approach

Professor John Holland in 1975 proposed an attractive
class of computational models, called Genetic Algorithms
(GA), that mimic the biological evolution process for
solving problems in a wide domain. A Genetic Algorithms
operates through a simple cycle of stages:
i) Creation of a “;population” of strings,
ii) Evaluation of each string,
iii) Selection of best strings and
iv) Genetic manipulation to create new population of
strings.

The cycle of a Genetic Algorithms is presented below

Each cycle in Genetic Algorithms produces a new
generation of possible solutions for a given problem. In
the first phase, an initial population, describing
representatives of the potential solution, is created to
initiate the search process. The elements of the population
are encoded into bit-strings, called chromosomes.
The crossover points of any two chromosomes are selected
randomly. The second step in the genetic manipulation
process is termed mutation, where the bits at one or more
randomly selected positions of the chromosomes are
altered. The mutation process helps to overcome trapping
at local maxima. The offsprings produced by the genetic
manipulation process are the next population to be
evaluated.

Fig.: Mutation of a chromosome at the 5th bit position.

The Genetic Algorithms cycle is illustrated in this example
for maximizing a function f(x) = x2 in the interval 0 = x =
31. In this example the fitness function is f (x) itself. The
larger is the functional value, the better is the fitness of the
string. In this example, we start with 4 initial strings. The
fitness value of the strings and the percentage fitness of
the total are estimated in Table A. Since fitness of the
second string is large, we select 2 copies of the second
string and one each for the first and fourth string in the
mating pool. The selection of the partners in the mating
pool is also done randomly. Here in table B, we selected

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 345

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

partner of string 1 to be the 2-nd string and partner of 4-th
string to be the 2nd string. The crossover points for the
first-second and second-fourth strings have been selected
after o-th and 2-nd bit positions respectively in table B.
The second generation of the population without mutation
in the first generation is presented in table C.

Table A:

Table B:

Table C:

A Schema (or schemata in plural form) / hyperplane or
similarity template is a genetic pattern with fixed values of
1 or 0 at some designated bit positions.

7.1 . The Markov Model for Convergence Analysis

For the sake of understanding, let us now consider the
population size = 3 and the chromosomes are 2-bit
patterns, as presumed earlier. The set S now takes the
following form.
S = {(00, 00, 00), (00, 00, 01), (00, 00, 10), (00, 00, 11),
(00, 01, 00), (00, 01, 01), (00, 01, 10), (00, 01, 11),
....
....
(11, 11, 00), (11, 11, 01), (11, 11, 10), (11, 11, 11) }
It may be noted that the number of elements of the last set
S is 64. In general, if the chromosomes have the word
length of m bits and the number of chromosomes selected
in each Genetic Algorithm cycle is n, then the cardinality
of the set S is 2 ^ mn. The Markov transition probability
matrix P for 2-bit strings of population size 2, thus, will
have a dimension of (16 x 16), where the element pij of

the matrix denotes the probability of transition from i-th to
j-th state. A clear idea about the states and their transitions
can be formed from fig.

It needs mention that since from a given i-th state, there
could be a transition to any 16 j-th states, therefore the
row sum of P matrix must be 1. Formally,

for a given i.
Now, let us assume a row vector πt, whose k-th element
denotes the probability of occurrence of the k-th state at a
given genetic iteration (cycle) t; then πt + 1 can be
evaluated by

Thus starting with a given initial row vector π0 , one can
evaluate the state probability vector after n-th iteration πn
by

The first part of the present study focused on improving
the optimization of the momentum terms and structure of
the BP network, to eliminate the disadvantages of BP
network algorithms such as their liability to fall into a
local minimum, difficulties in determining the number of
hidden layer nodes, slow convergence rate in algorithm
learning, poor generalization of the network, and
excessive sensitivity to initial values.
The optimization was focused on the number of hidden
layers and the number of nodes in each layer of the
network.
(1) Number of hidden layers: an increase in the number of
hidden layers can form more complex decision-making
domains, which can enhance the ability of the network to
solve nonlinear problems. An appropriate number of
hidden layers can also minimize the system error of the
network. Based on the results of a large number of
experiments, a three-layered network structure can solve
most complex problems.
(2) Number of nodes in the hidden layers: the choice of
neuron numbers in the hidden layers is a very complex
issue, which is dependent on the experience of the
designer and the results from multiple experiments. No
optimal analytical expression exists. The number of
hidden layer units is directly related to the requirements of
the problem and the number of input/output units. If the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 346

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

number is too small, the information obtained through the
network will be insufficient to solve the problem. If the
number is too large, it will lead to increased training time,
longer learning time, a nonoptimal error rate, poor fault
tolerance, failure to recognize samples that were not
involved in the previous training set, and the possibility of
the so-called “transitional agreement” issue. Therefore, the
selection of an optimal number of hidden layer units is
crucial.
The optimal boundary numbers of the hidden layer units,
min and max, were first determined through the
incorporated use of formulas. The network training then
started from the minimum unit number min, followed by a
gradual increase in unit number until the maximum unit
number max was validated. For each number of hidden
layer units, the network convergence speeds were
compared after network convergence was achieved using
the same training samples. Finally, the optimal number of
hidden layer units was determined based on the training
and testing errors of the training results. This approach can
effectively reduce the verification time and provide the
fastest way to identify the optimal number of hidden layer
units.

Conclusion

Today, almost no model can estimate the cost of software
with a high degree of accuracy. For the time being we
suggest this approach for better understanding. Software
size estimation is the key of entire software program
project, and the accurate estimation immediately affects the
success of project. An improved function point analysis
(FPA) method was proposed for analyzing the software
size. The method combined the advantage of the fuzzy
rules and back propagation (BP) network. Firstly, fuzzy
inference system based on the complexity weight matrix of
function component was established. Then the adjusted
complexity weight was used for modifying the software
function point. The adjusted data as samples were
transferred to BP network. By the advantage of BP network
function approaching, the relationship between software
components and software size was established. Finally, BP
network was used for estimating software size. The
experiment results show that the method could eliminate
discontinuity among the different complexity grades, and
could make the best of history data, which enhances the
accuracy of function point estimation. Further research
work with sufficient amount of data should be conducted to
increase the accuracy of this method.

References

[1] Roger S Pressman, Seventh Edition, Software Engineering,
A Practitioner.s Approach; McGraw Hill International Edition.

[2] Fu Limin (1994), Neural Networks in Computer
Intelligence, McGraw Hill Inc.
[3] SRajasekharan, G A Vijayalakshmi Pai (2009), Neural
Networks, Fuzzy Logic and Genetic Algorithms – Synthesis and
Applications, PHI Learning Private Limited.
[4] B Yegnanarayana (2010), Artificial Neural Netwoks, PHI
Learning Private Limited.
[5] C H Chen, Fuzzy Logic and Neural Netwokk Handbook,
New York: McGraw-Hill Inc.,1996.
[6] F L Chung and T Lee, “Fuzzy competitive learning”, Neural
Networks, Vol 7, No 3, pp.539-552, 1994.
[7] M.T. Su, T.C.Ling, K.K.Phang, C.S.Liew, P.Y.Man,
“Enhanced Software Development Effort and Cost Estimation
Using Fuzzy Logic Model”, Malaysian Journal of Computer
Science, Vol. 20, No. 2, 2007, pp. 199-207.
[8] V Cherkassky and N Vassilas, “Performance of
Backporpagation networks for associative database retrieval”, in
Proceedings of International Joint Conference on Neural
Networks, Washington D C, Vol 1, pp. 77-84, 1989.
[9] Edwards, J.S. Moores, T.T. (1994), "A conflict between the
use of estimating and planning tools in the management of
information systems.". European Journal of Information Systems
3(2): 139-147.
[10] Briand, L. C. and I. Wieczorek (2002). Resource estimation
in software engineering. Encyclopedia of software engineering.
J. J. Marcinak. New York, John Wiley & Sons: 1160-1196.
[11] P D Wasserman, Neural Computing, Theory and Practice,
New York; Van Nostrand Reinhold, 1989.
[12] S.N. Sivanandam, S. Sumathi, S.N. Deepa, “Introduction to
fuzzy logic using MATLAB”, Springer, 2007.
[13] P D Wasserman, Advanced Methods in Neural Computing,
New York; Van Nostrand Reinhold, 1993.
[14] R A Jacobs, “Increaed rates of convergence through
learning rate adaptation”, Neural Networks, vol 1, No 4, pp. 295-
307, 1988.
[15] Adeli H. and Wu M. (1998) “Regularization neural network
for construction cost estimation”, Journal of Construction
Engineering and Management, ASCE 124(1), pp 18-24.
[16] J Von Neumann, The Computer and the Brain, New Haven,
CT:Yale University Press, 1958.
[17] Hill Peter (ISBSG) - Estimation Workbook 2 - published by
International Software Benchmarking Standards Group ISBSG -
Estimation and Benchmarking Resource Centre
[18] A. J. Albrecht, “Measuring Application Development
Productivity,” Proceedings of the Joint SHARE, GUIDE, and
IBM Application Development Symposium, Monterey,
California, October 14–17, IBM Corporation (1979), pp. 83–92.
[19] Flyvbjerg B. H., Mette S., and Buhl S. (2002),
“Underestimating costs in public works projects, error or lie”,
Journal of the American Planning Association, Vol. 68, No.3, pp
279-292.
[20] Jorgensen, M.. "A Review of Studies on Expert Estimation
of Software DevelopmentEffort". .
[21] Morris Pam - Overview of Function Point Analysis Total
Metrics - Function Point Resource Centre.
[22] A.A. Moataz, O.S.Moshood, A.Jarallah, “Adaptive fuzzy-
logic-based framework for software development effort
prediction”, Information and Software Technology, Vol. 47,
Issue 1, 2005, pp. 31-48.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 347

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[23] Jørgensen, M. Shepperd, M.. "A Systematic Review of
Software Development Cost Estimation Studies".
[24] Goodwin, P. (1998). Enhancing judgmental sales
forecasting: The role of laboratory research. Forecasting with
judgment. G. Wright and P. Goodwin. New York, John Wiley &
Sons: 91-112.
[25] N K Bose and P Liang, Neural Netwrok Fundamentals with
Graphs, Algorithms and Applications, McGraw-Hill, Inc.,
Editions, 1996.
[26] S. Mitra, Y.Hayashi, “Neuro-Fuzzy Rule Generation:
Survey in Soft Computing Framework”, IEEE Transactions on
Neural Networks, Vol.11, No.3, 2000, pp. 748-768.
[27] D. Nauck, F. Klawonn, R. Kruse, “Foundations of Neuro-
Fuzzy Systems”, Wiley, Chichester, 1997.

Biography of Author(s)

B V A N S S Prabhakar Rao is obtained
his Bachelor’s Degree in Electronics,
Master of Computer Applications &
M.Tech (CST) from Andhra University
and also pursuing his Ph.D through
JNTUK, Kakinada. Previously he worked
with Govt. Degree College, Tekkali & Dr.
V S Krishna Govt. Degree College,
Visakhapatnam as Lecturer in Computer
Applications and Science. And with
GITAM University as Assistnat Professor.

Presently he working as Associate Professor with Department of
Computer Science Engineering, Miracle Educational Society
Group of Institutions, Vizianagaram. He is Life Member in ISTE,
ISCA, IACSIT, CSTA and IAENG.

Dr. P. Seetha Ramaiah is presently
working as Professor in the Department of
Computer Science and Systems
Engineering, College of Engineering (A),
Andhra University. He received his Ph.D in
Computer Science from Andhra University
in 1990. He is the Principal Investigator for
several Defense R&D projects and
Department of Science and Technology
(DST) projects of the Government of India
in the areas of Embedded Systems and
Robotics. He has published several

Journal papers, and presented around Fifteen International
Conference papers in addition to twenty one papers at National
Conferences in India. His areas of research include Safety-Critical
Computing- Software Safety, Computer Networks, VLSI and
Embedded Systems, Real-Time Systems, Microprocessor-based
System Design, Robot Hand-Eye Coordination, Signal Processing
Algorithms on fixed-point DSP processors, and Bio-Electronics
Systems.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January 2012
ISSN (Online): 1694-0814
www.IJCSI.org 348

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

